
HAL Id: hal-01272442
https://hal.science/hal-01272442

Submitted on 12 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Equivalence of two classical list scheduling algorithms
for dependent tasks with release dates and due dates on

parallel processors
Claire Hanen, Alix Munier-Kordon

To cite this version:
Claire Hanen, Alix Munier-Kordon. Equivalence of two classical list scheduling algorithms for de-
pendent tasks with release dates and due dates on parallel processors. Project Management and
Scheduling conference, Apr 2012, Leuwen, Belgium. �hal-01272442�

https://hal.science/hal-01272442
https://hal.archives-ouvertes.fr

Equivalence of two classical list scheduling algorithms
for dependent tasks with release dates and due dates

on parallel processors

Claire Hanen, Alix Munier-Kordon ,
LIP6, Université P. et M. Curie, France,
Claire.Hanen@lip6.fr, Alix.Munier@lip6.fr

December 28, 2011

Keywords: scheduling, release dates, due dates, list scheduling

1 Introduction

Scheduling problems with release and due dates have been considered for a long time,
either in their decision version (is there a schedule meeting all the constraints ?) or in
their optimization version, by minimizing the maximum lateness Lmax. Most of the deci-
sion problems are NP-complete once precedence and resource constraints are considered.
However, some particular instances have led to polynomial algorithms. Garey and John-
son (1977) solved polynomially P2|prec, pi = 1, ri, di|Lmax and the preemptive version
P2|prec, pmtn, ri, di|Lmax by using a particular list scheduling algorithm. This algorithm
was extended to get approximation algorithms for the Lmax criteria with various hypothe-
sis: parallel processors (Hanen and Zinder 2009), preemptive jobs (Hanen and Zinder 2005),
communication delays (Hanen and Zinder 2005), typed tasks systems, and unitary resource
constraints scheduling problems (Benabid and Hanen 2009, Benabid and Hanen 2010).

This class of scheduling problem was also studied in the context of parallel computing.
Processing times are unitary (i.e., pi = 1 for each task i) since each task corresponds to
a basic instruction. Precedence delays are introduced to model data transfers between
two task: each arc (i, j) is associated to a positive integer value `ij and corresponds to
the constraint ti + 1 + `ij ≤ tj where ti and tj are starting times of respectively i and
j. Leung et. al. (2001) proposed a new list scheduling algorithm that solves polynomially
various class of decision instances, among them P |int. order, pi = 1,monot. prec, ri, di|?
or P2|prec, pi = 1, ri, di, `ij ∈ {−1, 0}|? (the ? in the third field of the classical notation
corresponds here to the decision version of the scheduling problem). This algorithm was
extended to handle monotone interval orders with typed tasks systems (Dupont de Dinechin
2007) or communications delays and dedicated procesors (Munier-Kordon et. al. 2011).

Garey and Johnson (in short GJ) and Leung, Palem and Pnueli (in short LPP) algo-
rithms rely both on an iterative process that modifies the due dates until either a fixed
point is reached (due dates are then said to be consistent), or a contradiction is observed.
These modified due dates are then used as priorities to build a feasible schedule using a
list scheduling algorithm. The motivation of our study was to analyze the relationships
between these two iterative process. So we considered a basic scheduling problem where
both algorithms can be easily described, namely P |prec, pi = 1, ri, di|?. We proved that
although GJ and LPP algorithms are different, they rely on the same notion of consistency,

i.e, the modified due dates produced by one of the algorithm are consistent with respect
to the other algorithm. The consequence is that all the results obtained in the literature
for one of these algorithm are also valid for the other one for this basic problem.

2 Problem definition and notations

The scheduling problem tackled by this talk is the optimization problem P |prec, pi =
1, ri, di| Lmax and its corresponding decision problem P |prec, pi = 1, ri, di|? . The set of
tasks is noted T and n = |T |. With each task i are given a release time ri, a due date di,
and its unit processing time pi = 1.

The cyclic precedence graph is noted G = (T , E). We denote i → j if there is a path
from i to j in G. j ∈ Indep(i) if neither i → j nor j → i. A schedule defines for each
task i a completion time Ci. We assume without loss of generality that release times are
consistent with precedence constraints, i.e, if i→ j then ri < rj .

The question addressed by the decision problem is: “is there a schedule on m parallel
processors satisfying the precedence constraints such that ∀i ∈ T , ri < Ci ≤ di ? ”.
The optimization problem can be stated as follows : “construct a schedule on m parallel
processors satisfying the precedence constraints such that ∀i ∈ T , ri < Ci and minimizing
the maximum lateness Lmax = maxi∈T Ci − di”.

3 The GJ and the LPP consistency

GJ and LPP algorithms modify due dates until a fixed point D = (D1, · · · , Dn) ≤
(d1, . . . dn) is reached, expressing in both cases necessary conditions for the existence of a
feasible schedule. This fixed point rely on two notions of consistency of due dates described
in the following.

