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Abstract—This paper addresses a coordination problem be-
tween two agents (Agents1 and 2) in the presence of a noisy
communication channel which depends on an external system
state {x0,t}. The channel takes as inputs both agents’ actions,
{x1,t} and {x2,t} and produces outputs that are observed strictly
causally at Agent 2 but not at Agent 1. The system state is
available either causally or non-causally at Agent1 but unknown
at Agent 2. Necessary and sufficient conditions on a joint
distribution Q(x0, x1, x2) to be implementable asymptotically
(i.e, when the number of taken actions grows large) are provided
for both causal and non-causal state information at Agent1.

Since the coordination degree between the agents’ actions,x1,t

and x2,t, and the system statex0,t is measured in terms of an
average payoff function, feasible payoffs are fully characterized
by implementable joint distributions. In this sense, our results
allow us e.g., to derive the performance of optimal power control
policies on an interference channel and to assess the gain provided
by non-causal knowledge of the system state at Agent1.

The derived proofs readily yield new results also for the
problem of state-communication under a causality constraint at
the decoder.

I. I NTRODUCTION

Performance characterizations of general distributed net-
works with agents that observe the system state and the actions
of some of the other agents, is a prominent open problem
also studied by related disciplines such as control [1] and
game theory [2]. In this paper, we contribute to the solution
of a special case of this general problem, by treating it as
a coordination problem that can be solved using joint-source
channel codes. This approach has recently been proposed in
[3], see also [4], and is expected to extend to setups with more
than two agents and to different observation structures.

The technical setup under investigation is as follows. We
consider two agents that select their actions repeatedly over
T ≥ 1 stages (or time-slots) and that wish to coordinate via
their actions in the presence of a random system state. At
each staget ∈ {1, . . . , T }, the action of Agentk ∈ {1, 2} is
xk,t ∈ Xk, with |Xk| < ∞, and the realization of the random
system state isx0,t ∈ X0 with |X0| < ∞. The state sequence
X0,1, . . . , X0,T is given by nature and its components are
independent and identically distributed (i.i.d.) according to a
distributionρ0.

Suppose that each agent has an individual payoff function
ωk : X0 × X1 × X2 → R, for k ∈ {1, 2}, that is affected by
both agents’ actions and the nature state. We are interestedin

determining the set of feasible expected average payoffs

ω
(T )
k = E

[
1

T

T∑

t=1

ωk(X0,t, X1,t, X2,t)

]
, k ∈ {1, 2}, (1)

that are reachable by some strategies for the agents. This set
of feasible expected average payoffs is fully characterized
by the set of feasible averaged distributions on the triples
{(X0,t, X1,t, X2,t)}

T
t=1. In fact, denoting byPX0,tX1,tX2,t

the
joint distribution of the time-t tuple(X0,t, X1,t, X2,t), we have

ω
(T )
k ,

1

T

T∑

t=1

E [ωk(X0,t, X1,t, X2,t)]

=
∑

x0∈X0

x1∈X1

x2∈X2

ωk(x0, x1, x2)
1

T

T∑

t=1

PX0,tX1,tX2,t
(x0, x1, x2).

Our main goal in this paper is to determine the set of
averaged distributions1

T

∑T

t=1 PX0,tX1,tX2,t
(x0, x1, x2) that

can be induced by the agents’ strategies. For simplicity, and
in order to obtain closed form expressions, we shall focus on
the limit T → ∞.

We consider two kinds of scenarios with two different
observation structures. In the first scenario—referred to as
non-causal coding—Agent 1 observes the system statesnon-
causally. That means, at each staget ∈ {1, . . . , T } it knows
the entire state sequenceXT

0 = (X0,1, . . . , X0,T ). In the
second scenario—-referred to ascausal coding—Agent 1
learns the states onlycausally. Thus, here, at each stage
t ∈ {1, . . . , T }, Agent1 only knowsXt

0.
In both scenarios, Agent2 has no direct access to the state

nor to Agent1’s actions. Instead,after each staget, Agent2
observes the outputyt ∈ Y, with |Y| < ∞, of a discrete
memoryless multi-access channel that takes as inputs the two
agents’ actions and the system state. The multi-access channel
is assumed memoryless and of transition lawΓ:

Pr
[
Yt = yt|X

t
0 = xt

0, X
t
1 = xt

1, X
t
2 = xt

2, Y
t−1 = yt−1

]

= Γ(yt|x0,t, x1,t, x2,t), (2)

where throughout this paper we use the shorthand notations
Am and am for the tuples(A1, . . . , Am) and (a1, . . . , am),
whenm is a positive integer.
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The scenario with non-causal coding was introduced in
[5], [6]. Special cases, had previously been considered in
[3], [4], [7], [8]. Most prominently, Gossner et al [4] solved
the first instance of our problem. They considered the case
where Agent2 can observe strictly causally the system states
and Agent 1’ actions, which corresponds in our setup to
(2) describing the channelyt = (x0,t, x1,t). Cuff and Zhao
presented an alternative proof [7] of the results in [4] based
on more traditional information-theoretic tools and underthe
framework of “coordination via actions”. Thenoisy commu-
nication channel was introduced by Larrousse et al. in [3];
their channel however did not depend on the system state nor
on Agent2’s actions. This same special case has also been
addressed by Le Treust in [8].

