
HAL Id: hal-01272126
https://hal.science/hal-01272126

Submitted on 11 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IntroClassJava: A Benchmark of 297 Small and Buggy
Java Programs

Thomas Durieux, Martin Monperrus

To cite this version:
Thomas Durieux, Martin Monperrus. IntroClassJava: A Benchmark of 297 Small and Buggy Java
Programs. [Research Report] hal-01272126, Universite Lille 1. 2016. �hal-01272126�

https://hal.science/hal-01272126
https://hal.archives-ouvertes.fr

IntroClassJava: A Benchmark of 297 Small and

Buggy Java Programs

Thomas Durieux, Martin Monperrus

February 11, 2016

To refer to this document: Thomas Durieux and Martin Monperrus.
“IntroClassJava: A Benchmark of 297 Small Java Programs for Automatic
Repair”, Technical Report #hal-01272126, University of Lille. 2016.

Abstract

Reproducible and comparative research requires well-designed and pub-
licly available benchmarks. We present IntroClassJava, a benchmark of
297 small Java programs, specified by Junit test cases, and usable by any
fault localization or repair system for Java. The dataset is based on the
IntroClass benchmark and is publicly available on Github.

1 Introduction

Context Reproducible and comparative research requires well-designed and
publicly available benchmarks. In the context of research in fault localization
and automatic repair, this means benchmarks of buggy programs [5], where
each buggy program comes with a specification of the bug, usually as test cases.
Le Goues and colleagues [3] have published IntroClass a benchmark of small
C programs written by students at the University of California Davis. The
programs are 5-20 lines, usually in a single method, and are specified by a set
of input-output pairs.

Objective We aim at providing a Java version of IntroClass, called Intro-
ClassJava. IntroClassJava would allow to run and compare repair systems built
for Java, such as Nopol [2].

Method We use source to source transformation for building IntroClass-
Java. There are two main transformations: the first one transforms the program
itself, and esp. takes care of correctly handling pointers and input parameters.
The second one transforms the input-output specification as standard JUnit
test cases. We discard the programs that cannot be transformed. The resulting
programs are standard Maven projects.

1

Result We obtain a benchmark of 297 Java programs usable by any fault
localization or repair systems for Java. The dataset is publicly available on
Github [1].

2 Methodology

We present how we build the IntroClassJava benchmark.

2.1 Overview

We take the IntroClass benchmark. We remove the duplicate programs, we
transform the C programs into Java using an ad hoc transformation. We check
that each resulting Java program has the same behavior as the original C pro-
gram, by executing them using the inputs provided with IntroClass. Also, we
transform the input output test cases of the C program into standard JUnit test
cases.

When the transformed program does not compile, or has an observable be-
havior that is different from the original one (according to the provided input-
output specification), we discard it. That is the reason for which IntroClassJava
contains less programs than IntroClass.

2.2 Translating Pointers in Java

Many programs of IntroClass use pointer manipulation on primitive types, such
as *i or &i if i is an integer. We use the following transformation to emulate this
behavior in Java. The key idea of the transformation is to encapsulate every
primitive value into a class. For instance, for integer this results in:

class IntObj {
int value ; IntObj
IntObj (int i) { value = i ;}
. . .

}

Then all variable declarations, assignments and expressions are transformed as
follows.

C code Java code
int i = 0 IntObj i = IntObj(0)
k = i; k.value = i.value
int* j = &i; IntObj j = i

We use this schema to handle C types int, float, long, double and char (using
respectively IntObj, FloatObj, LongObj, DoublObj, and CharObj).

2

Listing 1: Handling of standard input and output
class Median {

Scanner scanner ; // for handling inputs both in t e s t and command l i n e
St r ing output = ”” ; // for handling the output

stat ic void main (St r ing [] a rgs) throws Exception {
Median mainClass = new Median () ;
S t r ing output ;
i f (args . l ength > 0) {

mainClass . scanner = new java . u t i l . Scanner (args [0]) ;
} else {

// standard input
mainClass . scanner = new java . u t i l . Scanner (System . in) ;

}
mainClass . exec () ;
System . out . p r i n t l n (mainClass . output) ;

}
void exec () throws Exception {

// the program code
}

}

2.3 Testability

In IntroClass, the program are tested using standard command line arguments.
For instance, to test a program computing the median of three numbers, one
calls $ median 4 0 17. However, we aim at achieving standard Java testability
using JUnit test cases. Consequently, we transforms the programs and test cases
as follows.

2.3.1 Backward-compatible Main Method

We aim at supporting both command line arguments and JUnit invocations.
This is achieved as follows. The main method of the Java programs takes either
one argument or no argument. In the former case, it is meant to be used in
a test case, in the latter case, it reads the arguments from the standard input
as a Java program. We introduce an “exec” method for each program that is
responsible of doing the actual computation. The “exec” method is used in test
cases directly and in the main method when invoked in command line. Listing
2 shows an example main method.

2.3.2 Test Cases

In IntroClass, the specification of the expected behavior is based on input-output
pairs, where each input and each output is in a separate file. For instance,
file 1.in contains the input of the first input/output pair and fail 1.out the
expected output.

