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DESCRIPTION OF THE LACK OF COMPACTNESS IN ORLICZ

SPACES AND APPLICATIONS

INES BEN AYED AND MOHAMED KHALIL ZGHAL

Abstract. In this paper, we investigate the lack of compactness of the Sobolev em-
bedding of H1(R2) into the Orlicz space Lφp(R2) associated to the function φp defined

by φp(s) := es2 −
p−1∑
k=0

s2k

k!
· We also undertake the study of a nonlinear wave equation

with exponential growth where the Orlicz norm ‖.‖Lφp plays a crucial role. This study
includes issues of global existence, scattering and qualitative study.

1. Introduction

1.1. Critical 2D Sobolev embedding. It is well known (see for instance [7]) that
H1(R2) is continuously embedded in all Lebesgue spaces Lq(R2) for 2 ≤ q < ∞, but
not in L∞(R2). It is also known that (for more details, we refer the reader to [21])

H1(R2) ↪→ Lφp(R2), ∀p ∈ N∗, (1)

where Lφp(R2) denotes the Orlicz space associated to the function

φp(s) = es2 −
p−1∑
k=0

s2k

k!
· (2)

The embedding (1) is a direct consequence of the following sharp Trudinger-Moser type
inequalities (see [1, 20, 22, 26]):

Proposition 1.1.

sup
‖u‖H1(R2)≤1

∫
R2

(
e4π|u(x)|2 − 1

)
dx := κ <∞, (3)

and states as follows:

‖u‖Lφp (R2) ≤
1√
4π
‖u‖H1(R2), (4)

where the norm ‖.‖Lφp is given by:

‖u‖Lφp (R2) = inf

{
λ > 0,

∫
R2

φp

(
|u(x)|
λ

)
dx ≤ κ

}
.

Note that (4) follows from (3) and the following obvious inequality

‖u‖Lφp (R2) ≤ ‖u‖Lφ1 (R2) .

For our purpose, we shall resort to the following Trudinger-Moser inequality, the proof of
which is postponed in the appendix.
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Proposition 1.2. Let α ∈ [0, 4π[ and p an integer larger than 1. There is a constant
c(α, p) such that ∫

R2

(
eα|u(x)|2 −

p−1∑
k=0

αk|u(x)|2k

k!

)
dx ≤ c(α, p)‖u‖2p

L2p(R2)
, (5)

for all u ∈ H1(R2) satisfying ‖∇u‖L2(R2) ≤ 1.

1.2. Development on the lack of compactness of Sobolev embedding in the
Orlicz space in the case p = 1. In [3], [4] and [5], H. Bahouri, M. Majdoub and N.
Masmoudi characterized the lack of compactness of H1(R2) into the Orlicz space Lφ1(R2).
To state their result in a clear way, let us recall some definitions.

Definition 1.3. We shall designate by a scale any sequence (αn) of positive real numbers
going to infinity, a core any sequence (xn) of points in R2 and a profile any function ψ
belonging to the set

P :=
{
ψ ∈ L2(R, e−2sds); ψ′ ∈ L2(R), ψ|]−∞,0] = 0

}
.

Given two scales (αn), (α̃n), two cores (xn), (x̃n) and tow profiles ψ, ψ̃, we say that the

triplets
(
(αn), (xn), ψ

)
and

(
(α̃n), (x̃n), ψ̃

)
are orthogonal if

either
∣∣∣ log (α̃n/αn)

∣∣∣→∞,
or α̃n = αn and

− log |xn − x̃n|
αn

−→ a ≥ 0 with ψ or ψ̃ null for s < a .

Remarks 1.4.

• The profiles belong to the Hölder space C
1
2 . Indeed, for any profile ψ and real

numbers s and t, we have by Cauchy-Schwarz inequality

|ψ(s)− ψ(t)| =
∣∣∣∣∫ t

s
ψ′(τ) dτ

∣∣∣∣ ≤ ‖ψ′‖L2(R)|s− t|
1
2 .

