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Abstract— The main contribution of this paper is the char-
acterization of the limiting average performance of a system
involving two agents who coordinate their actions which belong
to a continuous set. One agent has complete and noncausal
knowledge of the sequence of i.i.d. realizations of a random state
X0, which is called the system state and affects the common
team payoff. For the other agent, two scenarios in terms of
observation assumptions are considered: in the first scenario,
the other agent has a strictly causal knowledge of the system
state while in the second scenario it has no direct knowledge of
the state at all. However, in both scenarios, the less informed
agent can always observe a noisy and strictly causal version of
the actions taken by the (most) informed agent. There exists no
dedicated communication channel between the two agents, and
thus, the informed agent can only communicate via its actions
which in turn affect the common payoff, hence the term implicit
communication. Thus, there is a tradeoff to be found for the
informed agent between communicating information about the
incoming realizations of the system state and maximizing the
payoff at the current stage. We use this general framework and
apply it to a specific cost function, namely the Witsenhausen
cost function. Although the problem tackled differs from the
famous Witsenhausen’s counterexample, the authors believe
interesting new connections which help to understand the
corresponding open problem might be established over time.
A numerical analysis is conducted to assess the Witsenhausen’s
cost for two sub-optimal classes of strategies.

I. INTRODUCTION

In this paper, we consider a team with two agents who
are trying to maximize their common payoff over a long
time period, i.e., composed of many time-slots. At every
time-slot or stage i ∈ {1, · · · , T}, Agent k, k ∈ {1, 2}
chooses its action xk ∈ Xk, where Xk is a continuous set.
The instantaneous payoff function w(x0, x1, x2) depends on
the realization of the random variable X0 with realizations
x0 ∈ X0. The set X0 is also continuous and realizations
of X0 are assumed to be i.i.d.. A problem with the same
information structure was addressed for the first time in
[1]. Therein, the assumptions made are as follows: it is
assumed that at any time Agent 1 knows the past, current,
and future realizations of X0 perfectly, whereas Agent 2
only observes the actions of Agent 1 in a strictly causal
manner. Such a scenario has been extended in a couple of
papers cited further. However, all of them treated the case
where the action sets as well as the system state set were
discrete and finite, i.e., ∀ k ∈ {0, 1, 2}, |Xk| <∞. Reference
[1] treated the case of an information structure in which
Agent 2 has perfect observation and showed that the average

performance characterization is equivalent to finding the ap-
propriate information constraint. The information constraint
basically gives us the limit for the communication that can
take place via actions in such a scenario. In [2] this result
was generalized to the case where Agent 2 has imperfect
observations. While all these contributions assume a strictly
causal knowledge of the system state x0 at Agent 2, the case
where this assumption is relaxed was first presented in [3]
and treated rigorously in [4]. The main contribution of the
present paper is to generalize this approach of finding the
limiting performance to the case of continuous action sets,
which is an important case for control problems as many
designs involve continuous controlers. A second contribution
is to consider the Witsenhausen cost function [5] as a
common cost function to be minimized by the 2−agent team
under the two mentioned scenarios in terms of information
structures; this establishes for the first time a link between
[1][2][4] and [5]. Indeed, although the Witsenhausen problem
can be seen as a one-shot coordination problem, whereas
we consider a long-term coordination problem here, the
idea of joint control-communication strategies is present in
both formulations. As it will be seen, characterizing the
feasible performance of the long-term coordination problems
amounts to determining a certain information constraint. Al-
though information constraints normally appear when (large)
sequences intervene, it has to been noted that one-shot
problems closely related to the Witsenhausen problem have
been solved by introducing an information constraint; this is
the case, for instance, for the Gaussian Test Channel (GTC)
[6]. The approach we adopt has connections with that of
[7] where probability distributions which minimize the cost
function are used. However, in the latter the authors restrict
their attention to what modifications render the (one-shot)
Witsenhausen problem simpler to solve, and do not tackle
the general framework of long-term implicit communication.

