OneMax in Black-Box Models with Several Restrictions

Abstract : As in classical runtime analysis the OneMax problem is the most prominent test problem also in black-box complexity theory. It is known that the unrestricted, the memory-restricted, and the ranking-based black-box complexities of this problem are all of order n/log n, where n denotes the length of the bit strings. The combined memory-restricted ranking-based black-box complexity of OneMax, however, was not known. We show in this work that it is Θ(n) for the smallest possible size bound, that is, for (1+1) black-box algorithms. We extend this result by showing that even if elitist selection is enforced, there exists a linear time algorithm optimizing OneMax with failure probability o(1). This is quite surprising given that all previously regarded algorithms with o(n log n) runtime on OneMax, in particular the quite natural (1+(λ,λ))~GA, heavily exploit information encoded in search points of fitness much smaller than the current best-so-far solution. Also for other settings of μ and λ we show that the (μ+λ) elitist memory-restricted ranking-based black-box complexity of OneMax is as small as (an advanced version of) the information-theoretic lower bound. Our result enlivens the quest for natural evolutionary algorithms optimizing OneMax in o(n log n) iterations.
Document type :
Conference papers
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01272873
Contributor : Carola Doerr <>
Submitted on : Thursday, February 11, 2016 - 2:50:28 PM
Last modification on : Thursday, March 21, 2019 - 2:45:01 PM

Identifiers

Citation

Carola Doerr, Johannes Lengler. OneMax in Black-Box Models with Several Restrictions. GECCO '15 - 2015 Annual Conference on Genetic and Evolutionary Computation, Jul 2015, Madrid, Spain. pp.1431-1438, ⟨10.1145/2739480.2754678⟩. ⟨hal-01272873⟩

Share

Metrics

Record views

104