In the present work, we provide a converse proof for
the general scenario with non-causal coding that establishes
optimality of a scheme proposed in [6]. We also solve the
scenario with causal coding. Our result shows that in this
case the agents’ optimal strategies are simple and ignore all
communication over the channel.

We exemplify our findings at hand of a power control
problem. In particular, for this problem, we quantify the loss
incurred in performance when the coding has to be performed
causally instead of non-causally.

At last, the problem under investigation is linked to the
information-theoreticstate-communication problem[9], [10].
In fact, the proof techniques derived for the coordination prob-
lems, immediately yield new results on state-communication
when the decoder is restricted to be causal or strictly causal.

II. PROBLEM FORMULATION AND MAIN RESULTS

As explained previously, the distributed network or system
comprises two agents. These agents take actions in a repeated
manner according to their strategies. Strategies are sequences
of functions defined by:

case NC:

{
σNC
t : X T

0 → X1

τt : Yt−1 → X2
(3)

case C:

{
σC
t : X t

0 → X1

τt : Yt−1 → X2
. (4)

where NC (resp. C) stands for non-causal (resp. causal)
coding and forc ∈ {C,NC}, the functions(σc

t )1≤t≤T (resp.
(τt)1≤t≤T ) describe the strategies employed by Agent1
(resp.2). The main problem is to characterize the set of joint
probability distributions that can be reached whenT → ∞
which we call the set of implementable distributions according
to the terminology of [3], [4]. Specifically:

Definition 1 (Implementability). For c ∈ {C,NC}, the
probability distributionQ(x0, x1, x2) is implementable if for
everyǫ > 0 and every sufficiently largeT , there exists a pair
of strategies(σc

t , τt)1≤t≤T inducing at each staget a joint
distribution

PX0,tX1,tX2,t
(x0, x1, x2) , PX1,tX2,t|X0,t

(x1, x2|x0)ρ0(x0)
(5)

such that for all(x0, x1, x2) ∈ X0 ×X1 ×X2:
∣∣∣∣
1

T

T∑

t=1

PX0,tX1,tX2,t
(x0, x1, x2)−Q(x0, x1, x2)

∣∣∣∣ ≤ ǫ. (6)

We now characterize the set of implementable probability
distributions both for causal and non-causal coding.

Theorem 1 (Non-causal coding). Let c = NC.
Consider a joint probability distributionQ such that∑

x1,x2
Q(x0, x1, x2) = ρ0(x0). The distribution Q is

implementable if and only if it satisfies the following
condition1

IQ(X0;X2) ≤ IQ(V ;Y |X2)− IQ(V ;X0|X2) (7)

with Q(x0, x1, x2, y, v) = Q(x0, x1, x2)Γ(y|x0, x1, x2)
×PV |X0X1X2

(v|x0, x1, x2), and V being an auxiliary ran-
dom variable which alphabet cardinality can be restricted as
|V| ≤ |X0| · |X1| · |X2|.

Proof: See Section V.

Theorem 2 (Causal coding). Let c = C. The set of imple-
mentable distributions is given by the set of distributionsunder
the form

Q(x0, x1, x2) = PX1|X0X2
(x1|x0, x2)PX2

(x2)ρ0(x0). (8)

Proof: See Section VI.
Note that no information constraint appears in this second

theorem. This is related to the fact that in the case of causal
coding no benefit can be obtained by communicating over the
channel: Agent2 can simply ignore the channel outputs. In
particular, when the two agents are interested in maximizing a
common payoff functionw(x0, x1, x2) possible strategies are
as follows: Agent2 chooses a constant actionx2,t = x2, and
for each staget Agent1 picks an actionx⋆

1,t ∈ X1 in function
of this x2 and of the nature statex0,t so as to maximize the
payoff function on the current stage:

x⋆
1,t∈ arg max

x̃1∈X1

w(x0,t, x̃1, x2). (9)

This strategy is referred to as a semi-coordinated policy inthe
context of coded power control introduced in [3].

III. A PPLICATION: POWER CONTROL

We exemplify the above two theorems at hand of a
power control problem. In particular, we wish to illustrate
the loss in performance incurred when the coding is only
causal instead of non-causal. An interference channel with
two transmitter-receiver pairs is considered. Transmissions are
assumed to be time-slotted and synchronized. Fork ∈ {1, 2}
and “j = −k” (−k stands for the transmitter other than
k), the signal-to-interference plus noise ratio (SINR) at Re-
ceiver k at a given stage writes asSINRk = gkkxk

σ2+gjkxj

where xk ∈ Xk = {0, Pmax} is the power level chosen
by Agent or Transmitterk, gkj represents the channel gain

1The notationIQ(A;B) indicates that the mutual information should be
computed with respect to the probability distributionQ.



of link kj, and σ2 the noise variance. We assume that:
gkj ∈ {gmin, gmax} is Bernouilli distributedgkj ∼ B(pkj)
with P(gkj = gmin) = pkj ; the global channel state is thus
given by x0 = (g11, g12, g21, g22). We define SNR(dB)=
10 log10

Pmax

σ2 and setgmin = 0.1, gmax = 2, σ2 = 1,
and (p11, p12, p21, p22) = (0.5, 0.1, 0.1, 0.5). The considered
common payoff function isw(x0, x1, x2) =

∑2
k=1 log2(1 +

SINRk) and the signalY observed by Agent/Transmitter2 is
assumed to be the output of a binary symmetric channel with
transition probabilitye = 0.05.