The paper is structured as follows. Section II provides the
proposed problem formulation. It explains that characterizing
the feasible set of expected common payoffs amounts to
characterizing implementable joint probability distributions.
Section III provides, for the two information structures con-
sidered, the two information constraints which allows one to
characterize the implementable distributions. The Gaussian
case is provided as a special instance, which establishes
a connection with the dirty-paper coding problem [8]. In
Section IV-A, we discuss the Witsenhausen cost function in



context to our problem. Section IV-B describes the numerical
analysis for the special instance of payoff function (which
equals minus the Witsenhausen cost function) and provide
numerical results. Section V concludes the paper.

II. PROBLEM STATEMENT

Consider two agents, Agent 1 and Agent 2, who want
to coordinate through their actions x1 ∈ X1 and x2 ∈ X2.
The problem is said to be distributed in the sense that each
agent can only control one variable of their common payoff
function w(x0, x1, x2). The action set for both agents X1,
X2 as well as the set of system states X0 are continuous
sets. The realizations of the system state are assumed to
be i.i.d. and generated from a random variable X0 whose
probability density function is denoted by f0(x0). We shall
use the notation fV (v) or f(v) to refer to the probability
density function of the generic continuous random variable
V . The control strategies of Agents 1 and 2 are sequences
of functions which are respectively defined by:

ui : X T0 → X1

vai : X i−10 × Yi−1 → X2

vbi : Yi−1 → X2

(1)

where T ≥ 1 is the total number of stages over which
the agents are assumed to interact, Y is the observation set
of Agent 2 and the superscripts a or b correspond to the
two considered scenarios in terms of observation structure.
The control strategy for Agent 1 ui basically means that
it knows the realizations of the system state for all T
beforehand, and uses that information to choose its actions;
note that the methodology used in this paper can also be
exploited under less restrictive knowledge assumptions at
Agent 1. The merit of the assumptions made for Agent
1 is that it allows one to make progress in the direction
of quantifying the relationship between agents’ observation
capabilities and reachable performance, which is not well
understood. Additionally, there already exist applications for
which it is relevant: coordination between robots when a
leader knows the trajectory in advance; distributed power
control in wireless networks; robust image watermarking.
For Agent 2, we consider two different control strategies
vai and vbi . The control strategy of scenario a assumes that
Agent 2 observes the past realizations of the system state
x0(1), ..., x0(i− 1) as well as y(1), ..., y(i− 1). The control
strategy of scenario b is only based on the latter sequence and
seems to be more in line with a possible information structure
of a long-term version of the Witsenhausen problem. In
any case, it is less demanding in terms of information
assumptions. The observations y(1), ..., y(T ) are assumed
to be generated by a memoryless channel whose transition
probability is denoted by γ and verifies a Markov condition
fY |X0,X1,X2

(y|x0, x1, x2) = γ(y|x1). The additive white
Gaussian noise channel Y = X1 + Z is an intensively used
model which verifies this condition.

The instantaneous team payoff function is denoted by
w(x0, x1, x2). Since X0 is not deterministic we shall be

considering the expected payoff

Ef [w(X)] =

∫
x∈X

w(x0, x1, x2)f(x0, x1, x2)dx0dx1dx2

(2)
where X = (X0, X1, X2), x = (x0, x1, x2), and X =
X0×X1×X2. In the sequel, we will also denote by W (f) the
above expected payoff i.e., W (f) = Ef [w(X)]. What mat-
ters for the expected payoff is function f which characterizes
the possible correlations among the three random variables
X0, X1, and X2. This correlation precisely measures the
degree to which the agents can coordinate with each other
and the system state. To understand the relationship between
the agents strategies (1) and the expected payoff (2), let us
define the notion of implementable distributions.

Definition 1 (Implementability): Let s ∈ {a, b} be the
assumed information structure. The probability density func-
tion f(x0, x1, x2) is implementable if there exists a pair of
control strategies (ui, v

s
i ) such that as T → +∞, we have

for all (x0, x1, x2) ∈ X0 ×X1 ×X2,

1

T

T∑
i=1

∫
y∈Y

fX0X1X2Y,i(x0, x1, x2, y)→ f(x0, x1, x2) (3)

where fX0X1X2Y,i = γ × fX1,X2|X0,i × f0 is the joint
distribution induced by (ui, v

s
i ) at stage i.

