Temporal Reachability Graphs

John Whitbeck 1 Marcelo Dias de Amorim 1 Vania Conan Jean-Loup Guillaume 2
1 NPA - Networks and Performance Analysis
LIP6 - Laboratoire d'Informatique de Paris 6
2 ComplexNetworks
LIP6 - Laboratoire d'Informatique de Paris 6
Abstract : While a natural fit for modeling and understanding mobile networks, time-varying graphs remain poorly understood. Indeed, many of the usual concepts of static graphs have no obvious counterpart in time-varying ones. In this paper, we introduce the notion of temporal reachability graphs. A (τ, δ)-reachability graph is a time-varying directed graph derived from an existing connectivity graph. An edge exists from one node to another in the reachability graph at time t if there exists a journey (i.e., a spatiotemporal path) in the connectivity graph from the first node to the second, leaving after t, with a positive edge traversal time τ , and arriving within a maximum delay δ. We make three contributions. First, we develop the theoretical framework around temporal reachability graphs. Second, we harness our theoretical findings to propose an algorithm for their efficient computation. Finally, we demonstrate the analytic power of the temporal reachability graph concept by applying it to synthetic and real-life datasets. On top of defining clear upper bounds on communication capabilities, reachability graphs highlight asymmetric communication opportunities and offloading potential.
Type de document :
Communication dans un congrès
ACM Mobicom, Aug 2012, Istanbul, Turkey. ACM, ACM Mobicom, pp.377-388, 〈10.1145/2348543.2348589〉
Liste complète des métadonnées

Contributeur : Lip6 Publications <>
Soumis le : jeudi 11 février 2016 - 17:33:57
Dernière modification le : mercredi 21 mars 2018 - 18:57:58

Lien texte intégral




John Whitbeck, Marcelo Dias de Amorim, Vania Conan, Jean-Loup Guillaume. Temporal Reachability Graphs. ACM Mobicom, Aug 2012, Istanbul, Turkey. ACM, ACM Mobicom, pp.377-388, 〈10.1145/2348543.2348589〉. 〈hal-01273067〉



Consultations de la notice