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Abstract—This paper addresses a coordination problem be- determining the set of feasible expected average payoffs
tween two agents (Agentsl and 2) in the presence of a noisy
communication channel which depends on an external system (1) 1 T
state {xo.}. The channel takes as inputs both agents’ actions, w; ' =1E T Zwk(XO,thl,thQ,t) , ke {12}, (D)
{z1,+} and {z2,} and produces outputs that are observed strictly t=1
causally at Agent 2 but not at Agent 1. The system state is . .
available either causally or non-causally at Agentl but unknown that are_ reachable by some strategies fpr the agents. Tth_'s se
at Agent 2. Necessary and sufficient conditions on a joint Of feasible expected average payoffs is fully charactdrize
distribution Q(zo,z1,z2) to be implementable asymptotically by the set of feasible averaged distributions on the triples
(i.e, when the number of taken actions grows large) are proded  {(X,,, X, , Xo,)}{,. In fact, denoting byPx, , x, , x,, the
for poth causal an.d npn-causal state information at Agentl. joint distribution of the timettuple (Xo ¢, X1+, X2+), we have
Since the coordination degree between the agents’ actions; . ’ ’ ’
and z2,., and the system statero: is measured in terms of an 1 T
average payoff function, feasible payoffs are fully charaerized (1) 2 = ZE [wi (Xo.t, X1.0, Xo.t)]
by implementable joint distributions. In this sense, our results k T TS

- ] t=1
allow us e.g., to derive the performance of optimal power camol

L - - T
policies on an interference channel and to assess the gaingwided . 1
by non-causal knowledge of the system state at Agerit = Z Wk(xovxlvb)f ZPXO,tXI,tX2,t('rO7'r17 T32).
The derived proofs readily yield new results also for the i°§§° t=1
problem of state-communication under a causality constrait at v

the decoder. ) ) ] ) )
Our main goal in this paper is to determine the set of

S T
|. INTRODUCTION averaged dlstrlbutlons}— > oie1 Pxo.xy . Xo, (%0, 71, 22) that

o . can be induced by the agents’ strategies. For simplicitg, an
Performance characterizations of general distributed nenf’Jl y 9 g plicity

. I order to obtain closed form expressions, we shall focus on
works with agents that observe the system state and thenacti P

of some of the other agents, is a prominent open roblefhe limit 7" = oo.
. gents, 1 P Pen p m\Ne consider two kinds of scenarios with two different
also studied by related disciplines such as conirol [1] an . : .
. . ._observation structures. In the first scenario—referred 40 a
game theory[[2]. In this paper, we contribute to the solution .
of a special éase of this general problem, by treating it gé)n-causal coding-Agent 1 observes the system statesn-
P 9 P DY 9 causally That means, at each stage {1,...,7} it knows

a coordination problem that can be solved using jomt-smurgm entire state sequencg! = (Xo1,...,Xor). In the

channel codes. This approach has recently been proposed I 1" <cenario—referred to @musal coding-Agent 1

[3], see alsol[4], and is expected to extend to setups wittemaor
; . earns the states onlgausally Thus, here, at each stage
than two agents and to different observation structures. p
V\;ee {1,...,T}, Agent1 only knows X.

The technical setup under investigation is as follows. ; ;
. ) . In both scenarios, Agert has no direct access to the state
consider two agents that select their actions repeatedly OV or to Agentl’s actions Insteadafter each stage, Agent2
T > 1 stages (or time-slots) and that wish to coordinate vi 9 ) g€, A9

. ; . opserves the outpuy, € ), with |Y| < oo, of a discrete
their actions in the presence of a random system state. : .
. . memoryless multi-access channel that takes as inputs the tw
each stage € {1,...,T}, the action of Agenk € {1,2} is

) L2 agents’ actions and the system state. The multi-accessiehan
Tt € Xy, With |X| < 0o, and the realization of the random. 9 y

system state i € Ay with || < co. The state sequenceIS assumed memoryless and of transition few
Xo,1,---,Xo,r is given by nature and its components are pr[yt =yl Xt =al, XTI =2t X3 = w;jytfl = ytfl}
independent and identically distributed (i.i.d.) accaglio a
distribution pg.

Suppose that each agent has an individual payoff functismere throughout this paper we use the shorthand notations
wr: Xo x X1 x Xo = R, for k € {1,2}, that is affected by A™ anda™ for the tuples(A4i,...,A4,,) and (a1,...,amn),
both agents’ actions and the nature state. We are intergstedhenm is a positive integer.