Fig. 1 represents the maximum expected sum-rate against
SNR in dB for our two scenarios with causal and non-causal
coding at Transmitter/Agent1. (For practical reasons we re-
strict to |V| = 10.) These two scenarios are compared to a sce-
nario withcostless communicationwhere Agent/Transmitter2
observesxT

1 non-causally and thus the maximum ofw can be
reached at any stage, and to a scenario where the two agents
don’t coordinate but simply transmit at full power throughout.
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Fig. 1. Expected payoff against SNR(dB). One message from the figure is
that good coordinated power control policies may perform quite close to the
maximum sum-payoff for certain standard payoff functions;here the chosen
sum-payoff is the sum-rate. Another message is that, for certain standard
payoff functions designing non-causal power control policies may not bring
very significant performance gains over causal power control policies.

IV. RELATED RESULTS ONSTATE-COMMUNICATION

Consider again the setup of Sections I and II, but—in line of
previous works on state-communication [9], [10]—specialize
the channel in (2) to a state-dependent discrete memoryless
channel (DMC) with statex0,t and single inputx1,t:23

Γ(yt|x0,t, x1,t, x2,t) = Γ(yt|x0,t, x1,t). (10)

2Traditionally, in state-communication the channel inputsare denoted
x1, . . . , xt, the state symbolss1, . . . , sT and the reconstructed symbols at
Agent 2 ŝ1, . . . , ŝT . For coherence, here we keep the notations introduced
in the first part of the paper.

3Our results readily extend also to the more general channel in (2).

Initially, we consider non-causal coding functions and causal
or strictly causal decoding functions:

case NC-enc/C-dec:

{
σNC
t : X T

0 → X1

τCt : Yt → X2
(11)

case NC-enc/SC-dec:

{
σNC
t : X T

0 → X1

τSCt : Yt−1 → X2
(12)

whereC (resp.SC) stands for causal (resp. strictly causal)
decoding.

The goal here is that Agent2 can produce a reconstruction
sequencexT

2 that matches the state sequencexT
0 up to an

allowed distortion. In particular, ford ∈ {C, SC}, Distortion
D ≥ 0 is said achievable under a given boundedsingle-letter
distortion function

δ : X0 × X2 → [0, dmax], (13)

if for every ǫ > 0 and sufficiently large blocklengthsT it is
possible to find encoding and decoding functions{σNC

t }Tt=1

and{τdt }
T
t=1 such that Agent2’s reconstructed sequenceXT

2

satisfies

E

[
1

T

T∑

t=1

δ(X0,t, X2,t)

]
≤ D + ǫ. (14)

Theorem 3 (Non-causal coding). Let d = C, i.e., decoding is
causal. DistortionD is achievable if and only if

E[δ(X0, g(U, Y ))] ≤ D, (15)

for some functiong : U × Y → X2 and some joint law
QX0X1Y UV (x0, x1, y, u, v) that factorizes as

ρ0(x0)PUV X1|X0
(u, v, x1|x0)Γ(y|x0, x1); (16)

and satisfies

IQ(U ;X0) ≤ IQ(V ;Y |U)− IQ(V ;X0|U). (17)

The inputX1 can be restricted to be a function of(U, V,X0).

Proof: Omitted for brevity.

Remark 1. Theorem 3 remains valid ford = SC, i.e., when
decoding is strictly causal, if(15) is replaced by

E[δ(X0, g(Y ))] ≤ D. (18)

In this case, one can restrict to the choiceU = g(Y ) = X2.

Assume now that encoding is causal. The setup is as
described above, except that the encoding functions in (11)
have to be replaced by functions of the form

σC
t : X t

0 → X1. (19)

Theorem 4 (Causal coding). Let d = C, i.e., decoding is
causal. DistortionD is achievable if and only if

E[δ(X0, g(Y ))] ≤ D, (20)

for some functiong : Y → X2 and a joint distribution
PX0X1Y (x0, x1, y) that factorizes as

ρ0(x0)PX1|X0
(x1|x0)PY |X0X1

(y|x0, x1). (21)



Let d = SC, i.e., decoding is strictly causal. DistortionD is
achievable if and only if there exists a constant valuex2 ∈ X2

so that
E[δ(X0, x2)] ≤ D. (22)

Proof: Omitted for brevity.

Remark 2. In combination with previous results on state-
communication [9], [10], our results provide the following
insights. When thedecoderis non-causal, Wyner-Ziv coding
has to be used to compress the state. This is not possible
anymore when the decoder is only causal, where standard
compression suffices. When theencoderis non-causal, then
Gel’fand-Pinsker coding should be used to communicate over
the channel. When the encoder is only causal, this is not
possible anymore and the less powerful Shannon strategies
suffice. When the encoding and the decoding are causal or
strictly causal, then no coding is needed anymore; simple
symbol-by symbol strategies at the transmitter (Agent1) and
the receiver (Agent2) are sufficient.

V. PROOF OFTHEOREM 1

The proof of Theorem 1 can be divided into three parts: the
direct part, which is established in [6] and omitted for brevity;
the bound on the cardinality of the auxiliary alphabet|V|which
is also omitted; and the converse, which shows optimality of
the coding scheme in [6] and is proved in the following.

Converse.Let Q be an implementable distribution, and fix
an arbitraryǫ > 0.