3.1 GJ consistency

Let consider, for each task i ∈ T and each tuple (s, d) such that ri ≤ s ≤ Di ≤ d, the
set

S(i, s, d) = {j ∈ T , j 6= i,Dj ≤ d, and (rj ≥ s or i→ j)}.

Obviously, all tasks from S(i, s, d) should end before d. Now, let suppose that task i
ends exactly at its due date Di. If Di = s, all tasks from S(i, s, d) have to be performed
in the time interval [s, d). Otherwise, Di > s and S(i, s, d) ∪ {i} have to be performed in
the time interval [s, d).

The notion of GJ consistency derives from this intuition. The due dates D1, · · · , Dn are
GJ-consistent if ∀i ∈ T , ri < Di and either |S(i, s, d)| < m(d− s) or |S(i, s, d)| = m(d− s)
and s = Di.

3.2 LPP consistency

Let i ∈ T and Ti = Indep(i) ∪ {j ∈ T , i → j}. Let also release and due dates vectors
r and d and a value t ∈ {ri + 1, · · · , di}. Then, Existencei(t, r, d) defined as follows is a
necessary condition for the existence of a feasible schedule such that i ends at time t.

Existencei(t, r, d): is there a schedule on m processors of Ti ∪ {i} considered as inde-
pendent tasks meeting release dates r′ and due dates d′ defined as follows:

1. d′i = t and ∀j ∈ Ti, d′j = dj

2. r′i = t− 1; ∀j ∈ Indep(i), r′j = rj

3. ∀j ∈ T with i→ j, r′j = max(rj , t+ 1).

Let us denote by BSi(r, d) the maximal integer t ≤ di for which the answer for
Existencei(t, r, d) is yes. The due dates D = (D1, · · · , Dn) are LPP-consistent if for
any task i ∈ T , BSi(r,D) = Di. Notice that list scheduling can be used to decide wether
Existencei(t, r, d) is satisfiable.

Lemma 1 The problem Existencei(t, rd) can be decided by fixing the starting time of i to
be t− 1 and then scheduling the tasks of Ti as if they were independent with their modified
due-dates and release times using a list scheduling algorithm based on the priorities of the
due-dates in increasing order.

4 Equivalence of due dates consistency and consequences

Our main theorem establishing the equivalence between GJ and LPP consistencies
is first presented. Its consequences are then detailed from both an algorithmic and a
theoretical point of view.

4.1 Equivalence between GJ and LPP consistencies

The next theorem establishes the equivalence between the two due dates consistencies
and constitutes the central result of our talk. The main idea of its proof is to show that
any vector D verifying one property also fulfills the other.

Theorem 1 Let consider an instance of the problem P |prec, pi = 1, ri, di|? and let a vector
Di ≤ di,∀i ∈ T . D is GJ-consistent if and only if D is LPP-consistent.

To prove this theorem, we proceed step by step, by first showing that any LPP-consistent
due dates are GJ-consistent.

Lemma 2 Let D be a vector of LPP-consistent due-dates. Then D is GJ-consistent.

Proof. Let us assume that D is not GJ-consistent. Then, there exists a task i, and two
integers s, d with ri ≤ s ≤ Di ≤ d, such that the set S(i, s, d) is two large. Assume first that
s < Di. then |S(i, s, d)| ≥ m(Di − s). Now, let us notice that S(i, s, d) ⊂ Ti. Moreover,
if we consider the modified due dates and release times for checking Existencei(Di, r,D)
(whose answer is yes), all successors j of i have a modified release time r′j = Di > s. Hence,
in the schedule build to check Existencei(Di, r,D), all tasks from S(i, s, d) are scheduled
in the interval [s, d]. Moreover, i 6∈ S(i, s, d) is also scheduled during [s, d]. As there are at
least m(d− s) + 1 such tasks, we get a contradiction.

Lemma 3 Let D be a vector of GJ-consistent due-dates. Then D is LPP-consistent.

Proof. Both GJ and LPP consistencies are sufficient to obtain optimization and ap-
proximation results. Thus, a simple outcome of Theorem 1 is that any result obtained for
one of these priority list is still valid for the other one. They are listed in the following.

4.2 Complexity of GJ and LPP list scheduling algorithms for solving a deci-
sion problem or minimizing the maximum lateness

From a complexity point of view, LPP algorithm is slightly better than GJ one. Indeed,
it computes consistent modified due dates in a time complexity O(n2lognα(n) +ne) where
e is the number of edges of G and α(n) functional inverse of the Ackermann function. GJ
algorithm computes consistent modified due dates in O(n3logn).