=T(ye|@os, 1,6, T2,t), (2)
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The scenario with non-causal coding was introduced such that for all(zg, z1,22) € Ap X X1 x Xo:
[5], [6]. Special cases, had previously been considered in LT
3], [4l, [[7], [B]. Most prominently, Gossner et &ll[4] solde 2 -
the first instance of our problem. They considered the caseT ;PXO'txl’tX2't(xo’xl’I2> Qzo,z,22) < € (6)
where Agent2 can observe strictly causally the system states
and Agent1’ actions, which corresponds in our setup t%
(@) describing the channej), = (z¢,.,z1.). Cuff and Zhao
presented an alternative prodf [7] of the results(in [4] bas&heorem 1 (Non-causal coding) Let ¢ = NC.
on more traditional information-theoretic tools and untter Consider a joint probability distribution@ such that
framework of “coordination via actions”. Theoisy commu- 211,126(170,1717562) = po(zo). The distribution Q is
nication channel was introduced by Larrousse et allIn [3mplementable if and only if it satisfies the following
their channel however did not depend on the system state sonditior
e o Specil cose 1as K0 DS, ) < IV 3¥1) oV XolXe) ()

In the present work, we provide a converse proof fakith Q(zg,z1,22,y,v) = Q(z0,x1,72)(y|zo, 71, 72)
the general scenario with non-causal coding that estaslish«Py/| x, v, x, (v|zo, z1,22), and V being an auxiliary ran-
optimality of a scheme proposed inl [6]. We also solve thgom variable which alphabet cardinality can be restrictezl a
scenario with causal coding. Our result shows that in thip| < |X,| - |X1] - |As].
case the agents’ optimal strategies are simple and ignbre al ] .
communication over the channel. Proof: See SectiofLV. u

We exemplify our findings at hand of a power controfheorem 2 (Causal coding)Let ¢ = C. The set of imple-
problem. In particular, for this problem, we quantify thesdo mentable distributions is given by the set of distributiander
incurred in performance when the coding has to be performg form
causally instead of non-causally.

At last, the problem under investigation is linked to the Q(z0, 21, 22) = P x50 (1[0, 22)Px, (22)p0(20). (8)
information-theoreticstate-communication problef], [L0]. Proof: See SectiofLY!. u
In fact, the proof techniques derived for the coordinatioshe ~ Note that no information constraint appears in this second
lems, immediately yield new results on state-communicatigheorem. This is related to the fact that in the case of causal
when the decoder is restricted to be causal or strictly ¢ausgoding no benefit can be obtained by communicating over the
channel: Agen® can simply ignore the channel outputs. In
particular, when the two agents are interested in maxirgiain

As explained previously, the distributed network or systewommon payoff functionv(zg, z1, z2) possible strategies are
comprises two agents. These agents take actions in a rdpeatefollows: Agent2 chooses a constant action , = z2, and
manner according to their strategies. Strategies are segse for each stage Agent1 picks an actioncy , € A} in function
of functions defined by: of this zo and of the nature state, ; so as to maximize the
payoff function on the current stage:

We now characterize the set of implementable probability
istributions both for causal and non-causal coding.

Il. PROBLEM FORMULATION AND MAIN RESULTS

NC T
. lop D o - X
case NC: { RN VLt R S 3) x] € arg max w(xo, T1, T2). 9
c ‘ ’ T1€X i
C: lop: S v I S o 4 _ . : . S
case L. Iy Coytl ox (4) This strategy is referred to as a semi-coordinated polidjpén

context of coded power control introduced in [3].
where NC (resp. C) stands for non-causal (resp. causal)
coding and forc € {C,NC}, the functions(of)1<i<7 (resp.
(1¢)1<t<r ) describe the strategies employed by Agant We exemplify the above two theorems at hand of a
(resp.2). The main problem is to characterize the set of joiftower control problem. In particular, we wish to illustrate
probability distributions that can be reached wHEn— oo the loss in performance incurred when the coding is only
which we call the set of implementable distributions acauyd causal instead of non-causal. An interference channel with
to the terminology ofl[B],[[4]. Specifically: two transmitter-receiver pairs is considered. Transoissare
assumed to be time-slotted and synchronized.A#Fer{1, 2}

and “j = —k” (—k stands for the transmitter other than
k), the signal-to-interference plus noise ratio (SINR) at Re
ceiver k£ at a given stage writes aSINR;, = %
where z, € Xp = {0, Pnax} iS the power level chosen
by Agent or Transmitte, gx; represents the channel gain