Note that since the expectation value of the payoff is a
linear operator with respect to the distribution f , the time
averaged expected payoff W is reachable if and only if the
corresponding distribution f is implementable. In Section III,
we shall characterize the set of reachable or feasible average
payoffs under the information structure given by (1), which
is equivalent to characterizing the set of implementable
distributions.

III. PERFORMANCE ANALYSIS: LIMITING PERFORMANCE
CHARACTERIZATION

A. General case

In the case of finite alphabets |Xi| < ∞, i ∈ {0, 1, 2}, it
has been shown in the cases which have been treated so far
[1], [2], [3], [4] that characterizing the set of implementable
(mass) probability distributions amounts to determining a
certain information constraint. For instance in the case of
discrete sets and perfect observation of [1] (Y = X1), the
necessary and sufficient condition for a joint probability mass
distribution Q(x0, x1, x2) to be implementable is that

HQ(X0) +HQ(X2)−HQ(X0, X1, X2) ≤ 0 (4)

where HQ is the discrete entropy function under a fixed joint
distribution (see Section [9] for the different expressions of
the entropy used in this section). A well-known reasoning
in information theory [9], and intensively used in control
when communication problems are involved, is to use the
information constraint derived in the discrete case and just
replace the discrete entropy function with the differential
entropy. It can be proved that this reasoning is perfectly
valid if considered continuous variables are Gaussian (see
e.g., [10] for a recent reference). For coordination problems



such as the one under investigation, imposing the agents’
actions to be Gaussian is generally suboptimal. Elaborating
further, if we replace the discrete entropy function with the
differential entropy we obtain

hf (X0) + hf (X2)− hf (X0, X1, X2) ≤ 0 (5)

where hf is the differential entropy under the fixed joint
distribution f . It turns out that this condition can be shown
to be non-necessary in general, indicating that the transition
from the discrete case to the continuous case needs some
special care in the problem under investigation. To convince
the reader, let us recall one of the Cantor’s theorems (see e.g.,
[11]). There exists a bijective map from RT to R. Therefore,
a possible control strategy for Agent 1 might be as follows.
On the first stage, Agent 1 maps or encodes the whole
sequence of states (x0(1), · · · , x0(T )) ∈ RT into a single
action x1(1) ∈ R. Since Agent 2 observes this action per-
fectly, it can decode it perfectly and is thus informed of the
sequence of states as well. This would mean that from stage
i = 2, the two agents can correlate their actions in a arbitrary
manner with the system state; in particular they can choose
the pair (or one of the pairs) which maximizes w at a given
stage i ≥ 2. This means that any probability density function
fX0X1X2

can be implemented (asymptotically), contradicting
the fact that any implementable distribution has necessarily
to verify the continuous counterpart of (4) which is (5). This
apparent contradiction comes from the fact that expressing
(4) in the continuous case with differential entropies relies
on assumptions which need to be specified rigorously for the
problem. Indeed, the information constraint can be shown
to be necessary and sufficient for implementability within
some classes of random variables. One of the broadest classes
which is known is provided in [12]. It turns out that if one
wants to define a probability measure on the Cantor set, one
does not fall into this broad class which is specified below.
Let’s first give the definition of a field in probability theory.

Definition 2 (field): Let (Ω,B) be a measurable space. We
call field F a collection of subset of Ω such that :

Ω ∈ F

if F ∈ F then F c ∈ F

F is stable under finite union
A set A of a field F is called an atom if and only if the

only subsets which are also member of the field are the set
itself and the empty set.

Definition 3 (base): A sequence of finite field Fn ; n =
0, 1, ... is called a basis of a field F if Fn ↑ F and if Gn is
a sequence of atoms of Fn such that Gn ∈ Fn and Gn+1 ⊂
Gn, n = 0, 1, 2, ... then ∩∞n=1Gn 6= ∅.

A sequence Fn ; n = 0, 1, ... is called a basis of a
measurable space (Ω,B) if Fn are a basis of a field F which
generates B : B = σ(F). A field F is called standard if it
has a basis. A measurable space (Ω,B) is called standard if
it can be generated by a standard field i.e. B has a basis. We
can now define the mutual information in a standard space
provided by [13].