By definition, there must exist a sufficiently large block-
lengthT and strategies{σNC

t }Tt=1 and {τt}
T
t=1 such that for

t ∈ {1, . . . , T }, the tuple(X0,t, X1,t, X2,t) induced by these
strategies has a joint lawPX0,tX1,tX2,t

that satisfies
∣∣∣∣
1

T

T∑

t=1

PX0,tX1,tX2,t
(x0, x1, x2)−Q(x0, x1, x2)

∣∣∣∣ < ǫ. (23)

For eacht, let Yt denote the output of the channel for state
X0,t and inputsX1,t andX2,t. For each positive integerm,
we use the shorthand notationAT

m to denote the random tuple
(Am, . . . , AT ). Let Z be a random variable that is uniformly
distributed over{1, . . . , T } independent ofXT

0 , X
T
1 , X

T
2 , Y

T ,
and define for eacht,

Vt , (XT
0,t+1, Y

t−1). (24)

Finally, let V , (VZ , Z), X1 , X1,Z , Y , YZ , X0 , X0,Z ,
andX2 , X2,Z , and denote the probability distribution of the
tuple(V,X0, X1, X2, Y ) by QVX0X1X2Y . Notice that this law
factorizes as

QVX0X1X2Y (v, x0, x1, x2, y)

= ρ0(x0)QVX1X2|X0
(v, x1, x2|x0)Γ(y|x0, x1, x2), (25)

with a marginal law satisfying
∑

v,y

QVX0X1X2Y (v, x0, x1, x2, y)

=
1

T

T∑

t=1

PX0,tX1,tX2,t
(x0, x1, x2). (26)

The Markov chain Y − (X0, X1, X2) − V in (25)
holds because by the memorylessness of the channel (2),
Yt − (X0,t, X1,t, X2,t) − (XT

0 , X
T
1 , X

T
2 , Y

t−1, Y T
t+1) forms

a Markov chain for any t ∈ {1, . . . , T }, and be-
cause the time-sharing random-variableZ is independent of
(XT

0 , X
T
1 , X

T
2 , Y

T ).
We continue with the following sequence of equalities:

1

T
I(XT

0 ;Y
T )

(a)
=

1

T

T∑

t=1

I(X0,t;Y
T |XT

0,t+1)

(b)
=

1

T

T∑

t=1

I(X0,t;Y
T , XT

0,t+1)

(c)
=

1

T

T∑

t=1

[
I(X0,t;Y

t, XT
0,t+1) + I(X0,t;Y

T
t+1|Y

t, XT
0,t+1)

]

(d)
=

1

T

T∑

t=1

[
I(X0,t;Y

t, XT
0,t+1, X2,t)

+I(X0,t;Y
T
t+1|Y

t, XT
0,t+1)

]

(e)
=

1

T

T∑

t=1

[
I(X0,t;Yt, Vt, X2,t) + I(X0,t;Y

T
t+1|Yt, Vt)

]
,

= I(X0,Z , VZ ;YZ |X2,Z , Z) + I(X0,Z ;Y
T
Z+1|YZ , VZ , Z)

= I(X0, V ;Y |X2) + I(X0,Z ;Y
T
Z+1|YZ , VZ , Z), (27)

where(a) follows from the chain rule of mutual information;
(b) by the i.i.d-ness of the state sequence(X0,1, . . . , X0,T );
(c) by the chain rule of mutual information;(d) becauseX2,t

is computed as a function ofY t−1; (e) by (24); and the last
two equalities by the definitions of(Z, VZ , X0,Z , X2,Z , YZ)
and (V,X0, X2, Y ) and the independence ofZ andX0,Z .

On the other hand,

1

T
I(XT

0 ;Y
T )

(f)
=

1

T

T∑

t=1

[
I(X0,t;Y

T |XT
0,t+1) + I(Y t;XT

0,t+1)

− I(Y t−1;XT
0,t)
]

(g)
=

1

T

T∑

t=1

[
I(XT

0,t;Y
t) + I(X0,t;Y

T
t+1|Y

tXT
0,t+1)

− I(Y t−1;XT
0,t)
]

(h)
=

1

T

T∑

t=1

[
I(XT

0,t;Yt|Y
t−1) + I(X0,t;Y

T
t+1|Y

tXT
0,t+1)

]

(i)
=

1

T

T∑

t=1

[
I(XT

0,t;Yt|Y
t−1, X2,t) + I(X0,t;Y

T
t+1|Y

tXT
0,t+1)

]

(j)

≤
1

T

T∑

t=1

[
I(XT

0,t, Y
t−1;Yt|X2,t) + I(X0,t;Y

T
t+1|Y

tXT
0,t+1)

]



(k)
=

1

T

T∑

t=1

[
I(X0,t, Vt;Yt|X2,t) + I(X0,t;Y

T
t+1|Yt, Vt)

]

(ℓ)
= I(X0,Z , VZ ;YZ |X2,Z , Z) + I(X0,Z ;Y

T
Z+1|YZ , VZ , Z)

(m)

≤ I(X0, V ;Y |X2) + I(X0,Z ;Y
T
Z+1|YZ , VZ , Z), (28)

where(f) follows from the chain rule of mutual information
and from the Csiszár-Kramer telescoping identity [11];(g)
and (h) follows by the chain rule of mutual information;(i)
becauseX2,t is computed as a function ofY t−1; (j) follows
because conditioning cannot increase entropy;(k) by (24);(ℓ)
by the definitions of(Z, VZ , X0,Z , X2,Z , YZ); and(m) by the
definitions of(V,X0, X2, Y ) and the independence ofZ and
X0,Z . Combining (27) and (28), we obtain

I(X0;Y, V,X2) ≤ I(X0, V ;Y |X2), (29)

which by chain rule of mutual information is equivalent to

I(X0;X2) ≤ I(X0, V ;Y |X2)− I(X0;Y, V |X2)

= I(V ;Y |X2)− I(V ;X0|X2). (30)

By (25), (26), and (30), we conclude that the joint law
1
T

∑T

t=1 PX0,tX1,tX2,t
(x0, x1, x2) satisfies the conditions on

implementable distributions that we stated in the theorem.In
view of (23), sinceǫ > 0 can be arbitrary small, and by con-
tinuity of mutual information, then also the lawQ(x0, x1, x2)
must satisfy these conditions.