I1l. APPLICATION: POWER CONTROL

Definition 1 (Implementability) For ¢ € {C,NC}, the

probability distributionQ(x, z1,z2) is implementable if for
everye > 0 and every sufficiently largé’, there exists a pair
of strategies(of, 7t)1<t<7 inducing at each stage a joint

distribution

Px. . x .x . (20,21, 22) 2 P T, Lol T
00 X1, a0 (T0, 71, 72) X141 %o, (1, 22|70) pof (E%) 1The notationg (A; B) indicates that the mutual information should be

computed with respect to the probability distributigh



of link kj, and o the noise variance. We assume thatnitially, we consider non-causal coding functions andszdu
ki € {Ygmin, gmax) 1S Bernouilli distributedgy; ~ B(px;) or strictly causal decoding functions:
with P(gx; = gmin) = pk;; the global channel state is thus

. . oNC XTS5 ox
given by zo = (g11, 912,921, g22). We define SNR(dB)= case NC—enc/C-dec:{ ;C ) yot o ox (11)
101logyg P;];x and setgnin = 0.1, gmax = 2, o’ =1, ;IC . T )
and (p117p127p217p22) - (05,01,01,05) Tth COHSIdeI’ed case NC_enclSC_dec{ O.tSC 25071 - Xl (12)
common payoff function isu(zg, z1,22) = > ;_; logy(1 + Tt Y - A

SINRy) and the signal” observed by Agent/Transmitt@ris where C (resp.SC) stands for causal (resp. strictly causal)

assumed to be the output of a binary symmetric channel wiglacoding.

transition probabilitye = 0.05. The goal here is that Agentcan produce a reconstruction
Fig. [ represents the maximum expected sum-rate agaigstjuencer] that matches the state sequengg up to an

SNR in dB for our two scenarios with causal and non-causalowed distortion. In particular, foi € {C,SC}, Distortion

coding at Transmitter/Agerit. (For practical reasons we re-D > () is said achievable under a given boundaugle-letter

strict to|V| = 10.) These two scenarios are compared to a scgistortion function

nario with costless communicatiomhere Agent/Transmittex _

observes:? non-causally and thus the maximumeofcan be 0: Xo x Xz = [0, dma, (13)

reached at any stage, and to a scenario where the two ag@nf§r every ¢ > 0 and sufficiently large blocklengthg it is

don’t coordinate but simply transmit at full power througho possible to find encoding and decoding functidag'©}7_,

and {r{}I_, such that Agen®’s reconstructed sequence]

satisfies .
14 T T T T
—8— Costless communication case 1
- + - Expected payoff — non causal coding case f E e E 6 (XO.,t 5 XQ_’t) S D + €. (14)
pH =" Expected payoff — causal coding case 1 T —
—¥— Full power transmission case g t=1

Theorem 3 (Non-causal coding)Letd = C, i.e., decoding is
causal. DistortionD is achievable if and only if

] E[6(Xo0,9(U,Y))] < D, (15)

Expected payoff

|1 for some functiong: Y x Y — X and some joint law
Qx,x,vuv(xo,x1,y,u,v) that factorizes as

po(zo) Puv x,|x, (u, v, z1|20)T (y|20, 21); (16)
il vvvvrvrvrrvvy and satisfies
S0 > 0 B 10 15 2 S 30 3 40 IQ(U; XO) < IQ(V; Y|U) - IQ(V; X0|U) (17)

SNR (dB)
The inputX; can be restricted to be a function @, V, Xj).

Fig. 1. Expected payoff against SNR(dB). One message franfiglure is Proof: Omitted for brevity. [ |
that good coordinated power control policies may perforriteqalose to the

maximum sum-payoff for certain standard payoff functiohere the chosen Remark 1. Theoreni B remains valid faf = SC, i.e., when

sum-payoff is the sum-rate. Another message is that, famicestandard ; : : : :
payoff functions designing non-causal power control pesicmay not bring decodlng IS SmCtly causal, I@) IS rePIaced by
E[6(Xo,9(Y))] < D. (18)

very significant performance gains over causal power cbpwtcies.

In this case, one can restrict to the choite= g(Y) = Xo.

IV. RELATED RESULTS ONSTATE-COMMUNICATION Assume now that encoding is causal. The setup is as
described above, except that the encoding functiong ih (11)

Consider again the setup of Sectighs | Bid II, but—in line ¢f. o 15 pe replaced by functions of the form

previous works on state-communication [9], [10]—speeli
the channel in[{2) to a state-dependent discrete memoryless of 1 XL — X1 (19)

channel (DMC) with statero,, and single input-, . Theorem 4 (Causal coding)Let d = C, i.e., decoding is

(10) causal. DistortionD is achievable if and only if

E[0(Xo0,9(Y))] < D, (20)

T(ytlxoe, 1.t, x2,6) = D(yelxoe, x1.6)-

2Traditionally, in state-communication the channel inpais denoted f f . . X d .. distributi
x1,...,xt, the state symbolsy, ..., s and the reconstructed symbols at or some functiong: YV — > and a joint distribution

Agent?2 41,...,57. For coherence, here we keep the notations introducelx, x,v (2o, 21, y) that factorizes as
in the first part of the paper.

