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Hyperspectral Unmixing With Spectral Variability
Using a Perturbed Linear Mixing Model

Pierre-Antoine Thouvenin, Sudent Member, |EEE, Nicolas Dobigeon, Senior Member, |IEEE, and
Jean-Yves Tourneret, Senior Member, |IEEE

Abstract—Given a mixed hyperspectral data set, linear un-
mixing aims at estimating the reference spectral signatures
composing the data—referred to as endmembers—their abun-
dance fractions and their number. In practice, the identified
endmembers can vary spectrally within a given image and can
thus be construed as variable instances of reference endmem-
bers. Ignoring this variability induces estimation errors that
are propagated into the unmixing procedure. To address this
issue, endmember variability estimation consists of estimating the
reference spectral signatures from which the estimated endmem-
bers have been derived as well as their variability with respect
to these references. This paper introduces a new linear mixing
model that explicitly accounts for spatial and spectral endmember
variabilities. The parameters of this model can be estimated using
an optimization algorithm based on the alternating direction
method of multipliers. The performance of the proposed unmixing
method is evaluated on synthetic and real data. A comparison with
state-of-the-art algorithms designed to model and estimate end-
member variability allows the interest of the proposed unmixing
solution to be appreciated.

Index Terms—Alternating direction method of multipliers
(ADMM), endmember spatial and spectral variability, hyperspec-
tral imagery, linear unmixing.

I. INTRODUCTION

VER the past decades, hyperspectral imagery has been

receiving an increasing interest. Whereas traditional red/
green/blue or multispectral images are composed of a limited
number of spectral channels (from three to tens), hyperspectral
images are acquired in hundreds of contiguous spectral bands
facilitating the analysis of the elements in the scene, e.g., deter-
mining their nature and relative proportions. However, the high
spectral resolution of these images is mitigated by their lower
spatial resolution, hence the need to unmix the data. Spectral
unmixing is aimed at estimating the reference spectral signa-
tures—referred to as endmembers—their abundance fractions
and their number from which the L-multi-band observations are
derived according to a predefined mixing model. Assuming the
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absence of any microscopic interaction between the materials
of the imaged scene and a negligible declivity, a linear mixing
model (LMM) is classically used to describe the structure of the
collected data [1]. However, the spectral signatures contained
in a reference image can vary spectrally, spatially or temporally
from an image to another due to varying acquisition conditions.
This can result in significant estimation errors being propagated
throughout the unmixing process. Various models either derived
from a statistical or a deterministic point of view have been de-
signed to address this issue [2]. More precisely, the first class of
methods assumes that the endmember spectra can be considered
as realizations of multivariate distributions. The most popular
models are the normal composition model [3] and the beta com-
positional model [4]. The second class of methods considers the
endmember signatures as members of spectral libraries associ-
ated with each material (bundles). Two methods using spectral
libraries have been especially considered in the literature: the
automated endmember bundles (AEB) [5] and the Fisher dis-
criminant null space (FDNS) [6]. Whereas AEB enables the ex-
traction of an endmember library to account for spectral vari-
abilities, the aim of FDNS is to estimate a transformation pro-
jection matrix to project the hyperspectral data into a space min-
imizing the variability impact.

Since the identified endmembers can be considered as vari-
able instances of reference endmembers, we introduce an ex-
tended version of the classical LMM to explicitly model the
spectral variability. In [7], the variability is assumed to only re-
sult from scaling factors. Conversely, in this paper, inspired by
a model designed in [8], each endmember is represented by a
“pure” spectral signature corrupted by an additive perturbation
accounting for its variability. The perturbation is allowed to vary
from a pixel to another to represent spatial-spectral variabilities.
As a result, the proposed perturbed LMM (PLMM) can cap-
ture endmember spatial and spectral variability within a given
image. To the best of our knowledge, it is the first time end-
member variability has been explicitly modeled as an additive
perturbation.

The promising results obtained with the alternating direction
method of multipliers (ADMM) in hyperspectral imagery [9]
and in image deblurring [10]-[14] serve as an incentive to
apply a similar framework to conduct PLMM-based unmixing.
A key property of the ADMM framework lies in the introduc-
tion of appropriate splitting variables. Indeed, the specified
constraints can be handled independently from the rest of the
problem and often lead to analytical solutions when solving the
resulting optimization problem. Using this fruitful principle,
an ADMM-based algorithm for linear unmixing using a group



lasso {5 ;-norm regularization was recently developed in [15],
[16]. Inspired by these examples, this paper proposes to exploit
the advantages of an ADMM-based resolution of the linear un-
mixing problem to account for spatial and spectral endmember
variabilities.

Throughout the article, the number of endmembers will be as-
sumed to be a priori known or estimated by any state-of-the-art
method (e.g., [17]) since estimating the required number of end-
members K to appropriately describe the data as well as end-
member variability is a challenging task. Indeed, the choice of
K drastically alters the representation of the imaged scene, and
is thus a crucial step to the endmember identification and the
subsequent abundance estimation [1], [17], [18].

The paper is organized as follows. The PLMM accounting
for spectral and spatial variabilities is introduced in Section II.
Section IIT describes an ADMM-based algorithm to solve the
resulting optimization problem. Experimental results obtained
on synthetic and real data are reported in Sections IV and V re-
spectively. The results obtained with the proposed algorithm are
systematically compared to those of the vertex component anal-
ysis/fully constrained least squares (VCA/FCLS), the simplex
identification via split augmented Lagrangian (SISAL) [9] cou-
pled with FCLS, AEB and FDNS. Section VI finally concludes
this work.