Definition 4 (Mutual Information): Let (Ω,F , P ) be a
standard probability space and X ∈ R, Y ∈ R two generic
random variables: X : Ω → AX , Y : Ω → AY with
(AX ,BX), (AY ,BY ) two measurable spaces. Let FX =
X−1(AX) and FY = Y −1(AY ) the sub-σ-algebra of F
induced by X and Y . Let

PX = {Aj}NX
j=1 ⊂ FX and PY = {Bj}NY

j=1 ⊂ FY (6)

be finite partitions of Ω. With these partitions we associate
the following random variables:

X̃(ω) = j for ω ∈ Aj with 1 ≤ j ≤ NX
Ỹ (ω) = j for ω ∈ Bj with 1 ≤ j ≤ NY

. (7)

The mutual information between X ∈ R and Y ∈ R is then
defined by:

i(X;Y ) = sup
PX ,PY

I(X̃; Ỹ ) (8)

where I is the classical mutual information between two
discrete random variables [14]. Similarly, the conditional
mutual information is defined by

i(X;Y |Z) = i(X;Y,Z)− i(X;Z). (9)
The above framework is exploited to prove the following
two theorems.

Theorem 1 (Scenario a): Assume that all random vari-
ables under use are defined on a standard probability space.
Consider a joint probability density distribution f(x0, x1, x2)
such that ∀x0 ∈ X0,

∫
x1,x2

f(x0, x1, x2)dx1dx2 = f0(x0).
Then, the distribution f is implementable if and only if
f(x0, x1, x2, y) verifies the following information constraint:

if (X0;X2) ≤ if (X1;Y |X0, X2) (10)

where the arguments of the mutual information if (.) are
defined from f and f(x0, x1, x2, y) = f(x0, x1, x2)γ(y|x1).

Theorem 2 (Scenario b): Assume that all random vari-
ables under use are defined on a standard probability space.
Consider a joint probability density distribution f(x0, x1, x2)
such that ∀x0 ∈ X0,

∫
x1,x2

f(x0, x1, x2)dx1dx2 = f0(x0).
Then, the distribution f is implementable if and only if
f(x0, x1, x2, y, x

′
1) verifies the following information con-

straint:

if (X0;X2) ≤ if (X ′1;Y,X2)− if (X ′1;X0, X2) (11)

with f(x0,x1,x2,y,x
′
1)=fX′

1|X0X1X2
(x′

1|x0,x1,x2)γ(y|x1)f(x0,x1,x2).
X ′1 is an auxilary variable which helps us exploit the joint
typicality between X ′1 and X1 as well as X ′1 and X2 to
create coding and decoding schemes.

We see that the first theorem provides a full characteri-
zation of implementable densities in scenario a. The second
theorem, which relies in part on Gel’fand and Pinsker coding
[15], provides a sufficient condition for implementability in
scenario b; note that, as originally done in [15], we introduce
an auxiliary random variable X ′1 to describe the information



constraint. These theorems therefore allow one to know
to what extent a team can coordinate under the assumed
information structure. In general, to determine the ultimate
performance in terms of average payoff, an optimization
problem for the functional W (f) has to be solved. The
constraints are that: f has to be a density function; its
marginal over (x1, x2) has to be f0; the density f as defined
through the considered theorem has to meet the information
constraint. In the next subsection, we apply the derived
general result to a special case of probability distributions
namely, Gaussian probability density functions. This allows
one to exhibit a case where the information constraints can
be quite easily expressed and to establish an interesting link
with the work by Costa on dirty-paper coding [8].

B. Gaussian case

Here, we assume that all variables which intervene in the
information constraints are Gaussian. Agent 2 is assumed
to observe the actions of Agent 1 through an additive white
Gaussian noise channel: Y = X1 + Z with Z ∼ N (0, 1).
Let σ2

0 , σ2
1 , and σ2

2 respectively denote the variances of
X0, X1, and X2. The correlation coefficient between Xi

and Xj , i 6= j is denoted by ρij . Using these notations
and specializing (10) and (11) in the Gaussian case the
following results can be proved; proofs are omitted here for
obvious space limitations.