30ur results readily extend also to the more general chamn@)i po(zo) Px, | x, (%1|70) Py |x,x, (¥|To, 1) (21)



Letd = SC, i.e., decoding is strictly causal. Distortiafl is The Markov chain Y — (Xy,X;,X5) — V in (28)

achievable if and only if there exists a constant valyec X> holds because by the memorylessness of the chafnel (2),

so that Ve — (Xog, X1, Xo) — (X7, X{, X7, YL VL) forms
E[6(Xo,z2)] < D. (22) a Markov chain for anyt € {1,...,T}, and be-

cause the time-sharing random-variabdeis independent of

xI, xt, xT vm.

Remark 2. In combination with previous results on state- \we continue with the following sequence of equalities:

communication[[9], [[10], our results provide the following

insights. When th@&ecoderis non-causal, Wyner-Ziv coding lI(XT- y7)

has to be used to compress the state. This is not possi 0>

anymore when the decoder is only causal, where standarga) 1 L

compression suffices. When thacoderis non-causal, then = — Y I(Xou V7" |X{,,,)

Gel'fand-Pinsker coding should be used to communicate over t=1

the channel. When the encoder is only causal, this is nof, 1

possible anymore and the less powerful Shannon strategies 7

suffice. When the encoding and the decoding are causal or =1

strictly causal, then no coding is needed anymore; simplec)

symbol-by symbol strategies at the transmitter (Aggrand

the receiver (Agen2) are sufficient.

Proof: Omitted for brevity. [ ]

™=

I(Xo4: Y7, X0 441)

S| =
B

[I(Xo,ﬁ Y?, XoT,t+1) + I(Xo; Yfll Y, XoT,t+1)]

~~
Il
-

V. PROOF OFTHEOREM[ @

The proof of Theorern]1 can be divided into three parts: the t=1 oot o

direct part, which is established inl [6] and omitted for bigv +1(Xo,3 YY" X0 41)]

the bound on the cardinality of the auxiliary alphalgtvhich o 1 T

is also omitted; and the converse, which shows optimality of < T Z [1(Xo,45Ye, Vi, Xot) + 1(Xo,3 Y'Y, Va)],

the coding scheme in 6] and is proved in the following. t=1
ConverseLet Q be an implementable distribution, and fix = I(Xo,z,Vz;Yz| X2 2, Z) + 1(Xo,2; Y} 1 |Y2, V2, Z)

an arbitrarye > 0. _ . I(Xo, Vi Y|Xa) + I(Xo.z: YE 1 Y2, V2, Z), (27)
By definition, there must exist a sufficiently large block-

length 7" and strategiego; “}i_, and{r}/_, such that for where(a) follows from the chain rule of mutual information;

t € {1,...,T}, the tuple(Xo,, X1+, X2) induced by these (b) by the i.i.d-ness of the state sequeri¢& :,..., Xo.r)
strategies has a joint lawy, , x, , x. , that satisfies ’ ’

S| =
B

[1(Xo,; Y, X3 111, Xot)

(c) by the chain rule of mutual informatiori¢) becauseXs ;

1 - is computed as a function af*~1; (e) by (24); and the last
‘T ZPXO,txl,tX2,t(x07xl’ ,TQ) - Q(,To, $1,$2) < €. (23) two equalities by the definitions C(fZ, Vz,X07z,X27z, Yz)
t=1 and (V, Xy, X2,Y") and the independence &f and X z.