II. PROBLEM STATEMENT

A. Perturbed Linear Mixing Model (PLMM)

In the absence of any specific prior knowledge on the vari-
ability nature (i.e., errors affecting the endmembers), we have
chosen to explicitly represent the variability by a spatially
varying additive endmember perturbation. This choice, inspired
by a model designed in [8], appears to be simple and flexible
enough to account for the observed variability. Assuming that
the number of endmembers K is known, the proposed PLMM
differs from the classical LMM insofar as each pixel y, is
represented by a combination of the K endmembers—denoted
as mj—affected by a perturbation vector dmy,, ;. accounting
for endmember variability. The resulting PLMM can be written

K
Yn = Zam(mk —i—dmn,k) +b,forn=1,...,N (1)
k=1

where y,, denotes the nth image pixel, my is the kth end-
member, ag, is the proportion of the kth endmember in the
nth pixel, and dm,, 5, denotes the perturbation of the kth
endmember in the nth pixel. Finally, b,, models a zero-mean
white Gaussian noise resulting from the data acquisition and
modeling errors. We can note that the proposed PLMM reduces
to the classical LMM in absence of variability. In matrix form,
the PLMM (1) can be written as follows

Y — MA + {dMla1 ’ ‘ dMNaN} +B (2

A

where Y = [y1,...,yn~] is an I X N matrix containing the
image pixels, M is an L x K matrix containing the endmembers,
A is a K x N matrix composed of the abundance vectors a,,,

dM,, is an L x K matrix whose columns are the perturbation
vectors associated with the nth pixel, and B is an L x N matrix
accounting for the noise. The non-negativity and sum-to-one
constraints usually considered to reflect physical considerations
are

AT1x =1y
M+dM,, > 0puk,Vn=1,...,N. 3)

A >0xx«n,
M EOLXKv

When compared to the underlying models proposed in the litera-
ture to mitigate variability [2], model (1) presents the advantage
to explicitly address the variability phenomenon in terms of an
additive perturbation affecting each endmember. This perturba-
tion accounts for any deviation from the linear mixing model (as
will be illustrated in our experiments). The main contribution
of this paper is to propose an unsupervised algorithm for esti-
mating the endmembers contained in the image and the abun-
dances and endmember variability for each pixel of this image.

B. Problem Formulation

As mentioned in Section I, the PLMM (1) and constraints
(3) can be combined to formulate a constrained optimization
problem. An appropriate cost function is required to estimate
the parameters M, A, dM. Assuming the signal is corrupted
by a zero-mean white Gaussian noise, we define the data fitting
term as the Frobenius norm of the difference between the ac-
quisitions Y and the reconstructed data MLA + A. Since the
problem is ill-posed, additional penalization terms are needed.
In this paper, we propose to define penalization functions &, ¥
and T to reflect the available a priori knowledge on M, A and
dM respectively. As a result, the optimization problem is ex-
pressed as

(M*,dM*, A*) € arg min {j(M,dM,A) 5.t (3)} &)
M,dM, A

with

1
J(M,dM, A) = _[[Y - MA — Alf + a®(A)+

3¥(M) +4T(dM) (5)

where the penalization parameters «, 3,y control the trade-off
between the data fitting term 5 ||'Y — MLA — A% and the penal-
ties ®(A), ¥ (M) and T(dM). In addition, we assume that the
penalization functions are separable, leading to

N

®(A) = Z $(an) (6)
L

U(M) = () ™)
£=1

T(dM) = Z v(dM,,) (®)

1

-

3

where m, denotes the £th row of M and ¢, 1 and v are non-neg-
ative differentiable convex functions. This assumption is used
to decompose (4) into a collection of simpler sub-problems de-
scribed in Section III. All these penalizations are described in
the next paragraphs.



1) Abundance Penalization: The abundance penalization ¢
has been chosen to promote spatially smooth abundances as in
[19]. More precisely, the abundance spatial smoothness penal-
ization is expressed in matrix form as

(€))

where H is a matrix computing the differences between the
abundances of a given pixel and those of its 4 nearest neighbors
[19]. The resulting expression of ¢ is detailed in Appendix A.

2) Endmember Penalization: As for ¥, classical penaliza-
tions found in the literature consist of constraining the size of
the simplex whose vertices are the endmember signatures. The
volume criterion used in [20], [21] enables the volume exactly
occupied by the (K — 1)-simplex formed by the endmembers
to be penalized. The mutual distance between the endmembers
introduced in [22], [23] (which approximates the volume) has
a similar purpose. Finally, if the endmembers are a priori close
from available reference spectral signatures, a penalization on
the distance between the endmembers and these signatures can
be implemented. The expression of the distance between the
endmembers and some reference spectral signatures, the mutual
distance between the endmembers and the volume penalization
are recalled in the following lines. For each penalization type,
the corresponding expression of 9 is given in Appendix A.

+ The distance between the endmembers and some reference

spectral signatures My is given by

1
2(A) = | AHI}

1
T(M) = 5 [|[M — M| (10)

* The mutual distance between the endmembers is expressed
in matrix form as

1 K K
U(M) = 52( ||mimj||%).

i=1

(11)

i

* Under the pure pixel and linear mixture assumptions, the
data points are enclosed in a (K — 1)-simplex whose ver-
tices are the endmembers [21]. Let T be the projection of
M on the space spanned by the K — 1 principal compo-
nents of Y. The expression of the volume of this subspace

is
T

det ( T) .
13

To ensure the differentiability of the penalization with re-
spect to T, we propose to consider the following penalty

U(M) = Evz(T). (12)

3) Variability Penalization: The variability penalizing func-
tion T has been designed to limit the norm of the spectral vari-
ability. Indeed, it is legitimate to penalize the energy of the per-
turbation matrices dM,, in order to obtain a reasonable end-
member variability. In this paper, we propose to consider the fol-
lowing penalty (having the advantage to be differentiable with
respect to dM,,)

1

Y= w

N

1 . 1
T(AM) = J[dMI} = 3 37 ML}

n=1

(13)

To the best of our knowledge, no specific information re-
garding the spatial distribution of the variability is available
in the remote sensing literature so far. We have consequently
preferred not to include any additional regularization on dM.
However, any spatial penalization satisfying the assumptions
given in Section II-B can be added when necessary (e.g., a
group-Lasso £ ; penalization to promote spatial sparsity of the
variability term dM).