VI. PROOF OFTHEOREM 2

Converse.Let Q be an implementable distribution. Fix
ǫ > 0 and sufficiently largeT . By definition, there must
exist strategies such that for eacht ∈ {1, . . . , T }, the triple
(X0,t, X1,t, X2,t) has a joint lawPX0,tX1,tX2,t

that satisfies

∣∣∣∣
1

T

T∑

t=1

PX0,tX1,tX2,t
(x0, x1, x2)−Q(x0, x1, x2)

∣∣∣∣ < ǫ. (31)

LetZ be a random variable that is uniformly distributed over
{1, . . . , T } and independent ofXT

0 , X
T
1 , X

T
2 , Y

T . Further,
defineX0 , X0,Z , X1 , X1,Z , X2 , X2,Z , Y , YZ .

Denoting the probability mass function of the triple
(X0, X1, X2) by QX0X1X2

, by the definitions above,

QX0,X1,X2
(x0, x1, x2) =

1

T

T∑

t=1

PX0,tX1,tX2,t
(x0, x1, x2).

(32)
We will prove that the lawQX0X1X2

factorizes as

ρ0(x0)QX2
(x2)QX1|X2,X0

(x1|x2, x0). (33)

By (32), by continuity, and by (31), this will imply that also
Q factorizes in this way, and thus conclude the proof.

To prove (33), we first notice that for anyt ∈ {1, . . . , T },
by the causality of the decoding,X2,t depends only onY t−1.
By the causality of the encoding this latter is independent of
X0,t. Thus,X2,Z⊸−−Z⊸−−X0,Z forms a Markov chain. Since
Z andX0,Z = X0 are independent,X2 = X2,Z also needs to

be independent ofX0. These observations combine to establish
that the joint law of(X0, X1, X2) has to factorize as in (33).

Achievability: Consider a joint distributionQ(x0, x1, x2)
that factorizes asQ(x0, x1, x2) = ρ0(x0)PX2

(x2) ×
PX1|X0X2

(x1|x0, x2). Fix small ǫ2 > ǫ1 > 0 and an arbitrary
blocklengthT . Then, pick aT -length sequencex2,1, . . . , x2,T

that lies in the typical setT (T )
ǫ1 (PX2

); see [12, p. 25] for a
definition of this typical set.

The two agents produce the following actions. At stage
t ∈ {1, . . . , T }, Agent 2 producesx2,t. Agent 1 produces the
random actionX1,t that it draws according to the conditional
law PX1|X0X2

(·|x0,t, x2,t).
We analyze the proposed strategies. Define the event:

E(T ) ,

{(
XT

0 , X
T
1 , x

T
2

)
/∈ T (T )

ǫ2
(Q)
}
. (34)

By the weak law of large numbers, and the conditional
typicality lemma [12, p. 27],

lim
T→∞

P
(
E(T )

)
= 0. (35)

Sinceǫ2 > 0 can be chosen arbitrarily small, by Proposition 5
in [6], this establishes the desired achievability result.

APPENDIX A
PROOF OFCARDINALITY BOUND

Let us prove that in Theorem 1 it suffices to chooseV of
cardinality

|V| ≤ |X0| · |X1| · |X2|. (36)

LetP denote the set of pmfs overX0×X1×X2. For each triple
(x0, x1, x2) ∈ X0×X1×X2 except for one triple(x⋆

0, x
⋆
1, x

⋆
2)

that one can freely choose, define the following continuous
real-valued functions:

g(x0,x1,x2) : p ∈ P 7→ p(x0, x1, x2). (37)

Also define the continuous real-valued functiong0 as on top
of the next page, see (38).

Now, fix a 5−uple (V,X0, X1, X2, Y ) satisfying the con-
ditions in the theorem, and whereV is allowed to be over
any desired alphabetV which can even be of unbounded
cardinality. LetQX0X1X2

denote the joint law of(X0, X1, X2)
andFV (·) the cumulative distribution function ofV . For each
v ∈ V , let pX|V=v(·, ·, ·) ∈ P denote the conditional law of
the tuple(X0, X1, X2) givenV = v.