Proposition 3 (Information constraint in scenario a):
Fix σ2

0 . A necessary and sufficient condition
for a joint probability density function fX0X1X2

to be implementable is that the variances and
correlation coefficients verify the following inequality:
−(σ2

2ρ
2
01 − 2ρ01ρ02ρ12 + σ2

1ρ
2
02 + σ2

0ρ
2
12 − σ2

0σ
2
1σ

2
2) ×

(σ2
2ρ

2
01−2ρ01ρ02ρ12 +σ2

1ρ
2
02 +σ2

0ρ
2
12−σ2

0σ
2
1σ

2
2 +ρ202) ≤ 0.

Proposition 4 (Information constraint in scenario b):
Fix σ2

0 . Let α2 ∈ R. A sufficient condition for a joint
probability density function fX0X1X2

to be implementable
is that the variances and correlation coefficients verify the
following inequality: (−ρ201 + σ2

0 + σ2
0σ

2
1) × (σ2

2ρ
2
01 −

2ρ01 + 2α2ρ12 + σ2
1ρ

2
02 + σ2

0ρ
2
12 − σ2

0σ
2
1σ

2
2) − σ2

0σ
2
2(ρ201 −

σ2
0σ

2
1 +α2

2ρ
2
02−α2

2σ
2
0σ

2
2 +α2

2σ
2
1ρ

2
02 +α2

2σ
2
2ρ

2
01 +α2

2σ
2
0ρ

2
12−

2α2σ
2
0ρ12 + 2α2ρ01ρ02 − α2

2σ
2
0σ

2
1σ

2
2 − 2α2

2ρ01ρ02ρ12) ≤ 0.

For finding the information constraint for scenario b, we
have assumed that X

′

1 = X1 + α0X0 + α2X2. This choice
is inspired by the Costa’s dirty paper coding scheme [8].
The parameter α2 is related to the choice we made for the
auxiliary variable in Theorem 2 .

As seen through Proposition 4, the value of the parameter
α0 does not play any role in the constraint, showing that only
the correlation level between the agents’ actions X1 and X2

has to be tuned properly. The inequality constraint function
of Proposition 4 can be shown to be strictly convex w.r.t. α2

and the optimum point α?2 is given by:

α?2 =
σ2
0ρ12−ρ01ρ02

ρ202−σ2
0(σ

2
2−ρ212+σ2

1σ
2
2)+σ

2
1ρ

2
02+σ

2
2ρ

2
01−2ρ01ρ02ρ12

.

(12)
When the communication signal-to-noise ratio

SNR =
E(X2

1 )
E(Z2) = σ2

1 → ∞, it is seen that α?2 → 0

and the choice X
′

1 = X1 is optimal. When SNR → 0, we
see that α?2 →

σ2
0ρ12−ρ01ρ02

(ρ202−σ2
0σ

2
2)+σ

2
0ρ

2
12+σ

2
2ρ

2
01−2ρ01ρ02ρ12

.

IV. APPLICATION TO THE WITSENHAUSEN COST
FUNCTION

A. The Witsenhausen cost function. Discussion

Taking the Witsenhausen cost (times minus one) as the
payoff function to be minimized over a large number of
stages and reducing it to a convex optimization problem, we
find the limiting performance in terms of coordination for
the two-agent team. However, note that this is significantly
different from the original Witsenhausen’s counterexample
[5] as we optimize over many stages. Witsenhausen’s coun-
terexample is also a two-agent team problem, where one of
the agents can see the system state perfectly, whereas the
second agent only sees a noisy version of the first agent’s
action. The aim for the team is to have control strategies
for each agent which will minimize the expectation value of
the cost. The original counterexample has only one stage
and has been of great interest since it was proposed in
1968, especially because it was one of the first examples
where actions played a dual role of communicating as well
as optimizing, rendering the solution of the optimization
problem non trivial. The specific payoff function function
we consider in this section equals minus the Witsenhausen
cost function that is,

w(x0, x1, x2) = −
[
k(x0 − x1)2 + (x1 − x2)2

]
, k ≥ 0.

