G. Wachinger, S. Fiedler, K. Zepp, A. Gattinger, M. Sommer et al., Variability of soil methane production on the micro-scale: spatial association with hot spots of organic material and Archaeal populations, Soil Biology and Biochemistry, vol.32, issue.8-9, pp.8-91121, 2000.
DOI : 10.1016/S0038-0717(00)00024-9

S. Allison, M. Wallenstein, and M. Bradford, Soil-carbon response to warming dependent on microbial physiology, Nature Geoscience, vol.39, issue.5, pp.336-376, 2010.
DOI : 10.1038/ngeo846

J. Dungait, D. Hopkins, A. Gregory, and A. Whitmore, Soil organic matter turnover is governed by accessibility not recalcitrance, Global Change Biology, vol.58, issue.6, pp.1781-96, 2012.
DOI : 10.1111/j.1365-2486.2012.02665.x

D. Bailey, W. Otten, and C. Gilligan, Saprotrophic invasion by the soil-borne fungal plant pathogen Rhizoctonia solani and percolation thresholds, New Phytologist, vol.146, issue.3, pp.535-579, 2000.
DOI : 10.1046/j.1469-8137.2000.00660.x

W. Otten, C. Gilligan, C. Watts, A. Dexter, and D. Hall, Continuity of air-filled pores and invasion thresholds for a soil-borne fungal plant pathogen, Rhizoctonia solani, Soil Biology and Biochemistry, vol.31, issue.13, pp.1803-1813, 1999.
DOI : 10.1016/S0038-0717(99)00099-1

J. Jastrow and J. , Organic Matter Turnover. Encyclopedia of Soil Science, pp.936-978, 2002.

A. Houston, W. Otten, P. Baveye, and S. Hapca, Adaptive-window indicator kriging: A thresholding method for computed tomography images of porous media, Computers & Geosciences, vol.54, pp.239-287, 2013.
DOI : 10.1016/j.cageo.2012.11.016

S. Juarez, N. Nunan, A. Duday, V. Pouteau, S. Schmidt et al., Effects of different soil structures on the decomposition of native and??added organic carbon, European Journal of Soil Biology, vol.58, pp.81-90, 2013.
DOI : 10.1016/j.ejsobi.2013.06.005

M. Alexander, Introduction to Soil Microbiology, 1977.

E. Barrios, R. Buresh, and J. Sprent, Organic matter in soil particle size and density fractions from maize and legume cropping systems, Soil Biology and Biochemistry, vol.28, issue.2, pp.185-93, 1996.
DOI : 10.1016/0038-0717(95)00110-7

L. Salvo, J. Hernández, and O. Ernst, Distribution of soil organic carbon in different size fractions, under pasture and crop rotations with conventional tillage and no-till systems, Soil and Tillage Research, vol.109, issue.2, pp.116-138, 2010.
DOI : 10.1016/j.still.2010.05.008

R. Falconer, A. Houston, W. Otten, and P. Baveye, Emergent Behavior of Soil Fungal Dynamics, Soil Science, vol.177, issue.2, pp.111-120, 2012.
DOI : 10.1097/SS.0b013e318241133a

R. Falconer, J. Bown, N. White, and J. Crawford, Biomass recycling and the origin of phenotype in fungal mycelia Available: http://rspb. royalsocietypublishing.org, Proc Biol Sci, vol.272272, pp.1727-1761, 1573.

K. Cazelles, W. Otten, P. Baveye, and R. Falconer, Soil fungal dynamics: Parameterisation and sensitivity analysis of modelled physiological processes, soil architecture and carbon distribution, Ecological Modelling, vol.248, pp.165-73, 2013.
DOI : 10.1016/j.ecolmodel.2012.08.008

C. Porter, J. Jones, S. Adiku, A. Gijsman, O. Gargiulo et al., Modeling organic carbon and carbon-mediated soil processes in DSSAT v4, Oper Res. Available, vol.5, issue.103, pp.247-78, 2009.

W. Otten, Continuity of air-filled pores and invasion thresholds for a soil-borne fungal plant pathogen, Rhizoctonia solani, Soil Biology and Biochemistry, vol.31, issue.13, pp.1803-1813, 1999.
DOI : 10.1016/S0038-0717(99)00099-1

W. Otten, D. Bailey, and C. Gilligan, Empirical evidence of spatial thresholds to control invasion of fungal parasites and saprotrophs. New Phytol, Available, vol.163, issue.1, pp.125-157, 2004.