For any tuple(x0, x1, x2) ∈ X0 × X1 × X2 for which the
function g(x0,x1,x2) is defined, we have
∫

V

g(x0,x1,x2)(pX|V =v)F.V (v) = QX0X1X2
(x0, x1, x2). (39)

Moreover,
∫

V

g0(pX|V=v)F.V (v) = H(X0, X2|V )−H(Y,X2|V )

= H(X0|V,X2)−H(Y |V,X2). (40)

By the Support Lemma, [12, Appendix C], there exists a
set Ṽ satisfying (36), a probability mass functionQṼ (·) over
Ṽ , and|Ṽ | conditional probability distributions{pv ∈ P}v∈Ṽ



g0 : p ∈ P 7→

−
∑

(x′

0
,x′

2
)∈X0×X2

(
∑

x′

1
∈X1

p(x′
0, x

′
1, x

′
2)

)
log

(
∑

x′

1
∈X1

p(x′
0, x

′
1, x

′
2)

)

+
∑

(x′

2
,y′)∈X2×Y

(
∑

(x′

0
,x′

1
)∈X0×X1

p(x′
0, x

′
1, x

′
2)Γ(y

′|x′
0, x

′
1, x

′
2)

)
log

(
∑

(x′

0
,x′

1
)∈X0×X1

p(x′
0, x

′
1, x

′
2)Γ(y

′|x′
0, x

′
1, x

′
2)

)
. (38)

such that for any tuple(x0, x1, x2) ∈ X0×X1×X2 for which
the functiong(x0,x1,x2) is defined,
∫

V

g(x0,x1,x2)(pX|V =v)F.V (v)

=
∑

v∈Ṽ

g(x0,x1,x2)(pv)QṼ (v) (41)

and ∫

V

g0(pX|V=v)F.V (v) =
∑

v∈Ṽ

g0(pv)QṼ (v). (42)

Define the5−uple (Ṽ , X̃0, X̃1, X̃2, Ỹ ) to be of law

Q̃V (v) · pv(x0, x1, x2)Γ(y|x0, x1, x2). (43)

By definition (43), by (39) and by (41), the tuple
(X̃0, X̃1, X̃2, Ỹ ) has the same law as the original tuple
(X0, X1, X2, Y ):

Pr
[
X̃0 = x0, X̃1 = x1, X̃2 = x2, Ỹ = y

]

= QX0,X1,X2
(x0, x1, x2) · Γ(y|x0, x1, x2). (44)

Moreover, by (40) and (42), and Definition (38), the relevant
mutual informations are also preserved:

H(X̃0|Ṽ , X̃2)−H(Ỹ |Ṽ , X̃2) = H(X0|V,X2)−H(Y |V,X2),
(45)

and as a consequence, by (44),

I(Ỹ ; Ṽ |X̃2)− I(X̃0; Ṽ |X̃2) = I(Y ;V |X2)− I(X0;V |X2).
(46)

This concludes the proof.

APPENDIX B
PROOF OFTHEOREM 3

A. Achievability

Consider a joint distributionQUV X0X1X2Y ∈ ∆(U × V ×
X0 ×X1 ×X2 ×Y) and a decoding functiong : U ×Y → X2

that satisfy Conditions (15)–(17) in the theorem.
Fix smallǫ > ǫ̃ > ǫ3 > ǫ2 > ǫ1 > 0, and pick positive rates

R, R̃ in a way that we specify later on.
Codebooks generation:Split the blocklengthT into B

blocks each of lengthn , ⌊T/B⌋. For each block
b ∈ {1, . . . , B} randomly generate a codebookC(b)

U con-
taining the n-length codewords{u(b)(1), . . . , u(b)(⌊2nR⌋)}

and a codebookC(b)
V containing then-length codewords{

v(b)(1, 1), . . . , v(b)
(
⌊2nR⌋, ⌊2nR̃⌋

)}
. All entries of all code-

words of codebookC(b)
U are drawn i.i.d. according to the

marginal distributionQU . Independent thereof, all entries of
all codewords of codebookC(b)

V are drawn i.i.d. according to
the marginal distributionQV .

Encoding:Seti1 = jB = 1. For each blockb ∈ {1, . . . , B},
let x(b)

0 denote the state sequence corresponding to blockb.
For each blockb ∈ {1, . . . , B}, the encoder (Agent1) looks

for an indexib ∈ {1, . . . , ⌊2nR⌋} such that
(
x
(b)
0 , u(b)(ib)

)
∈ T (n)

ǫ1
(QX0U ). (47)

If there is more than one such index, it chooses the smallest
among them, otherwise it declares an error. Forb = 1, . . . , B−
1, setjb = ib+1.

For each blockb ∈ {1, . . . , B}, the encoder looks for an
index ℓb ∈ {1, . . . , ⌊2nR̃⌋} such that

(
x
(b)
0 , u(b)(ib), v

(b)(jb, ℓb
))

∈ T (n)
ǫ2

(QX0UV ). (48)

If there is at least one such index, it picks one of them at
random, otherwise it declares an error. The encoder finally pro-
duces itst′-th input of blockb, x1,(b−1)n+t′ , by applying the
conditional lawQX1|UV X0

to the triple of symbols obtained
by taking thet′-th components of the codewordsu(b)(ib) and
v(b)(jb, ℓb) and the state vectorx(b)

0 .
Decoding:Let î1 = 1. Fix t ∈ {1, . . . , T } and letb denote

the block to which timet belongs to, i.e.,b = ⌈t/n⌉. Decoding
at timet ∈ {1, . . . , T } depends on outputyt and on the index
îb that—as we will see in a moment—the decoder (Agent2)
produced in a previous decoding step. Specifically, the decoder
producesx2,t by applying the decoding functiong to the(t−
(b− 1)n)-th component of codewordu(b)(̂ib) and toyt.