(13)
Note that the notations used here differ from those used in
[5].

Although this cost function is inspired by Witsenhausen’s
Counterexample, there are a few very important differences
between the application of our theory to the Witsenhausen’s
Cost function and the Witsenhausen’s counterexample. First,
we optimise the average cost over a large time period,
unlike in Witsenhausen’s Counterexample where the one shot
expectation value for the cost is minimised. Second, we
assume strictly causal knowledge at Agent 2, whereas this
is not the case in the original counterexample. To apply our
approach to the original problem, albeit in the repeated case,
one will need to consider a new scenario with the causality
condition relaxed.

B. Numerical analysis

While the optimization problem is well defined, finding
the joint distribution fX0X1X2Y = γ(y|x1)∗fX1X2|X0

∗f0 is
not a trivial task. Eventhough f0 is defined by the problem
and γ(y|x1) can be generated given the noise model, we
still need to find fX1X2|X0

, and since the search space is



over all possible distributions, the computational complexity
of such a search is very high. Therefore, in this section we
restrict ourselves to two cases which are simpler to handle,
complexity wise, but might be sub-optimal.

Both the cases use the results proven in previous sections
for the continuous variables. However for the first case, we
use a quantizer to discretise (X0,X1,X2,Y) and optimise
over them. This approach is inspired by the success of
quantizers in finding better solutions for the original Witsen-
hausen Counterexample. To compare with a strategy most
resembling a ’linear control’ strategy, we choose the case
where all variables are supposed to be gaussian, for which
we had simplified the information constraint in terms of
variances and covariances in section III-B. Clearly, it would
be interesting to compare the two strategies, to see whether
like for Witsenhausen Counterexample, non linear (discreti-
sation) strategies outperform ’linear’ (and thus continuous)
strategies. This argument is used to motivate our choices of
simulations, but the similarities are not so straightforward.

The following parameters are taken to be given for
the problem: k = 1, σ2

0 = 25, and Ez2 = 1 and are
common for both simulations (unless specified otherwise).
Also, the information constraint considered is for scenario a.

Discrete case : we quantize all random variables
to take nine values: X0 = X1 = X2 = Y =
{− 24

7 σ0,−
16
7 σ0,−

8
7σ0,−

3
7σ0, 0,

3
7σ0,

8
7σ0,

16
7 σ0,

24
7 σ0},

with σ0 = 5. Indeed, as we consider the continuous
random variable X̃0 ∼ N (0, σ2), we partition uniformly the
continuous space that X̃0 is defined over, so that 99.99 % of
the probability mass function lies in the chosen interval. It is
well known that considering the interval [−4σ, 4σ] achieves
this. We then calculate the transition probabilities P (Y |X1)
where Ỹ = X1 + Z, Z is supposed to be a Gaussian
random variable: Z ∼ N (0, 1), and Y is the discrete
random variable that corresponds to Ỹ . This problem is
computationally simpler as it is easy to calculate entropies
for discrete random variables. The optimization problem can
be solved using convex optimization algorithms. We search
for the joint distribution over X0×X1×X2 which minimizes
the expectation of the Witsenhausen cost function. This
approach is similar to the one used in [16], except for the
cost function and the information constraint which takes
into account the observation noise for Agent 2. It gives us
an approximation to the continuous case and valuable ideas
as we will explain now.

Results : In Fig 1, for low SNR (-10dB), the probability
is almost 1 for X1 = 0. This is logical as σ2

1 = 0.1 and thus
Agent 1 does not have too much of a choice. For medium
SNR (10 dB), we see the probabilities diverging slightly and
resembling a Gaussian distribution. The same distribution
is observed from SNR = 14 dB onwards as this leads to
minimum cost. This can be seen from the graph of expected
payoff vs SNR, Fig 2. At 40 dB, one sees a distribution with
higher variance but whether it can be a gaussian is tough to
speculate given the lack of points.
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Fig. 1. Optimal probability distribution of X1 at different maximum SNRs.
SNR=40 dB is the optimal distribution globally

The salient feature of this approach is that it does not
suppose any distribution for the variables a priori, and
thus finds the optimal distribution, which is not necessarily
Gaussian. However, it only searches for finite action
alphabets, thus not attaining optimality in the general
continuous case.