III. AN ADMM-BASED ALGORITHM

Since the problem (4) is not convex, a minimization strategy
similar to [12] has been adopted. Precisely, the cost function 7
is successively minimized with respect to each variable A, M
and dM until a stopping criterion is satisfied. The assumptions
made on the penalization functions ®, ¥, T in Section II allow
the global optimization problem to be divided into a collec-
tion of strictly convex sub-problems. These sub-problems have
the nice property to involve differentiable functions simplifying
their resolution. Having introduced appropriate splitting vari-
ables to account for the constraints, these sub-problems are fi-
nally solved using ADMM steps admitting closed-form expres-
sions due to the separability assumption. The three minimiza-
tion steps considered in this algorithm present a highly similar
structure. The details are reported in Appendix B to facilitate
the reading of this paper.

A. ADMM: General Principle

The ADMM is a technique combining the benefits of aug-
mented Lagrangian and dual decomposition methods to solve
constrained optimization problems [24]. More precisely, the
method consists of solving the original optimization problem
by successively minimizing the cost function of interest with
respect to each variable. The following elements (extracted
from [24]) recall a general formulation of the problem. Given
f:R?P - RT, g c R - RT, A € R"*P and B ¢ R**™,
consider the general optimization problem

ain { 59+ 9(a) (14

Ax+Bz—c}.

The scaled augmented Lagrangian associated with this problem
can be written

L,(x,2,u) = f(x) + 9(z) + £|Ax + Bz —c +u[}

where p > 0. Denote as x(*+1) z(*+1) and u(k+1) the primal
variables and the dual variable at iteration k4 1 of the algorithm

x*+1) ¢ arg min L, (x,z(k), u(k))
PALRRINS argmin £, (X(kﬂ),z,u(k))
uF ) —u®) p Ax*HD Bz ¢,

The ADMM consists in successively minimizing £, with re-
spect to x,z and u. A classical stopping criterion involves the
primal and dual residuals at iteration k& + 1 (see [24, p. 19]): the
procedure is iterated until

Hrm)H <™ and Hs<k)H < pdual
2

(15

2



TABLE I
TABLE OF NOTATIONS

N number of pixels

L number of spectral bands

K number of endmembers

Y ¢ RLXN lexicographically ordered pixels

M € RLxK endmember matrix
dM,, € RLxK nth variability matrix
A e RExXN abundance matrix

V € RIE-1xL | projector on the space spanned by the
K — 1 principal components of Y
Ue RLx(K-1)

T e R(K—l)xf\"

inverse projector
projection of M on the PCA space

my, ., My column k, row 7 of the matrix M,
[AB];\ {AB}I column k, row j of the matrix AB
term-wise inequality
Sn.p = {X € R”!?’)IX - On,p}
1, =[1,1,...,1)T e R"
0 ifre A
Ta(x) - { +oc  otherwise.

where the primal and dual residuals at iteration k4 1 are respec-
tively given by
rF D — Ax(ED 4 B+ _ ¢

sk — )ATB (z<k+1> _ z<k>)

2 2 .
\/[_)eabg—karelmax{ HAX(k)Hz ,HBz(k’) , ,||c||§} (18)
&,dualz \/Egabs 4 Erel (19)

Finally, the parameter p can be adjusted using the rule described
in [24, p. 20]

(16)
(17

and
Epri —

ATy

R e
P frieer it |[sf, > pua [|r ]
ptF)
Note that this parameter adjustment does not alter the ADMM
convergence as long as it is performed finitely many times.

pl) = (20)

otherwise.

B. Optimization With Respect to A

With the assumptions made in Section II-B, optimizing the
cost function J with respect to A under the constraints (3) is
equivalent to solving the following problems

{%Ily:t (M + dM,, a3 + a¢<an>} L@

. .
a, —argmin
n = 8T8 a, = 0g, allp=1

an

After introducing the splitting variables w,(qA) € RX forn =

1,..., N such that
Iy a - I Ox
n W, =
1% 0% 1
N—— ——— N——

Q R s

(22)

the resulting scaled augmented Lagrangian is expressed as

E A (an,W(A A(A))

(A
—i—'u" HQa —I—RW fs—i—/\ H

se, ()

+ag(a,) + T,

Hyn — (M + dMn)anHS
2

2
(23)

Algorithm 1: PLMM-unmixing: global algorithm.
Data: Y,A© M© daM©®
Result: A, M,dM
begin

k<« 1;

while stopping criterion not satisfied do

a A®) + arg min j(M(k_l), dM(kfl),A) ;

A

b M®*) arg min J(M,dM(k_1)7A(k)) ;
M

c dM™ < arg min j(M(’“>,dM, A<k>) :
M

B k<« k+1;
A« A,
M « M®*);

| dM « dM™P);

Algorithm 2: ADMM optimization w.r.t. A (step (a)).

Data: Ya A(O)a M(O)v Epris Edual s Tincr’ Tdecr7 /~L1(’LA)(O)
Result: A
for n=1to N do

k+1;
)\(A)(O) 0:
(A)( ) — o
whlle stopping criterion not satisfied do
a®)
arg min E (A (an,w7(L )(k—1) )\(A)(Ic 1))
(A)(k)

arg min E OIS
w®

,\<A>(k> CABWED L ga®) 4 BB g

( () WA A(A)(k—l)).

i Update(uﬁtAx “71)) using (20) ;

7k<—k—|—1;

k
a, « al;

with ,uﬁlA) > 0. The resulting algorithm (step a of Algo. 1)
is detailed in Algo. 2, and the solution to each sub-problem is

given in Appendix B.