If t is a multiple ofn, i.e., we reached the end of a block,
the decoder also looks for indices(ĵb, ℓ̂b) ∈

{
1, . . . , ⌊2nR⌋

}
×{

1, . . . , ⌊2nR̃⌋
}

such that
(
u(b)(̂ib), v

(b)(ĵb, ℓ̂b), y
(b)
)
∈ T (n)

ǫ3
(QUV Y ). (49)

If there is at least one such index, pick one of them at random.
Otherwise declare an error. Setîb+1 = ĵb.

Analysis:We analyze the expected average distortion, where
the expectation is taken with respect to the choice of the
codebooks and the random realizations of the state and the
channel. Define for each blockb ∈ {1, . . . , B},

Eb ,

{
(X

(b)
0 , X

(b)
1 , X

(b)
2 ) /∈ T

(n)
ǫ̃ (QX0X1X2

)
}
, (50)



and

E2:B ,

B⋃

b=2

Eb. (51)

We proceed to show thatP(E2:B) can be made arbitrarily
small for n sufficiently large. We introduce the following
events in each blockb ∈ {1, . . . , B}.

E
(b)
0 ,

{(
X

(b)
0 , U (b)(i)

)
/∈ T (n)

ǫ1
(QX0U )∀ i ∈

{
1, . . . , ⌊2nR⌋

}}

E
(b)
1 ,

{(
X

(b)
0 , U (b)(ib), V

(b)(jb, ℓ)) /∈ T (n)
ǫ2

(QX0UV )

∀ ℓ ∈
{
1, . . . , ⌊2nR̃⌋

}}

E
(b)
2 ,

{(
X

(b)
0 , U (b)(̂ib), V

(b)(jb, ℓb), X
(b)
1 , Y (b)

)

/∈ T (n)
ǫ3

(QX0UV X1Y )
}

E
(b)
3 ,

{(
U (b)(̂ib), V

(b)(j, ℓ), Y (b)
)
∈ T (n)

ǫ3
(QUV Y )

for somej ∈ {1, . . . , ⌊2nR⌋}\{jb},

ℓ ∈
{
1, . . . , ⌊2nR̃⌋

}}

E
(b)
4 ,

{(
X

(b)
0 , U (b)(̂ib), V

(b)(jb, ℓb), X
(b)
1 , Y (b), X

(b)
2

)

/∈ T
(n)
ǫ̃ (QX0UV X1YX2

)
}
.

The probabilityP(E2:B) may be upper bounded as:4

P(E2:B) ≤
B∑

b=1

[
P
(
E

(b)
0

)
+ P

(
E

(b)
1 |E

(b)c
0

)

+ P
(
E

(b)
2 |E

(b)c
1

)
+ P

(
E

(b)
3 |E

(b)c
2

)]

+
B∑

b=2

P
(
E

(b)
4 |E

(b)c
2

)
(52)

Throughout this paragraph,δ(ǫ) stands for a function that
tends to 0 asǫ → 0.

• By the covering lemma [12], ifR > IQ(X0;U) + δ(ǫ1),
then for anyb ∈ {1, 2, . . . , B}:

lim
n→∞

E

(
P
(
E

(b)
0

))
= 0. (53)

• By the covering lemma, ifR̃ > IQ(V ;X0, U) + δ(ǫ2),
then for anyb ∈ {1, 2, . . . , B}:

lim
n→∞

E

(
P
(
E

(b)
1 |E

(b)c
0

))
= 0. (54)

• By the conditional typicality lemma [12], for anyb ∈
{1, 2, . . . , B}:

lim
n→∞

E

(
P
(
E

(b)
2 |E

(b)c
1

))
= 0. (55)

• By the packing lemma [12], ifR + R̃ < IQ(V ;Y, U)−
δ(ǫ3), then for anyb ∈ {1, 2, . . . , B}:

lim
n→∞

E

(
P
(
E

(b)
3 |E

(b)c
2

))
= 0. (56)

4Here we also used the fact that eventE
(b)c
2 ∩E

(b)c
3 implies îb+1 = ib+1.

WheneverIQ(X0;U) < IQ(V ;Y, U) − IQ(V ;X0, U) =
IQ(V ;Y |U)−IQ(V ;X0|U), andǫ1, ǫ2, ǫ3 > 0 are sufficiently
small, it is possible to find ratesR, R̃ > 0 such that

R > IQ(X0;U) + δ(ǫ1) (57a)

R̃ > IQ(V ;X0, U) + δ(ǫ2) (57b)

R+ R̃ < IQ(V ;Y, U)− δ(ǫ3), (57c)

Thus, we conclude thatP(E2:B) can be made arbitrarily
small by choosingn sufficiently large andǫ1, ǫ2, ǫ3 > 0
sufficiently small. Define now

E ,

{
(XT

0 , X
T
1 , X

T
2 ) /∈ T (T )

ǫ (QX0X1X2
)
}
. (58)

Sinceǫ > ǫ̃, by choosingB sufficiently large, the probability
P(E) can be made as close toP(E2:B) as one wishes.
Thus, we conclude that whenn,B are sufficiently large and
ǫ1, ǫ2, ǫ3 > 0 are sufficiently small, it is possible to have

P(E) < ǫ. (59)

Assume now that (59) holds. Under this assumption, we
can bound the expected distortion (where the expectation is
with respect to the choice of the codebooks and the channel
realization) by

E

(
1

T

T∑

t=1

δ(X0,t, X2,t)

)

= E

(
1

T

T∑

t=1

δ(X0,t, X2,t)
∣∣∣E
)
P(E)

+E

(
1

T

T∑

t=1

δ(X0,t, X2,t)
∣∣∣Ec

)
P(Ec)

≤ dmaxP(E) + (D + ǫdmax)P(E
c)

≤ D + 2ǫdmax, (60)

where the first equality follows by the total law of ex-
pectations; the first inequality because the distortion func-
tion is bounded and by the definition of the typical set
T

(T )
ǫ (QX0X1X2

); and the last inequality by (59) and because
a probability cannot exceed 1.