Concerning the optimization problem, several authors (Leung et. al. 2001, Hanen and
Zinder 2009) observed that a polynomial-time algorithm minimizing the maximum lateness
can be obtained using a due date modification and a list scheduling algorithm as follows:

step 1: Compute by binary search the minimum ∆ such that a set of consistent due dates
D can be computed from due dates d+ ∆;

step 2: Perform a list schedule of the graph G according to the priorities given by the due
dates D.

According to Theorem 1, GJ or LPP consistencies may be considered without influence on
the quality of the solution obtained. Now, LPP should be preferred for implementations
issues as noted before.

4.3 Theoretical consequences of Theorem 1

GJ consistency was exploited by several authors to obtain approximation algorithms
for minimizing the maximum lateness, using the scheme described previously. Theorem 2
was proved by Hanen and Zinder (2009) and is true for the two optimization algorithms
by Theorem 1.

Theorem 2 An upper-bound of the maximum lateness Lmax of the solution obtained using
a LPP or GJ consistency-based algorithm for the problem P |prec, pi = 1, ri, di| Lmax is

Lmax ≤ (2− 2

u(m)
)Lmax(σ?) + (1− 2

u(m)
) max

i∈N
di − (1− 2

u(m)
)

where Lmax(σ?) is an optimum schedule and u(m) = m if m is even, m+ 1 if m is odd.

Notice that as Lmax(σ?) may be null; the performance guarantee of an algorithm always
involves an additive term depending on the maximum due date.

On the other hand, LPP algorithm was considered to get polynomial-time algorithms
minimizing the maximum lateness or the makespan. Theorem 3 is a consequence of Leung
et. al. (2001) who proved that the LPP list scheduling algorithm can be used to solve
optimally various sub cases of P |prec, pi = 1, ri, di| Lmax and of Theorem 1.

Theorem 3 Scheduling problems P |pi = 1, interval−order, ri|Lmax, P |pi = 1, interval−
order, ri|Cmax, P1|pi = 1, prec, ri|Lmax, P |pi = 1, intree|Lmax and P |pi = 1, out −
tree, ri|Cmax are solved polynomially using a GJ or a LPP consistency-based list scheduling
algorithm.

5 Conclusion and further approach

We show that the structural equivalence between the two consistencies leads to a uni-
fication of the results proved for each of them. First consequences are a more efficient
approximation algorithm with the same worst case performance guarantee to minimize the
maximum lateness on parallel processors and some new optimality results for the GJ list
scheduling algorithm.

This equivalence should be further investigated for variants of the initial problem: prece-
dence delays, communication delays, typed tasks systems, and preemptive tasks. If, as we
conjecture, the equivalence can be proved also in such contexts, other optimality and ap-
proximation results will be derived for both algorithms.

We also hope that a careful investigation of the two algorithms may lead to a more
efficient algorithm taking the best of both.

One can also think that the due date modification algorithm could be used reversely to
modify release times on the reverse graph, and iterate until a fixed point is reached. The
question is then to evaluate if a better worst case performance ratio may be achieved.

References

Benabid A. and Hanen C., 2009, “Performance of Garey Johnson algorithm for pipelined
type tasks systems", International Transactions on Operational Research, Vol. 17, pp.
797-808.

Benabid A. and Hanen C., 2010, “Minimizing lateness for precedence graphs with constant
delays on dedicated pipelined processors", Electronic Notes in Discrete Mathematics,
Vol. 36, pp. 791-798.

Dupont de Dinechin B., 2007, “Scheduling Monotone Interval Orders on Typed Task Sys-
tems", PLANSIG 2007, 26th Worshop of the UK Planning and Scheduling Special
Interest Group, pp. 25–31.

Garey M. R., Johnson D. S, 1977, “Two-processor scheduling with start-time and dead-
lines", SIAM Journal on Computing, Vol. 6, pp. 416-426.

Hanen C. and Zinder Y., 2005, “Scheduling UET-UCT Task Systems under the Out-forest
precedence constraints", Multidisciplinary International Conference on Scheduling:
Theory and Applications, Vol. 2, pp. 445-452.

Hanen C. and Zinder Y., 2009, “The worst-case analysis of the Garey-Johnson Algorithm",
Journal of Scheduling, Vol. 12, pp. 389-400.

Leung, A., Palem, K. V. and Pnueli, A., 2001, “Scheduling time-constrained instructions
on pipelined processors", ACM Trans. Program. Lang. Syst., Vol. 23, pp. 73-103.

Munier-Kordon A., Fadi K., Dupont de Dinechin B. and Finta L., 2011, “Scheduling an
interval ordered precedence graph with communication delays and a limited number
of processors", submitted.

	Introduction
	Problem definition and notations
	The GJ and the LPP consistency
	GJ consistency
	LPP consistency

	Equivalence of due dates consistency and consequences
	Equivalence between GJ and LPP consistencies
	Complexity of GJ and LPP list scheduling algorithms for solving a decision problem or minimizing the maximum lateness
	Theoretical consequences of Theorem ??

	Conclusion and further approach