C. Optimization With Respect to M

Similarly to Section III-B, optimizing 7 with respect to M
under the constraint (3) is equivalent to solving

2
%H?e *ﬁle*lseH + By (my)
m; = argmin ot 2

my

for n=1,...,N (24)

m, = 0%, my+dm,, > 0%



where m, denotes the £th row of M. Introducing the splitting

variables WéM) e RW+UXK for¢ =1,.. 'TL such that
_Ox
1Y\ - dm;
< ) e~ WO — ' 25)
1y
SN—— —
e dmN,e
Fy

the associated scaled augmented La%rangian can be writtgn
~ (M) A(MYY _ Ll 5
e (AP = s e,
M
T
2

+Bu(iy) + Igy (WEM))

2
+ Heffle*Wf{M) +F4+A§M>HF

(26)
with ,uEM) > 0. The resulting algorithm (step b of Algo. 1) is
similar to Algo. 2. The solution to the optimization problems
depends on the endmember penalizing function ¥ chosen in
Section II-B2 (see Appendix B for more details).

D. Optimization With Respect to dM

Finally, optimizing J with respect to dM under the con-
straint (3) is equivalent to solving the sub-problems

2
% lyn — (M +dM,,)a,|;

dM = argmin +yv(dM,,) 27)
dM, st. M+4+dM,, > Opux

Introducing the splitting variables W;dM) = M + dM,, for

n = 1,..., N, the resulting scaled augmented Lagrangian is

given by

1 .
£ oo (M, WM AL ) = =y, — (M + dM, )

M) N
" o, i o

(M) + Ty (Wﬁﬁm) (28)

with /,Lng) > 0. The resulting algorithm (step c of Algo. 1) is
similar to Algo. 2. The solution to these problems is given in
Appendix B.

The optimization procedures detailed above are performed
sequentially until the stopping criterion is satisfied. The next
sections evaluate the performance of the resulting unmixing
strategy via several experiments conducted on synthetic and real
data.

E. Convergence and Computational Cost

The alternating scheme proposed in Algo. 1 is nothing but a
block coordinate descent (BCD) which is guaranteed to con-
verge to a stationary point of the objective function 7 as long as
each sub-problem is exactly minimized [25, Proposition 2.7.1].
Besides, the sub-problems tackled in Sections III-B—III-D are
strongly convex, hence the convergence of the ADMM steps
toward the unique minimum of each independent sub-problem
when the augmented Lagrangian parameter has a constant
value (see for instance [24]). The same convergence result ap-
plies to the ADMM with the parameter adjustment introduced
in Section III-A as long as the parameter is updated finitely

13
1.05
wr
1
S
0.95
Lbreak
0.9 £
100 200 300 400 2

Band index

Fig. 1. Example of a randomly-generated affine function used to generate the
synthetically perturbed endmembers.

many times [24]. We may however mention that the proximal
alternating linearized minimization (PALM) [26] could also
be directly applied to the considered problem with a rigorous
convergence proof based on the Kurdyka-t ojasiewicz property.
This alternative work has been presented in [27].

Considering the significant number of unknown parameters
and the simple expression of the ADMM updates detailed in
Appendix B, we can note that the computational cost is domi-
nated by matrix products, yielding an overall O(LK?N) com-
putational cost.

IV. EXPERIMENT WITH SYNTHETIC DATA

This section considers four images of size 128 x 64 acquired
in 413 bands. Each image corresponds to a mixture of K
endmembers with X € {3,6} in presence or absence of pure
pixels (the absence of pure pixels is considered to evaluate
the algorithm performance in a very challenging scenario).
The synthetic linear mixtures have been corrupted by additive
white Gaussian noise to ensure the signal-to-noise ratio is
SNR = 30 dB. Since no accepted variability model is available
in the literature, we propose the following generation proce-
dure to introduce controlled spectral variability. The corrupted
endmembers involved in the mixture (see Fig. 2) have been
generated using the product of reference endmembers with
randomly drawn piece-wise affine functions, providing realistic
perturbed endmembers as represented in Fig. 1. For a given
variability coefficient ¢y, > 0 fixed by the user, the param-
eters &;, ¢ € {1,2,3} and Lyyear € {1,..., L} introduced in
Fig. 1 have been generated as follows

(29)
(30)

& Nu[lfcvar/2,l+cvar/2]>i S {1, 2, 3}
Lbreak = LL/2+ LLU/?)JJ,U NN(O,]_)

where |-| denotes the floor operator. The synthetic data used
in the proposed experiments have been generated with a value
of ¢y, that is lower in the upper half of the image (cyar =
0.1) than in the lower half {¢y,, = 0.25). Some instances of
the corresponding perturbed endmember spectra are depicted in
Fig. 2. Note that different affine functions have been considered
for different endmembers and different pixels.

A. Sate-of-the-Art Methods

The results of the proposed algorithm have been compared
to those obtained with two classical linear unmixing methods
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Fig. 2. Reference endmembers (red lines) and 20 corresponding instances
under spectral variability (blue dotted lines) involved in the synthetic data
experiments.

(VCA/FCLS, SISAL/FCLS) and two variability accounting al-
gorithms (AEB, FDNS). These methods are recalled below with
their most relevant implementation details.