Gaussian Case : Guessing the optimal distributions to be
Gaussian, we find a feasible set of variances and covariances
which satisfy the information constraint calculated in Section
3. The feasible set is found by quantizing the search space
for all the parameters. The search space are as follows:
σ2
1

σ2
z
∈ (−10, 40)dB , σ2

2

σ2
z
∈ (−20, 13)dB , and ρ01, ρ12, ρ02 ∈

(0, (σ0σ1, σ1σ2, σ2σ0)). The other constraints of the opti-
mization problem are trivially satisfied since we are taking
all distributions to be probability distributions from the
beginning.

For a given set of variance and covariance values which
satisfy the information constraint, we find the expected pay-
off by evaluating the integral

∫
x∈{X0×X1×X2} f(x)w(x)dx.

We do so using Monte Carlo simulations by randomly
generating x0, x1 and x2 (100000 draws) which follow the
joint distribution f(x) and averaging over the cost for the
randomly generated triplets. We search over all the elements
of the feasible set exhaustively to find the optimal joint
Gaussian distribution which optimizes the Witsenhausen cost
function.

Results : In Fig 2, we see that as Eσ2
1

σ2
z

(which could be
looked at as Signal to Noise Ratio (SNR)) increases, the
expected cost reduces initially and then becomes constant.
This is because on the x-axis, we are considering the
maximum SNR available, and in both the cases, one sees
that after a certain SNR*, the payoff remains constant as the
agents choose strategies with SNR*.

We notice that the discrete strategy does better than the
continuous gaussian strategy and while this is not conclusive
proof, it leads us to suspect that discretisation does better
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Fig. 2. Scenario a; Plot of Expected payoff vs SNR for both the cases.
One sees that the discrete strategy quickly beats the all-gaussian strategy,
and achieves a much lower optimal cost

than continuous alphabets, which would be similar to the
original Witsenhausen problem where discrete Non-Linear
strategies were shown to outperform the best affine strategies.
Although this might just be an artefact of gaussian variables
being sub-optimal distributions for our problem.

For the Gaussian case, the optimal (σ∗, ρ∗) =
(σ∗1 , σ

∗
2 , ρ
∗
01, ρ

∗
02, ρ

∗
12) was found to be (4.6, 5.3, 4.8, 5.1, 4.9)

and the optimal expected cost E(w)∗ associated with it to
be 18.64. The information constraint is numerically found
to be saturated for the optimal point. Note that the optimal
correlations ρ∗ are not at their maximum values, given by
σiσj ≥ ρij . This is precisely the information constraint
which prevents the correlations to be at their maximum
values, thus penalising future communication by Agent 1
and preventing the agents to coordinate better.

Ideally one should be able to do more extensive sim-
ulations for the discrete case, so as to get a better idea
of the optimal distribution which could then be tackled
using an approach similar to the gaussian case. However,
the computational complexity prevents us from doing so
currently.

V. CONCLUSIONS

We generalized the information constraint for the scenarios
discussed in the article from a discrete case to a continuous
case, showing equivalence between implementable distri-
butions and reachable payoffs. This result is independent
of the cost function, but it depends on the strategies and
information structures. Thus we created a general framework
for tackling problems with similar information structures,
as well as showed a method of generalizing information
constraint found for discrete cases to continuous ones. We
also found an interesting link between scenario b and [8]
which needs to be further explored. Since Witsenhausen cost
function is an important area for research, we applied our
framework to optimize this cost function in our scenario.

While we could not provide simulations which solved the
general optimization problem described in the article, we did
gain some insights by simplifying the problem and reducing
the computational complexity.

Further possibilities of exploration include better simu-
lations with other types of distributions to see if they do
better than Gaussian distributions, quantizing the alphabets
with more points so as to approach continuity, as well
as proving our results for other type of strategies and
information structures. To compare a repeated version of
Witsenhausen counterexample, one would need performance
limit characterisation with a different Information structure,
similar to ones discussed in [17].
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