For eacht, let Y; denote the output of the channel for state On the other hand,
Xo,+ and inputsX; ; and X» ;. For each positive integer,
we use the shorthand notatietf, to denote the random tuple lI( T.yT)
(Am, ..., Ar). Let Z be a random variable that is uniformly T’ 0
distributed oveq1,...,T} independent o, X', X7, YT, (5
and define for each, =

Vi £ (X 41, Y. (24)
Finally, letV £ (Vz,Z), X1 £ X172, Y £ Yz, Xo £ X0 7,

and X, £ X1 z, and denote the probability distribution of the (@)
tuple (‘/, Xo, X1, X, Y) by QVXoXngY- Notice that this law

S| =
MH

[I(XW; YT|X0T,t+1) + (Y XoT,t+1)

~~
Il
-

_ I(thl; XoT,t)}

IS
N[~
MH

[1(XT Y + 1Ko VYV X T 1)

t=1
factorizes as
. — Iy Xojjt)}
Qv xox, X, v (U, To, 1, T2, Y) T
= po(70) Qv x, x,1x, (v, 21, T2| o)L (Y| w0, 21, 72), (25) & % Z I(Xg 5 Y YY) + I(Xo s Kﬁﬂthg,tH)}

~
Il
-

with a marginal law satisfying

N[~
MH

Zvaoxlxgy(UﬂCo,iUlaﬂCzay) =
v,y

(XT3 ViV Xog) + 1Ko Vi [V X 40)|

~
Il
-

T .
! (
- TZPXo,tlethyt(fEO,fEl,ZCg). (26) <
t=1

N[~
MH

(X YT Y Xog) + 1Ko ViV X )|

~
Il
-



k) 1 be independent ok . These observations combine to establish

B that the joint law of(X,, X1, X2) has to factorize as i (83).
Achievability: Consider a joint distributionQ (o, z1, z2)

= 1(Xo,2,V2: Yz X0z, Z) + 1(Xo,2: Y31 |Yz, V2, Z) that factorizes asQ(xo,z1,22) = po(z0)Px,(z2) X

(m Px.ix,x, (®1]|To, x2). Fix smalle; > ¢; > 0 and an arbitrary

< (X0, V3 Y| Xo) + 1(Xo,2;Y7411Y2, V2, Z), (28) blogkléna(thT'. Therz, pick al-length sequence, 1, . .., a1

where(f) follows from the chain rule of mutual informationthat lies in the typical sef\") (Px,); see [12, p. 25] for a

and from the Csiszar-Kramer telescoping identity][14]) definition of this typical set. . .

and () follows by the chain rule of mutual informatiotj) ~ The two agents produce the following actions. At stage

becauseX, ,; is computed as a function af*~1; (j) follows * € {1,...,T}, Agent 2 produces ;. Agent 1 produces the

because conditioning cannot increase entrgpyby (22); (¢) random actionX; ; that it draws according to the conditional

by the definitions of Z, Vz, X z, X2 z, Yz); and(m) by the law Px, | x,x, (*|To,t, T2,t)- . _

definitions of(V, X,, X»,Y) and the independence & and We analyze the proposed strategies. Define the event:

Xo,z. Combining [2¥) and(28), we obtain BT 2 {(Xg“’XlT’xg“) ¢ 7;(2T)@)}_ (34)

[(Xo: Y, V, X3) < I(Xo, V3 Y| X2), (29) By the weak law of large numbers, and the conditional
which by chain rule of mutual information is equivalent to typicality lemma[12, p. 27],

T
S [, Vi Vil Xa,0) + 1(Xo. Vi i, Vi)
t=1

—~
g ~

I(Xo; X2) < I(Xo,V;Y[X2) — I(Xo; Y, V] X2) lim P(EM) =0. (35)

T—o0
= I(V;Y|X2) = I(V; Xo[X2). (30) Sincee; > 0 can be chosen arbitrarily small, by Proposition 5
By (29), (28), and[(30), we conclude that the joint lavin [6], this establishes the desired achievability result.

%ZL Px,y,x, X, (70, w1, 22) satisfies the conditions on APPENDIX A
implementable distributions that we stated in the theorem. PROOF OFCARDINALITY BOUND
view of (23), sincee > 0 can be arbitrary small, and by con-
tinuity of mutual information, then also the la@(z¢, 71, z2)
must satisfy these conditions.

Let us prove that in Theorefd 1 it suffices to chodsef
cardinality
VI < Xl - [Xa] - | Aol (36)

VI. PROOF OFTHEOREMIZ Let P denote the set of pmfs ovéi, x X5 x X». For each triple

Converse.Let ) be an implementable distribution. Fix(zg,x1,22) € Xy x X1 x Xa except for one tripléx, z1, x3)
e > 0 and sufficiently largeT’. By definition, there must that one can freely choose, define the following continuous
exist strategies such that for eatke {1,...,T}, the triple real-valued functions:

Xo.+, X1+, X5¢) has a joint lawP that satisfies
( 07t 17t 27t) J XOthlthzt g(mo,ml,mg) : p 6 P '—> p('r()?'rl?'rQ)' (37)