1) Classical unmixing methods (no variability)

* VCA/FCLS: the endmembers are first extracted using
the vertex component analysis [28]. The abundances are
then estimated for each pixel using the fully constrained
least squares (FCLS) algorithm [29];

+ SISAL/FCLS: the endmembers are first extracted
using the simplex identification via split augmented
Lagrangian [9]. The tolerance for the stopping rule
has been set to 102 and VCA has been used as an
initialization step. The abundances are then estimated
for each pixel using FCLS.

2) Variability accounting unmixing methods

* AEB [5], [30], [31]: the size of the bundles is equal to
25% of the total pixel number. The endmembers and
abundance are estimated using VCA/FCLS;

* FDNS [6]: the endmembers and abundances are esti-
mated by VCA/FCLS;

* Proposed method (BCD/ADMM): endmembers and
abundances have been initialized with VCA/FCLS
estimates. Note that VCA/FCLS is a method assuming
that there are pure pixels in the image, which can be
problematic in case the imaged scene does not satisfy
this assumption. The variability matrices have been
initialized with all their entries equal to epsl. The algo-
rithm is stopped when the relative difference between

IMATLAB constant eps = 2.22 x 1016,

TABLE 11
ADMM PARAMETERS

Synthetic data  Real data

iner 1.1 1.1
decr 1.1 1.1

10 10
“55\)(0) 10—4 10—4
”(M)(U) 10—8 10—8
L, (aM)(©) 104 10—4
Sdh‘\ 10—1 10—2
gl 104 104

two successive values of the objective function is less
than 103,

Different penalization combinations have been compared for
the proposed method. The abbreviations ss, mv and vca are
used for spatially smooth, minimum volume and minimum dis-
tance to VCA in the following. The absence of any additional
abbreviation means that the method does not include any abun-
dance or endmember penalization term.

The performance of the algorithm has been assessed in terms
of endmember estimation using the average spectral angle
mapper (aSAM)

aSAM(M Zarccos < my, | M) )

|| M|,
as well as in terms of abundance and perturbation estimation by
global mean square errors (GMSEs)

GMSE(A) = A — NE

N
GMSE(dM) = — Z |[dM,, — dM,,||2.
NLK &~

As a measure of fit, the following reconstruction error (RE) has
been also considered
112
R
LN F
where Y is the matrix formed of the pixels reconstructed using
the parameters estimated by the algorithm.

B. Results

The parameters used for the ADMM algorithms are detailed
in Table II, and the values chosen by cross-validation for «,
3 and ~ are reported in Tables IIT and IV. The performance
measures returned by the unmixing methods are provided
in Table III for the datasets containing pure pixels, and in
Table IV for images without pure pixels, leading to the fol-
lowing conclusions.

* The proposed method is robust to the absence of pure

pixels;

* The proposed method provides competitive results in terms

of aSAM while allowing endmember variability to be es-
timated for each endmember in each pixel;



TABLE III
SIMULATION RESULTS FOR SYNTHETIC DATA IN PRESENCE OF PURE PIXELS (GMSE(A) x 1072, GMSE(dM) x 10~*, RE x 107%,v = 1)

K =3, (0 =00.425x107%)

K =6, (0, =(0.3751x 1074

aSAM(M) (°)  GMSE(A) GMSE(M) RE time(s) | aSAM(M) (°) GMSE(A) GMSE(M) RE time (s)
VCA/FCLS 6.0038 3.80 / 7.56 1 6.3313 2.24 / 2.92 1
SISAL 5.2665 3.08 / 3.35 2 3.8365 3.05 / 2.25 3
FDNS 6.0038 3.79 / 7.56 4 6.3313 2.22 / 2.92 5
AEB 5.6971 2.07 / 3.50 52 5.7017 131 / 2.40 142
BCD/ADMM 5.9910 351 4.00 0.20 92 6.2965 1.59 2.93 0.05 230
ssBCD/ADMM 5.7765 3.15 425 023 422 6.0304 1.4 2.97 007 848
ssmvBCD/ADMM 5.4390 3.01 425 025 530 6.3397 1.42 2.97 007 603
TABLE IV

SIMULATION RESULTS FOR SYNTHETIC DATA IN ABSENCE OF PURE PIXELS (GMSE(A) x 1072, GMSE(dM) x 10~* RE x 10~%,y = 1)

K =3, (a,p)=(24.5,42% 1079)

K =6, (a,)=(0.71,4.8% 107%)

aSAM(M) (°)  GMSE(A)  GMSE(M) RE  time (s) | aSAM(M) (°) GMSE(A) GMSE(AM)  RE  time (s)
VCA/FCLS 5.0639 2.07 / 266 1 6.5530 2.52 / 2.82 4
SISAL 44318 2.16 / 256 2 6.0431 1.63 / 2.02 5
FDNS 5.0639 2.06 / 266 3 6.5530 2.53 / 2.82 7
AEB 5.1104 2.11 / 266 33 6.0016 1.78 / 185 208
BCD/ADMM 5.2480 2.13 3.81 025 140 6.2785 2.14 3.33 030 3041
ssBCD/ADMM 4.1549 144 436 038 1263 6.2763 1.74 3.04 0.076 1527
ssmvBCD/ADMM 5.0584 1.94 4.59 047 1667 6.3207 1.67 3.05 0.08 795

* For most simulation scenarios, the abundance MSEs and
the REs are lower than the MSEs and REs resulting from
state-of-the-art methods;

* The proposed method is computationally more expensive
than existing algorithms.

We can note that the smoothness penalization on the abun-
dances proves to be particularly appropriate in this experiment.
Moreover, an increasing number of endmembers implies a loss
of estimation performance. This result can be expected since
VCA/FCLS algorithm is used as an initialization step.

Finally, the variability captured by the proposed model is pre-
sented in Figs. 3 and 4 for three endmembers: the difference be-
tween the variability intensities detected in the upper and the
lower part of the scene is due to the different variability coeffi-
cients applied to these areas, thus illustrating the consistency of
the proposed method.