• Note also that (see [4])

ψ(s)√
s
→ 0 as s→ 0 and as s→∞. (6)

The asymptotically orthogonal decomposition derived in [4] is formulated in the follow-
ing terms:

Theorem 1.5. Let (un) be a bounded sequence in H1(R2) such that

un ⇀ 0, (7)

lim sup
n→∞

‖un‖Lφ1 = A0 > 0 and (8)

lim
R→∞

lim sup
n→∞

‖un‖Lφ1 (|x|>R) = 0. (9)

Then, there exist a sequence of scales (α
(j)
n ), a sequence of cores (x

(j)
n ) and a sequence of

profiles (ψ(j)) such that the triplets (α
(j)
n , x

(j)
n , ψ(j)) are pairwise orthogonal and, up to a
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subsequence extraction, we have for all ` ≥ 1,

un(x) =
∑̀
j=1

√
α

(j)
n

2π
ψ(j)

(
− log |x− x(j)

n |
α

(j)
n

)
+ r(`)

n (x), lim sup
n→∞

‖r(`)
n ‖Lφ1

`→∞−→ 0. (10)

Moreover, we have the following stability estimates

‖∇un‖2L2 =
∑̀
j=1

‖ψ(j)′‖2L2 + ‖∇r(`)
n ‖2L2 + ◦(1), n→∞. (11)

Remarks 1.6.

• It will be useful later on to point out that for any q ≥ 2, we have

‖gn‖Lq
n→∞−→ 0, (12)

where gn is the elementary concentration defined by

gn(x) :=

√
αn
2π

ψ

(
− log |x− xn|

αn

)
. (13)

Since the Lebesgue measure is invariant under translations, we have

‖gn‖qLq = (2π)−
q
2 (αn)

q
2

∫
R2

∣∣∣∣ψ(− log |x|
αn

)∣∣∣∣qdx.
Performing the change of variable s = − log |x|

αn
yields

‖gn‖qLq = (2π)1− q
2 (αn)

q
2

+1

∫ ∞
0

∣∣ψ(s)
∣∣qe−2αns ds.

Fix ε > 0. Then in view of (6), there exist two real numbers s0 and S0 such that
0 < s0 < S0 and

|ψ(s)| ≤ ε
√
s, ∀ s ∈ [0, s0] ∪ [S0,∞[.

This implies, by the change of variable u = αns, that

(αn)
q
2

+1

∫ s0

0
|ψ(s)|q e−2αns ds ≤ εq

∫ αns0

0
u
q
2 e−2u du

≤ Cq ε
q.

In the same way, we obtain

(αn)
q
2

+1

∫ ∞
S0

|ψ(s)|q e−2αns ds ≤ Cq ε
q.

Finally, taking advantage of the continuity of ψ, we deduce that

(αn)
q
2

+1

∫ S0

s0

|ψ(s)|q e−2αns ds . (αn)
q
2

+1

∫ S0

s0

e−2αns ds

. (αn)
q
2
(
e−2αns0 − e−2αnS0

) n→∞−→ 0,

which ends the proof of the assertion (12).
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• Setting

g(j)
n (x) :=

√
α

(j)
n

2π
ψ(j)

(
− log |x− x(j)

n |
α

(j)
n

)
(14)

the elementary concentration involved in Decomposition (10), we recall that it was
proved in [5] that

‖g(j)
n ‖Lφ1

n→∞−→ 1√
4π

max
s>0

|ψ(j)(s)|√
s

and ∥∥∑̀
j=1

g(j)
n

∥∥
Lφ1

n→∞−→ sup
1≤j≤`

(
lim
n→∞

‖g(j)
n ‖Lφ1

)
, (15)

in the case when the scales (α
(j)
n )1≤j≤` are pairwise orthogonal. Note that Property

(15) does not necessarily remain true in the case when we have the same scales

and the pairwise orthogonality of the couples
(
(x

(j)
n ), ψ(j)

)
(see Lemma 3.6 in [4]).

1.3. Study of the lack of compactness of Sobolev embedding in the Orlicz space
in the case p > 1. Our first goal in this paper is to describe the lack of compactness of
the Sobolev embedding (1) for p > 1. Our result states as follows:

Theorem 1.7. Let p > 1 be an integer and (un) be a bounded sequence in H1(R2) such
that

un ⇀ 0, (16)

lim sup
n→∞

‖un‖Lφp = A0 > 0 and (17)

lim
R→∞

lim sup
n→∞

‖un‖Lφp (|x|>R) = 0. (18)

Then, there exist a sequence of scales (α
(j)
n ), a sequence of cores (x

(j)
n ) and a sequence of

profiles (ψ(j)) such that the triplets (α
(j)
n , x

(j)
n , ψ(j)) are pairwise orthogonal in the sense of

Definition 1.3 and, up to a subsequence extraction, we have for all ` ≥ 1,

un(x) =
∑̀
j=1

√
α

(j)
n

2π
ψ(j)

(
− log |x− x(j)

n |
α

(j)
n

)
+ r(`)

n (x), (19)

with lim sup
n→∞

‖r(`)
n ‖Lφp

`→∞−→ 0. Moreover, we have the following stability estimates

‖∇un‖2L2 =
∑̀
j=1

‖ψ(j)′‖2L2 + ‖∇r(`)
n ‖2L2 + ◦(1), n→∞. (20)

Remarks 1.8.