T

1 o) Also define the continuous real-valued functignas on to
— P T, 21, 22) — Q(xg,x1,22)| < €. (31 0N p
‘T Z o X1, X, (20,71, 72) = Q(20, 21, 22) 1) of the next page, se€(38).

t=1
. . . . Now, fix a 5—uple (V, Xy, X1, X»,Y) satisfying the con-
Let Z be a random variable that is uniformly distributed OV€litions in the theF())reEn ar?d V\I/heﬂgé is) allowfeyd tgo be over
i T T T T !
él,f....,)?}éa;d m%{epeén;i(ent (;?(OA’))((} ’XQYJA/}‘/ Further, any desired alphabe¥ which can even be of unbounded
eD|ne 0~ ﬁ’z’ 1b_b'|'17Z, 2 fzvz’_ = fZ'h _ Icardinality. LetQ x, x, x, denote the joint law of X, X1, X»)
enoting Le proba ||tg rﬂass " unction bo the trip eandFV(-) the cumulative distribution function df. For each
(Xo, X1, X2) by @xox, x,, by the definitions above, v eV, let pxjv=y(--,-) € P denote the conditional law of

1 I the tuple(Xy, X1, X2) givenV = v.
Qx,.x1.%5 (%0, T1,T2) = T ZPXO’tXI)tX%t(IO,Il,IQ). For any tuple(zg, z1,22) € Xy x X1 x Xy for which the
t=1 (32) function g4, ,2,) iS defined, we have
We will prove that the lawQ x, x, x, factorizes as o sr o) D%V —0 ) Fyr (V) = Qo x5 (0, 21, 22). (39)
po(20)Qx, (22)Q x| x5, x, (1|72, 20). (33) Moreover.
By (32), by continuity, and by[(31), this will imply that also
Q factorizes in this way, and thus conclude the proof. /vgo(PxW_v)'.:v(U) = H(Xo, Xo|V) — H(Y, Xz|V)

To prove [[3B), we first notice that for anye {1,...,T},
by the causality of the decoding(, ; depends only ory*~*.
By the causality of the encoding this latter is independént o By the Support Lemmal [12, Appendix C], there exists a
Xo,t- Thus, X, ,——Z——X  forms a Markov chain. Since setV satisfying [36), a probability mass functi@py; (-) over
Z and X, z = X, are independent{, = X, » also needs to V', and|V| conditional probability distributiongp, € P}

= H(Xo|V,Xz) — H(Y|V, X2). (40)

veY



go:pEP—

S (zp%,xa,x;))mg(zp«cg,xa,x@)

(zg,xh)EXox X2 \zl€X 1€X

+ Y < >, p(xé)axllaIIQ)F(yILré)v'rllaIIQ)) 10g< > p(IG,xi,xé)F(y’liEé,IL@&))- (38)

(z5,y")EX2 XY \ (z(,r])EXo XX (zg,x) )Xo x X1

such that for any tupléx, x1, x2) € Xy x X1 x X for which  marginal distribution@;. Independent thereof, all entries of

the functiong(,, ., . is defined, all codewords of codebootk‘(,b) are drawn i.i.d. according to
the marginal distributior®y .
/ Y(woz1,22) (PX |V =0)F (V) Encoding:Seti, = jz = 1. For each block € {1,..., B},
v let :céb) denote the state sequence corresponding to biock
= Z Y(wo,x1,22) (Po) Qyr (V) (41)  Foreach block € {1,..., B}, the encoder (Agen) looks
vev for an indexi, € {1,...,[2"%|} such that
and ®
b)(: n
/ Do(pxv=)Fy (@) = 3 90(p) Q@ (v).  (42) (28, (i) € T& Q0. (47)
i =
_ o va ~ If there is more than one such index, it chooses the smallest
Define the5—uple (V, Xo, X1, X2,Y’) to be of law among them, otherwise it declares an error.fFer1, ..., B—
~ 1, setjp = ipy1.
" Pu ) ) r 9 9 . 43
Qv ) - pu(wo, 21, 22)T(yleo, @1, 22) (43) For each block € {1,..., B}, the encoder looks for an

By definition [43), by [(3P) and by [(31), the tupleindex?, € {1,...,[2"%]} such that

(Xo0,X1,X2,Y) has the same law as the original tuple

(Xo, X1, X2, Y): (28 u® (). 0@ (o, 1) ) € T @xoov). (48)
Pr[Xo = 20, X1 = 21, X3 = 23,V = y] If there is at least one such index, it picks one of them at
= Qx0.x,.x, (70, 1, 22) - T(y|wo, 1, 72). (44) random, otherwise it declares an error. The encoder finatly p

Moreover, by [@D) and(42), and Definitiof.{38), the relevaf/CeS itst’-th input of blockb, 2y ,—1)n+, by applying the

mutual informations are also preserved: conditional lawQ x, v x, to the triple of symbols obtained

o o by taking thet’-th components of the codeword§’ (i;) and

H(Xo|V, Xo)=H(Y|V, X5) = H(Xo|V, X2)=H(Y|V, X3), (®)(j,, ¢,) and the state vectar”.