V. EXPERIMENT WITH REAL DATA

A. Description of the Datasets

The proposed algorithm has been applied to real hyperspec-
tral datasets obtained by the Airborne Visible Infrared Imaging
Spectrometer (AVIRIS). The first scene was acquired over Mof-
fett Field, CA, in 1997. Water absorption bands were removed
from the 224 spectral bands, leaving 189 exploitable spectral
bands. The scene of interest (50 x 50) is partly composed of a
lake and a coastal area. The second scene is a 190x 250 image
extracted from the well-known Cuprite dataset?. The number
of spectral bands is 189 after removing the water-absorption

2The Moffett and Cuprite images are available at http://www.ehu.es/
ccwintco/index.php?title=Hyperspectral Remote Sensing_Scenes, and
http://aviris.jpl.nasa.gov/
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Fig.3. True abundances (Fig. 3(a) to Fig. 3(c)) and the ssmvBCD/ADMM-esti-
mations (Fig. 3(d) to Fig. 4(c)) obtained with a synthetic dataset (no pure pixels,
K = 3). The spatial distribution of the variability with respect to each end-
member is presented in terms of energy ( % ||[dm, |2 for the kth endmember
in the nth pixel) for visualization purpose in Fig. 3(g) to Fig. 3(i). (a) Th. Abun-
dance 1. (b) Th. Abundance 2. (¢) Th. Abundance 3. (d) Abundance 1. (¢) Abun-
dance 2. (f) Abundance 3. (g) Variability 1. (h) Variability 2 (i) Variability 3.
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Fig. 4. Endmember estimations obtained on synthetic data in absence of pure
pixels (cf. Fig. 3 for the abundance estimations). The ssmvBCD/ADMM-esti-
mated endmembers (red lines) are given with typical examples of the estimated
variability (cyan dotted lines). The VCA endmembers are given in blue dotted
lines for comparison. (a) Endmember 1. (b) Endmember 2. (¢) Endmember 3.

TABLE V
EXPERIMENT RESULTS CONDUCTED ON REAL DATA [SSBCD/ADMM FOR
MOFFETT WITH (e, 3) = {0.05, 0), sSsSvCABCD/ADMM FOR CUPRITE WITH

(o, B) = (0.014,404), RE x 104,y = 1]
Moffett Cuprite
RE  time (s) | RE  time (s)

VCA/FCLS 2.50 0.4 3.69 9.9
SISAL 1.12 30 2.16 15
FDNS 2.69 1 3.69 11
AEB 6.25 10 0.40 615
BCD/ADMM  0.18 144 0.23 194e4

and low SNR bands. Many works previously conducted on this
image provide reference abundance estimation maps.

The parameters used for the proposed approach are iden-
tical to those used for the experiments with synthetic data (see
Table II). The only difference is that the algorithm has been
stopped when the relative difference between two successive
values of the objective function is less than 10~ 2. This value has
been chosen to obtain a compromise between the estimation ac-
curacy and the computational cost implied. The values selected
by cross-validation for e, 5 and -y are given in Table V.

B. Results

The unmixing performance are reported in Table V. For the
Moftett image, the variability detected by the proposed algo-
rithm is displayed in Figs. 5 and 6. The variability seems to be
more significant on the coastal area where the mixture is not ap-
propriately described by a linear model. The potential non-lin-
earities usually observed close to the coastal areas [32]—[34] are
interpreted as variability in the proposed method, which tends to
corroborate its consistency. Note that the advantage of the pro-
posed method is that it does not require to consider a sophisti-
cated non-linear model accounting for interactions between the

v.uoy
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0.015

(2)
(d)

() ®

Fig. 5. Estimated abundances (Moffett scene). VCA/FCLS results are shown in
Fig. 5(a) to Fig. 5(c) whereas Fig. 5(d) to Fig. 5(f) are for the ssmvBCD/ADMM.
The spatial distribution of the variability with respect to each endmember is pre-
sented in terms of energy (ﬁ |[dmy,, |2 for the kth endmember in the nth
pixel) for visualization purpose. (a) Abundance 1. (b) Abundance 2. (c) Abun-
dance 3. (d) Abundance 1. (¢) Abundance 2. (f) Abundance 3. (g) Variability 1.
(h) Variability 2. (i) Variability 3.
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Fig. 6. ssmvBCD/ADMM endmembers (Moffett scene). The ssmvBCD/
ADMM-estimated endmembers (red lines) are plotted with the VCA end-
members (blue lines) for comparison, and typical examples of the estimated
variability are given in cyan dotted lines. (a) Endmember 1. (b) Endmember
2. (c¢) Endmember 3.

different endmembers as in [32], [34], [35]. Conversely, all de-
viations from the LMM are contained in the variability com-
ponents dM,, ;.. We can also note that the variability peaks ob-
served in Fig. 6 are a clear indication that several corrupted spec-
tral bands have not been removed prior to the unmixing process.

The results obtained for the Cuprite scene are reported in
Figs. 7-9. Comparing our results with those of [28], we visually
found out that some similar endmembers that were identified as
different signatures by VCA for K = 14 [28] are interpreted
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Fig. 7.

tification is based on a visual comparison with the results obtained in [28].
(a) Sphene. (b) Alunite. (¢) Dumortierite. (d) Montmorillonite. (¢) Andradite.
(f) Pyrope. (g) Buddingtonite. (h) Muscovite. (i) Nontronite. (j) Kaolinite.
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Fig. 8. Spatial distribution of the variability with respect to the endmembers
presenting the most significant level of variability. The variability is presented
in terms of energy (% |[dm,, x]|2 for the kth endmember in the nth pixel) for
visualization purpose. (a) Sphene. (b) Andradite. (c) Muscovite.

as multiple instances of single endmembers in our setting (K
= 10). The identification is given in Figs. 7 and 9. Fig. 8 shows
that the algorithm captured a significant variability level in the
pixels where many different endmembers are detected, which
reveals that the spectral mixture may not be strictly linear in
these pixels.