We see that the expected average distortion—where the ex-
pectation is taken with respect to the choice of the codebooks
and the realizations of the state and the channel—can be made
smaller thanD + 2ǫdmax when T is sufficiently large. As
a consequence, there must be at least one realization of all
codebooks such that the expected average distortion is no
larger thanD+2ǫdmax. Sinceǫ > 0 can be chosen arbitrarily
close to 0, this concludes the achievability proof.

By continuity the above proof can be applied also when
IQ(X0;U) ≤ IQ(V ;Y |U)−IQ(V ;X0|U) holds with equality.

B. Converse

Let D > 0 be an achievable distortion. Fixǫ > 0
and T sufficiently large. By definition, there exist coding
and decoding functions{σNC

t }Tt=1 and {τC
t }

T
t=1 so that the



sequencesXT
1 , X

T
2 , Y

T induced by these functions and by
the channel (10), satisfy

E

(
1

T

T∑

t=1

δ(X0,t, X2,t)

)
≤ D + ǫ. (61)

Let Z be a random variable that is uniformly distributed over
{1, . . . , T } independent ofXT

0 , X
T
1 , X

T
2 , Y

T , and define for
eacht,

Ut , (Y t−1)

Vt , (XT
0,t+1). (62)

Finally, let U , (UZ , Z), V , (VZ , Z), X0 , X0,Z ,
X1 , X1,Z , X2 , X2,Z , and Y , YZ , and denote the
probability distribution of the tuple(U, V,X0, X1, X2, Y ) by
QUV X0X1X2Y . By these definitions,

E (δ(X0, X2)) = E

(
1

T

T∑

t=1

δ(X0,t, X2,t)

)
. (63)

and

QUVX0X1X2Y (u, v, x0, x1, x2, y)

= ρ0(x0)QUV X1X2|X0
(u, v, x1, x2|x0)Γ(y|x0, x1). (64)

The Markov chainY − (X0, X1)− (U, V,X2) holds because
by the i.i.d.-ness of the channel (10),Yt − (X0,t, X1,t) −
(XT

0 , X
T
1 , X

T
2 , Y

t−1, Y T
t+1) forms a Markov chain for any

t ∈ {1, . . . , T }, and because the time-sharing random-variable
Z is independent of(XT

0 , X
T
1 , X

T
2 , Y

T ).
In the following, we prove that

IQ(X0;U) ≤ IQ(V ;Y |U)− IQ(V ;X0|U), (65)

which combined with (61), (63), and (64), by continuity,
establishes the desired converse.

To prove (65), we first notice that on one hand,

1

T
I(XT

0 ;Y
T )

=
1

T

T∑

t=1

I(X0,t;Y
T |XT

0,t+1)

=
1

T

T∑

t=1

I(X0,t;Y
T , XT

0,t+1)

=
1

T

T∑

t=1

[
I(X0,t;Y

t, XT
0,t+1) + I(X0,t;Y

T
t+1|Y

t, XT
0,t+1)

]

=
1

T

T∑

t=1

[
I(X0,t;Yt, Vt, Ut) + I(X0,t;Y

T
t+1|Yt, Ut, Vt)

]
,

= I(X0,Z ;YZ , VZ , UZ |Z) + I(X0,Z ;Y
T
Z+1|YZ , UZ , VZ , Z)

= I(X0;Y, V, U) + I(X0,Z ;Y
T
Z+1|YZ , UZ , VZ , Z). (66)

On the other hand, we have that

1

T
I(XT

0 ;Y
T )

=
1

T

T∑

t=1

I(X0,t;Y
T |XT

0,t+1)

=
1

T

T∑

t=1

[
I(X0,t;Y

T |XT
0,t+1) + I(Y t;XT

0,t+1)

− I(Y t−1;XT
0,t)
]

=
1

T

T∑

t=1

[
I(XT

0,t;Y
t) + I(X0,t;Y

T
t+1|Y

tXT
0,t+1)

− I(Y t−1;XT
0,t)
]

=
1

T

T∑

t=1

[
I(XT

0,t;Yt|Y
t−1) + I(X0,t;Y

T
t+1|Y

tXT
0,t+1)

]

=
1

T

T∑

t=1

[
I(X0,t, Vt;Yt|Ut) + I(X0,t;Y

T
t+1|Yt, Ut, Vt)

]

= I(X0,Z , VZ ;YZ |UZ , Z) + I(X0,Z ;Y
T
Z+1|YZ , UZ , VZ , Z)

= I(X0, V ;Y |U) + I(X0,Z ;Y
T
Z+1|YZ , UZ , VZ , Z). (67)

Combining (66) and (67), we obtain

IQ(X0;Y, V, U) ≤ IQ(X0, V ;Y |U), (68)

which by chain rule of mutual information is equivalent to

IQ(X0;U) ≤ IQ(X0, V ;Y |U)− IQ(X0;Y, V |U)

= IQ(V ;Y |U)− IQ(V ;X0|U). (69)
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