We write a test case generator that reads those files and create Junit test
classes accordingly. Consequently, there is one Junit test method per input-
output pair. Each test case ends with the assertion corresponding to checking
the actual output against the expected one. An example test case is shown in

3

Listing 2: Example of generated test case
class WhiteBoxTest {

@Test (timeout = 1000)
// corresponds to f i l e ”whitebox /1. in” of IntroClass
public void t e s t 1 () throws Exception {

Smal l e s t mainClass = new Smal l e s t () ;
S t r ing expected =

”Please ente r 4 numbers separated by spaces > 0 i s the sma l l e s t ” ;
mainClass . scanner = new java . u t i l . Scanner (”0 0 0 0”) ;
mainClass . exec () ;
S t r ing out = mainClass . output . r ep l a c e (”\n” , ” ”) . tr im () ;
a s s e r tEqua l s (expected . r ep l a c e (” ” , ””) , out . r ep l a c e (” ” , ””)) ;

}
// . . other t e s t

}

Listing 2.
Note that the original output specification of IntroClass contains the com-

mand line invitations, they are kept as is in the generated test cases.
IntroClass contains two kinds of tests: blackbox and whitebox. Blackbox

are manually written and whitebox ones are generated ones with symbolic exe-
cution with the golden implementation as oracle. Consequently, IntroClassJava
contains two test classes: WhiteBoxTest and BlackBoxTest.

2.4 Unique Naming

In order to be able to analyze and repair all programs of the benchmark in
the same virtual machine, we give each program and each test class an unique
name based on the original identifier of IntroClass. It follows the convention
subject, user, revision. For instance, class smallest 5a568359 004 is a program
for problem “smallest”, written by user 5a568359, for which it was the fourth
revision. All programs are in package “introclassJava”.

2.5 Implementation

The transformations are implemented in Python. To analyze C code, we trans-
form it into XML suing srcML [4]. srcML encodes the abstract syntax trees of
programs as XML. We then load the resulting XML using a DOM library and
generate the Java file using standard string manipulation. The printf format-
ting instructions are transformed to their Java counterpart which are mostly
compatible (e.g. “String.format (”%d is the smallest”, a.value)”). All programs
of IntroClassJava are regular Maven projects.

3 Results

Final benchmark After applying the transformation described in Section 2, we
obtain a dataset of 297 Java programs, all specified with JUnit test cases, with
at least one failing test cases. Table 1 gives the main statistics of this dataset.

4

Group # of buggy programs

checksum 11 programs
digits 75 programs
grade 89 programs
median 57 programs
smallest 52 programs
syllables 13 programs
Total 297 programs

only black box failing tests 33 programs
only white box failing tests 39 programs
both white box and black box 225 programs
Total 297 programs

Table 1: Main descriptive statistics of the IntroClassJava benchmark

Project # wb ok # wb ko # bb ok # bb ko # both ko

checksum 0 11 4 7 7
digits 15 60 24 51 36
grade 1 88 0 89 88
median 9 48 6 51 42
smallest 7 45 5 47 40
syllables 1 12 0 13 12
Total 33 264 39 258 225

Table 2: Full breakdown by project

It first indicates the breakdown according to the subject program. For instance,
in “checksum”, there are 11 programs that are failing. It then indicates the
breakdown according to the failure type. For instance, there are 33 programs
that which only white tests are failing. Table 2 gives the full breakdown by
project where ”wb” means whitebox, ”bb” means blackbox, ”ko” means failing
and ”ok” means passing.
Comparison with IntroClass In IntroClass, there are 450 failing programs,
it means that the automatic transformation has failed for 450 − 297 = 153
programs. Either the resulting program was not syntactically correct Java and
consequently does not compile, or the transformation has changed the execution
behavior. Interestingly, for some programs, the transformation itself repaired
the bug (the C program fails on some inputs, but the Java version is correct).
This is mostly due to the different behavior of the non-initialized variable in
C versus Java. In C, the non-initialized local variables have the value of the
allocated memory space and in Java, all primitive types have a default value
(e.g. 0 for numbers).

5

4 Conclusion

We have presented how we have set up IntroClassJava, a benchmark of 297
buggy Java programs. It results from the automated transformation from C to
Java of the IntroClass benchmark. This dataset can be used for future research
on fault localization and automatic repair on Java programs. The benchmark
is publicly available on Github [1].

References

[1] The github repository of introclassjava. https://github.com/

Spirals-Team/IntroClassJava, 2015.

[2] F. DeMarco, J. Xuan, D. L. Berre, and M. Monperrus. Automatic repair of
buggy if conditions and missing preconditions with smt. In Proceedings of
the 6th International Workshop on Constraints in Software Testing, Verifi-
cation, and Analysis (CSTVA 2014), 2014.

[3] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu, S. Forrest,
and W. Weimer. The manybugs and introclass benchmarks for automated
repair of c programs. IEEE Transactions on Software Engineering (TSE),
in press, 2015.

[4] J. I. Maletic, M. L. Collard, and A. Marcus. Source code files as structured
documents. In Proceedings of the 10th International Workshop on Program
Comprehension (IWPC), 2002.

[5] M. Monperrus. A critical review of ”automatic patch generation learned
from human-written patches”: Essay on the problem statement and the
evaluation of automatic software repair. In Proceedings of the International
Conference on Software Engineering, pages 234–242, 2014.

6

https://github.com/Spirals-Team/IntroClassJava
https://github.com/Spirals-Team/IntroClassJava

	Introduction
	Methodology
	Overview
	Translating Pointers in Java
	Testability
	Backward-compatible Main Method
	Test Cases

	Unique Naming
	Implementation

	Results
	Conclusion