VI. CONCLUSION AND FUTURE WORK

This paper introduced a new linear mixing model accounting
for spatial and spectral endmember variabilities. The proposed
model extended the classical LMM by including an additive
spatially varying perturbation matrix that can capture end-
member variabilities. The resulting unmixing problem was
solved by alternating marginal minimizations of an appro-
priately regularized cost function, each minimization being
performed by an ADMM algorithm. Simulations conducted
on synthetic and real data enabled the interest of the pro-
posed solution to be appreciated. Indeed, the proposed method
compared favorably with state-of-the-art approaches while
providing a relevant variability estimation. The choice of the
penalization parameters ¢, 3 and v was performed by cross
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Fig. 9. ssvcaBCD/ADMM endmembers (Cuprite scene). The BCD/ADMM-

estimated endmembers (red lines) are given with typical examples of the esti-
mated variability (cyan dotted lines), and the given identification is based on
a visual comparison with the results obtained in [28]. The endmembers esti-
mated by the VCA algorithm are given in blue lines for comparison. (a) Sphene.
(b) Alunite. (¢) Dumortierite. (d) Montmorillonite. (e) Andradite. (f) Pyrope.
(g) Buddingtonite. (h) Muscovite. (i) Nontronite. (j) Kaolinite.

validation. We think that it would be interesting to develop au-
tomatic strategies for estimating these parameters. Finally, due
to the significant number of unknown parameters, the proposed
method is not intended to be applied to very large images. The
proposed approach can be applied as a complementary tool
when analyzing small hyperspectral images a priori believed
to be affected by a non-negligible variability level. Decreasing



the computational complexity of the algorithm introduced in
this work is clearly an interesting prospect.

APPENDIX A
CONSTRAINTS AND PENALIZATION TERMS

Abundance Penalization: Spatial Smoothness:

The abundance smoothness is expressed in matrix form as

€2

where H denotes the matrix computing the differences between
the abundances of a given pixel and the respective abundances
of its 4 neighbors

1 .
2(A) = S| AH]}

H:[H<_ B, | H HJEHN“N.

For h = 1,...,H, we introduce
o -1 0 --- 0
0 1 :
Hh — . . 0 e RWXW
1 -1
0 ... . 0 1
1 0 0
-1
= | o € VW,
.10
0 0 -1 0
Hence

H¢ =Diag(H;,...,Hy) and H_ ,=Diag(H;, ... Hz)

In addition

HT = [0N7w,HH and H¢ = [HLON,W]

with
-1 0 0
W
H} = o RN (N=W)
0 -1
N-W |. :
0 0 1
1 _ 1
Hl{ — HT.

The only terms in 1||AH||% related to a,, are

(}jhanN)uaa@

cA,

o

Mz

3
Z hn,n+thi.n+kNa;‘f> An. (32)
k=0

=
—-

H7

2

T
cn

Endmember Penalization:

Distance Between the Endmembers and Reference Sgna-
tures: The distance between the endmembers and the available
reference signatures is

L
1 1 — -
W(M) = o [M — Mo[f = 5 > [l — Mof5. (33)
£=1
As a consequence, the penalty for the £th band is
- 1 ~
Y(myg) = 5\\11"112 - (34)

Mutual Distance Between the Endmembers: The distance be-
tween the different endmembers can be expressed as follows

v =" (zm mjlz>

i=1

J#i

(35)

1 & 1
3 Z IMG |z = §HMGH1Z~“
k=1
with
G =

o

and fork =1,..., K

’ GK:| ERKXK2

Gr = —Ig+ eklﬂ

where e;, denotes the kth vector in the canonical basis of R¥.
Hence

1 X
= 5 > ImeGl3. (36)
k=1
Volume and Endmember Positivity Constraint: The volume
penalization is expressed using T', hence the need to find a con-
dition equivalent to the positivity of M (see [36]). We will first
analyze the general expression of the volume penalization with
respect to ts, and then give a condition on T ensuring the pos-
itivity of M (respectively M + dM,, when endmember vari-
ability is considered).
Volume: The determinant of a matrix X € R¥>*¥ can be
developed along its ith row yielding

Z(fl)i—"_]‘wij det(Xij) = x;f;

i

det(X) =

with
f; =[(— € RE,

Consequently, fork =1,..., K — 1

T ~
det (1T> == tkfk.
K

Using previous developments

1)" det(Xy)]55,

(37



Positivity Constraint on M : Using the following notations

Y :UYproj. +Y1v Y1 = [y‘ e ‘y] € HLXN
M =UT + Y, Y, =[y]... 5] e RF*K
one has

mer = B Ugiliy +T0 = Y Uesbjr + tarter + Je-
J iFk
The positivity constraint for 74 can then be expressed as
Yo+ 2 25, uejtir
e, '

ter*

Introducing the two sets of integers

U,;L :{Z\uzk > 0}
U, ={llugy. <0}

the previous equation implies that ¢, € [t ,t;, ], with

Te + Dy sty
tr = max | — 2 Ueitir (38)
ceut Uk
Yo + D i yp Uity
th = min | — Bt 2 Uity . (39)
eeu,; Ugk

Positivity Constraint on M and dM: This case differs from
the previous one as the positivity constraint must be verified
simultaneously by M and M,, = M + dM,,. We will conse-
quently derive a condition similar to (38). Let T, be the projec-
tion of M,, in the PCA subspace