• Arguing as in [5], we can easily prove that

‖gn‖Lφp
n→∞−→ 1√

4π
max
s>0

|ψ(s)|√
s
, (21)

where

gn(x) :=

√
αn
2π

ψ

(
− log |x− xn|

αn

)
·
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Indeed setting L = lim inf
n→∞

‖gn‖Lφp , we have for fixed ε > 0 and n sufficiently large

(up to subsequence extraction)∫
R2

(
e

∣∣ gn(x+xn)
L+ε

∣∣2
−

p−1∑
k=0

|gn(x+ xn)|2k

(L+ ε)2kk!

)
dx ≤ κ.

Therefore, ∫
R2

(
e

∣∣ gn(x+xn)
L+ε

∣∣2
− 1
)
dx . κ+

p−1∑
k=1

‖gn‖2kL2k . (22)

Since∫
R2

(
e

∣∣ gn(x+xn)
L+ε

∣∣2
− 1
)
dx = 2π

∫ +∞

0
αne

2αns

[
1

4π(L+ε)2

(
ψ(s)√
s

)2
−1

]
ds− π,

we obtain in view of (12) and (22) that∫ +∞

0
αne

2αns

[
1

4π(L+ε)2

(
ψ(s)√
s

)2
−1

]
ds ≤ C,

for some absolute constant C and for n large enough. Using the fact that ψ is a
continuous function, we deduce that

L+ ε ≥ 1√
4π

max
s>0

|ψ(s)|√
s
,

which ensures that

L ≥ 1√
4π

max
s>0

|ψ(s)|√
s
·

To end the proof of (21), it suffices to establish that for any δ > 0∫
R2

(
e

∣∣ gn(x+xn)
λ

∣∣2
−

p−1∑
k=0

|gn(x+ xn)|2k

(λ)2kk!

)
dx

n→∞−→ 0,

where λ = 1+δ√
4π

max
s>0

|ψ(s)|√
s
· Since

∫
R2

(
e

∣∣ gn(x+xn)
λ

∣∣2
−

p−1∑
k=0

|gn(x+ xn)|2k

(λ)2kk!

)
dx ≤

∫
R2

(
e

∣∣ gn(x+xn)
λ

∣∣2
− 1
)
dx,

the result derives immediately from Proposition 1.15 in [5], which achieves the proof
of the result.
• Applying the same lines of reasoning as in the proof of Proposition 1.19 in [4], we

obtain the following result:

Proposition 1.9. Let
(
(α

(j)
n ), (x

(j)
n ), ψ(j)

)
1≤j≤` be a family of triplets of scales,

cores and profiles such that the scales are pairwise orthogonal. Then for any integer
p larger than 1, we have∥∥∥∑̀

j=1

g(j)
n

∥∥∥
Lφp

n→∞−→ sup
1≤j≤`

(
lim
n→∞

∥∥g(j)
n

∥∥
Lφp

)
,

where the functions g
(j)
n are defined by (14).



6 INES BEN AYED AND MOHAMED KHALIL ZGHAL

As we will see in Section 2, it turns out that the heart of the matter in the proof of
Theorem 1.7 is reduced to the following result concerning the radial case:

Theorem 1.10. Let p be an integer strictly larger than 1 and (un) be a bounded sequence
in H1

rad(R2) such that
un ⇀ 0 and (23)

lim sup
n→∞

‖un‖Lφp = A0 > 0. (24)

Then, there exist a sequence of pairwise orthogonal scales (α
(j)
n ) and a sequence of profiles

(ψ(j)) such that up to a subsequence extraction, we have for all ` ≥ 1,

un(x) =
∑̀
j=1

√
α

(j)
n

2π
ψ(j)

(
− log |x|
α

(j)
n

)
+ r(`)

n (x), lim sup
n→∞

‖r(`)
n ‖Lφp

`→∞−→ 0. (25)

Moreover, we have the following stability estimates

‖∇un‖2L2 =
∑̀
j=1

‖ψ(j)′‖2L2 + ‖∇r(`)
n ‖2L2 + ◦(1), n→∞.

Remarks 1.11.