Decoding:Let i; = 1. Fix t € {1,...,T} and letb denote
and as a consequence, byl(44), the block to which time belongs to, i.e.b = [t/n]. Decoding
I(f/; ‘7|j§2) _ I(Xo; ‘7|j§2) = I(Y;V|X3) — I(Xo; V| X2). at timet € {1,...,T} depends on outpuf; and on the index

(46) 1, that—as we will see in a moment—the decoder (Agdnt

This concludes the proof. produced in a previous decoding step. Specifically, the dierco
producese,; by applying the decoding functiopto the (¢ —
APPENDIXB (b —1)n)-th component of codeword® (i) and toy;.
PROOF OFTHEOREMI3 If ¢ is a multiple ofn, i.e., we reached the end of a block,
A. Achievability the decoder also looks for indicés,, /) € {1,... [2"%]} x

Consider a joint distributio®@yv x,x, x,v € AU x V x {1, ceey L2”RJ} such that
Xo x X1 x Xy x Y) and a decoding functiog: U x Y — Xy

that satisfy Conditiond (15)=(1L7) in the theorem. (u(b) (ip), v® (5b,@b),y(b)) e T (Quvy).  (49)
Fix smalle > € > e3 > €2 > €1 > 0, and pick positive rates
R, R in a way that we specify later on. If there is at least one such index, pick one of them at random.
Codebooks generationSplit the blocklengthT into B Otherwise declare an error. Sgi1 = jp.
blocks each of lengthn £ |T/B|. For each block Analysis:We analyze the expected average distortion, where
b € {1,...,B} randomly generate a codeboaﬁg’) con- the expectation is taken with respect to the choice of the
taining the n-length codewords{u(®(1),...,u®(|2"F])} codebooks and the random realizations of the state and the
and a codebookC” containing then-length codewords channel. Define for each blogke {1,..., B},

{v®(1,1),...,00) (|27F], LGRJ)}. All entries of all code-

A () 5 (b) () (n)
words of codebookC?’ are drawn i.i.d. according to the By = {(XO XX E T (QX"XIX?)}7 (50)



and
B

Eoyp & U Ey,.
b=2

We proceed to show tha(E,.p) can be made arbitrarily

(51)

small for n sufficiently large. We introduce the following

events in each block € {1,..., B}.
B £ {(x,U0(0)) ¢ T @Qxa) Vi € {1,
B0 2 {(X0.0060). VO (,,0) ¢ T2 (@xoov)
vee {1, [2""]}}
EY & {(Xw) U® (@), VO (5, £), X )7y(b))
¢ ﬁgn)(onvaly)}
B 2 { (U G6). vOG.0,Y") € T (Quvy)
2N
ce{t,..., 12"}
B & { (00,006, V0i 8, X170, )
¢ T <QXOUVXIYX2>}.
The probabilityP(Es.5) may be upper bounded @s:

P(E2.B) SXB:{

b=1

for somej € {1,...

+P(EP|ED) + P(EY |E§b>c)}

B
+ > P(E|E)
b=2

Throughout this paragrapld(e) stands for a function that
tends to 0 ag — 0.

(52)

« By the covering lemm&[12], iR > Io(Xo; U) + d(e1),
then for anyb € {1,2,..., B}:
: b)
lim E (P(Eg )) —0. (53)
« By the covering lemma, iR > Io(V; Xo,U) + §(e2),
then for anyb € {1,2,..., B}:
. b b)e
Jim E (P(BL|E?)) =0. (54)

By the conditional typicality lemma_[12], for any €
{1,2,...,B}:

lim E

n—oo

(P(ELE()) = 0. (55)

By the packing lemma [12], iR + R < Io(V;Y,U) —
d(es3), then for anyb € {1,2,...,B}:

Tim E (P(ES|ES)) = 0. (56)

4Here we also used the fact that eveﬂﬁb)cﬂEéb)C impliesiy 1 = ip41.
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Wheneverlg(Xo;U) < Ig(V;Y,U) — Ig(V; Xo,U) =

Io(V;Y|U)—1q(V; Xo|U), andey, e2, €3 > 0 are sufficiently
small, it is possible to find rateB, R > 0 such that