M, =UT, + YQ-

Since
T,=V(M, — Yg) =(T+dT,)+ VY,
——
Z
with

T=V(M-Y,)
dT, = V(dM, — Y,)

the positivity constraint can be written
Yo+ > 5 weityy

Upk
~ tkr [tZT—7 tn+]

my, >0 &ty > —

with
tzr =t + dtzr + Zgr (40)
e + D iz Wity
0 = max | 2 2zt U475 (41)
eeut Uk
o + D izp Westy,
2% = min | - 2 in 3t ) (42)
Leu,; Uk

We introduce the functions gy defined by

v HIXK N HZ(N+1)XK
- zitf -
*X+t+
dt1 = t1 &
B Inv(X +2g) + :
X > o~ o~ »
dEN,k *izv,k
), —dty
—1n(X+2Z) + :
- I?(f,k —dtyy/ A
(43)
where
6 =[th, -tk
ty = [tays s tag)-

Finally the positivity constraint on the sum of the endmembers
and their variability can be written

g+ dmy = 0% Ve, Vn (44)
& ge(ty) = Oy vynyx Yh=1,...,K —1. (45
Variability Penalization:
The variability energy penalty is
1 1
T{dM) =3 ldM ||z = v (dM,) = 5 [dM,[|5.  (46)

APPENDIX B
SOLUTIONS TO THE OPTIMIZATION SUB-PROBLEMS

Resolution With Respect to A:
Using (32), the scaled augmented Lagrangian (23) becomes

L oS (an7 A )\(A))
+ 5 (cAnHaan + 2cTan) +Zgr (w(A))

uﬁl

||yn — (M + dMn)anng

+

HQa +Rw fer/\A)H
Thus, forn =1,...,N
—1
- [(M+dMn)T(M+dMn)+ (AQTQ + acAnIK]
[(M+dM VT yp—ac, -+ QT (s Rw(A ,\<A>) ] 47)

and

waA)’k = max (an + /\fﬁ):K, OK) (48)
where A( ) L.k 18 the vector composed of the K first elements of
/\gA and the max must be understood as a term-wise operator.
In the absence of any penalization, the solution is obtained by
making & = 0 in the previous equations.



Resolution With Respect to M: The only terms depending on T are

Distance Between the Endmembers and Reference Spectral

2 T < 3
Sgnatures: Using (34), the scaled augmented Lagrangian (26) Y proj. — TAF + 2< Ar —U (Y1 - 2Y,A) TA>

is S
o (W AP L5 a5 v
(M) K-1
T
+ ue Hemg _ W™, _"_AEM)HF (S| TA) = Tr(STTA) Zl ( Z Sjntj an>
/5' ~ M) . 4
+ §||mg —mygl3 + Zs+ (W, ). Fork = 1,..., K — 1, the resulting sub-problems are
~ 2 ~

Thus HyprOJ tkAHZ + ZnNzl(skntkan)

m; = [ (?e - 3@) A" + By o+ b = arg%min +ﬁ(fkfk)2

®

st gr(ty) = Oy nvi1)1
)

B Introduce the splitting variables W,(,JT) such that

[AAT + 4™ (e7e+ 3) L] (49)
and fork =1,..., K

o) =W whk=1,... K1 (55)

According to (37), the scaled augmented Lagrangian is

wél\,f) = max ([eﬁlg +F,+ AEM)]k, 0N+1) . (50)

o - £,em (B, WD ALY =
In the absence of any endmember penalization, the solution is B

obtained by making 5 = 0 in the previous equation. sool T A 2 N ~
Mutual Distance Between the Endmembers: Using (36), the 2 H b H T Z (Sn’»t’»an)
scaled augmented Lagrangian (26) is 3 5 -
~ T
~ 1. N 2 + 4(tkfk) + s+ (W )
Lo (mg,WEM):MM)) =z HY@ —myA — 5eH 2(K - 1) g
‘ 2 2 ( 5
+ B Heﬁle—WéM) +F4+A§M)HF +5- e (t) LI P (56)
K Finally,
+ gZ [feGr 3 + Zs+ (WéM)) : N
k=1 Tx ro ~ T (T) ~ =y
ty = |: yg d Sp) AT — 2, (Nzk + dtn_k>
Thus ( ) ngl
ﬁl;_[(yé_sg> AT 4+ uMe T(ngLFZ_A;W)} + P (t +t++Z A )
~1
T T T
[AAT+ 83" GLGT + uM (e7e) IK] 1) a0 -1 1% g (Wi - Af ))}
E=1 5
T &} T (T)
with WEM) given by (50). [AA +7(K — 1)!2fkfk +2(N + 1)p, IK] (57)

\olume Penalization: Since the penalty is expressed with re-

spect to the variable T, the optimization sub-problems related where Z = VY and forp = 1,..., K

to the endmembers have to be re-written accordingly. Using the (Tyx ~ (T)

notations Wep — Max ([gk(tk) + Ak L ) 02(N+1)> . (58)
Arp = [dT;a|...|dTyay] (52)
Y, =[y| - |y] e RPN (53) Resolution Wth Respect to dM:
Yo =[y] - |y] e RF*F (54) Using (46), the scaled augmented Lagrangian (28) is

we obtain L:H . (de W A-dM ) _

IY ~MA - A = [[U(Yproj. —TA- A7)+ Y1 - 2Y2Al[f

a5 n_]-VI“V‘CHVInan‘2
:HU(Yproj. *TA*AT)H% Hy ( ) HZ

(dM

+2<U(Ypmj,—TA—AT) M — WEM) | AN HF

- 5||dMnHF + Zss (W),

¥, - 2Y2A>



Hence

dM;, = [(yn — Ma,,)aZ + p(dM (W,(f‘M) ~M - A;dw)]

—1
[anal + (1™ + )l (59)

and forp =1,..., K
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