R> IQ(XO; U) + 5(61) (573)

R> Io(V; Xo,U) + 6(e2) (57b)

R+ R < Io(V;Y,U) — 8(e3), (57¢)

Thus, we conclude thaP(F>.5) can be made arbitrarily
small by choosingn sufficiently large ande;,es,e3 > 0
sufficiently small. Define now

E £ {(ngvaXg) ¢ t(T)(QX0X1X2)}'

Sincee > €, by choosingB sufficiently large, the probability
P(E) can be made as close tB(E,.5) as one wishes.
Thus, we conclude that whem B are sufficiently large and
€1, €2, €3 > 0 are sufficiently small, it is possible to have

(58)

P(F) <e. (59)

Assume now that[(89) holds. Under this assumption, we
can bound the expected distortion (where the expectation is
with respect to the choice of the codebooks and the channel
realization) by

1 T
E <T D 6(Xoz Xa)
- o
=E (T g 5(X0,t7X2,t)‘E> P(E)
}E) P(E)

t=1
t=1
1 T
E <T ; 0(Xo,, Xo,t)
< dmaxP(E) + (D + edmax)P(E)

< D + 2edmax, (60)

where the first equality follows by the total law of ex-
pectations; the first inequality because the distortioncfun
tion is bounded and by the definition of the typical set
ﬁ(T)(onxl x,); and the last inequality by (59) and because
a probability cannot exceed 1.

We see that the expected average distortion—where the ex-
pectation is taken with respect to the choice of the codebook
and the realizations of the state and the channel—can be made
smaller thanD + 2ed,.x When T is sufficiently large. As
a consequence, there must be at least one realization of all
codebooks such that the expected average distortion is no
larger thanD + 2ed,.x. Sincee > 0 can be chosen arbitrarily
close to 0, this concludes the achievability proof.

By continuity the above proof can be applied also when
Io(Xo;U) < Io(V; Y|U)—1Ig(V; Xo|U) holds with equality.

B. Converse

Let D > 0 be an achievable distortion. Fix > 0
and T sufficiently large. By definition, there exist coding
and decoding functiongoN°}7_, and {7}, so that the



sequencesX{, X7, Y7 induced by these functions and by 1
the channel{0), satisfy -

el

T
ZI(Xo,t;YT|XOT.,t+1)
t=1

T T
1 1
E (T ;a(xo_,t, XQ,t)> <D+e (61) =7 ; [I(Xo,t; YOIXG ) + 1Y X0 ,00)
Let Z be a random variable that is uniformly distributed over — (Y X({t)}
{1,...,T} independent ofX ', XT', X7 Y7, and define for LT
eacht, = =20 [ Y + 1Ko YL Y XE )
U £ (Y1) - t—1. xT
v, £ (Xg?t+1)- (62) -1y ;XO.,t)}
T
. 1
F|na”y, |et U é (Uz,Z), V é (Vz,Z), XO é X07Z, = — Z [I(Xg?t’}/ﬂyt*l) +I(X0,t;}/t€_1|Yth?t+l):|
X1 & X127, Xo & Xoz7, andY £ Yz, and denote the T~
probability distribution of the tupléU, V, Xy, X1, X2,Y) by 1 X
Quv xox, x,v. By these definitions, =z [1(Xo.0, Vis YilU) + 1(Xo, Y1 Ve, U, Vi) |
t=1

Xo0,2.V2:Yz|Uz, Z) + 1(Xo,2: Y} 11 |Y2, Uz, Vz, Z)

T
1 _
E (6(Xo, X2)) = E <T ) 6(X07t,X27t)> . 83) =L
t=1 :I(XQ,V;Y|U)—|—I(XO,Z;YE_’_HYz,Uz,Vz,Z). (67)

and Combining [66) and[{87), we obtain

Quvxox, X,Y (U, 0, 20, T1, T2, Y) Io(Xo;Y,V,U) < Ig(Xo, V3 Y|U), (68)

= po(20)Quv X, x5 x0 (U; v, 1, 22|20 (y[20, 21)- (64)  \yhich by chain rule of mutual information is equivalent to
The Ma_rI§0v chainy” — (Xo, X1) — (U, V, X3) holds because Io(Xo; U) < Io(Xo, V;Y|U) — In(Xo; Y, V|U)
by the i.i.d.-ness of the channdl{10); — (Xo., X1.4) — _ Iy (V:YIU) = Io(V; Xo|U) (69)
(XTI, xT, xT,vt=1,YX,) forms a Markov chain for any AN AR
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