• Compared with the analogous result concerning the Sobolev embedding of H1
rad(R2)into

Lφ1 established in [5], the hypothesis of compactness at infinity is not required.
This is justified by the fact that H1

rad(R2) is compactly embedded in Lq(R2) for any
2 < q <∞ which implies that

lim
n→∞

‖un‖Lq(R2) = 0, ∀ 2 < q <∞. (26)

• In view of Proposition 1.9, Theorem 1.10 yields to

‖un‖Lφp → sup
j≥1

(
lim
n→∞

‖g(j)
n ‖Lφp

)
,

which implies that the first profile in Decomposition (25) can be chosen such that
up to extraction

A0 := lim sup
n→∞

‖un‖Lφp = lim
n→∞

∥∥∥∥∥∥
√
α

(1)
n

2π
ψ(1)

(
− log |x|

α
(1)
n

)∥∥∥∥∥∥
Lφp

. (27)

Note that the description of the lack of compactness in other critical Sobolev embeddings
was achieved in [8, 10, 14] and has been at the origin of several prospectus. Among others,
one can mention [2, 6, 9, 11, 19].

1.4. Layout of the paper. Our paper is organized as follows: in Section 2, we establish
the algorithmic construction of the decomposition stated in Theorem 1.7. Then, we study
in Section 3 a nonlinear two-dimensional wave equation with the exponential nonlinearity
uφp(

√
4πu). Firstly, we prove the global well-posedness and the scattering in the energy

space both in the subcritical and critical cases, and secondly we compare the evolution of
this equation with the evolution of the solutions of the free Klein-Gordon equation in the
same space.
We mention that C will be used to denote a constant which may vary from line to line.
We also use A . B to denote an estimate of the form A ≤ CB for some absolute constant
C and A ≈ B if A . B and B . A. For simplicity, we shall also still denote by (un) any
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subsequence of (un) and designate by ◦(1) any sequence which tends to 0 as n goes to
infinity.

2. Proof of Theorem 1.7

2.1. Strategy of the proof. The proof of Theorem 1.7 uses in a crucial way capacity
arguments and is done in three steps: in the first step, we begin by the study of u∗n the
symmetric decreasing rearrangement of un. This led us to establish Theorem 1.10. In the
second step, by a technical process developed in [4], we reduce ourselves to one scale and

extract the first core (x
(1)
n ) and the first profile ψ(1) which enables us to extract the first

element

√
α

(1)
n

2π ψ(1)

(
− log |x−x(1)

n |
α

(j)
n

)
. The third step is devoted to the study of the remainder

term. If the limit of its Orlicz norm is null we stop the process. If not, we prove that this
remainder term satisfies the same properties as the sequence we start with which allows

us to extract a second elementary concentration concentrated around a second core (x
(2)
n ).

Thereafter, we establish the property of orthogonality between the first two elementary
concentrations and finally we prove that this process converges.

2.2. Proof of Theorem 1.10. The main ingredient in the proof of Theorem 1.10 consists
to extract a scale and a profile ψ such that

‖ψ′‖L2(R) ≥ CA0, (28)

where C is a universal constant. To go to this end, let us for a bounded sequence (un) in
H1
rad(R2) satisfying the assumptions (23) and (24), set vn(s) = un(e−s). Combining (26)

with the following well-known radial estimate:

|u(r)| ≤ C

r
1
p+1

‖u‖
p
p+1

L2p ‖∇u‖
1
p+1

L2

where r = |x|, we infer that

lim
n→∞

‖vn‖L∞(]−∞,M ]) = 0, ∀M ∈ R. (29)

This gives rise to the following result:

Proposition 2.1. For any δ > 0, we have

sup
s≥0

(∣∣∣ vn(s)

A0 − δ

∣∣∣2 − s)→∞, n→∞. (30)

Proof. We proceed by contradiction. If not, there exists δ > 0 such that, up to a subse-
quence extraction

sup
s≥0,n∈N

(∣∣∣ vn(s)

A0 − δ

∣∣∣2 − s) ≤ C <∞. (31)

On the one hand, thanks to (29) and (31), we get by virtue of Lebesgue theorem∫
|x|<1

(
e
|un(x)
A0−δ

|2 −
p−1∑
k=0

|un(x)|2k

(A0 − δ)2kk!

)
dx ≤

∫
|x|<1

(
e
|un(x)
A0−δ

|2 − 1

)
dx

≤ 2π

∫ ∞
0

(
e
| vn(s)
A0−δ

|2 − 1

)
e−2s ds

n→∞−→ 0.
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On the other hand, using Property (29) and the simple fact that for any positive real
number M , there exists a finite constant CM,p such that

sup
|t|≤M

(
et

2 −
∑p−1

k=0
t2k

k!

t2p

)
< CM,p,

we deduce in view of (26) that∫
|x|≥1

(
e
|un(x)
A0−δ

|2 −
p−1∑
k=0

|un(x)|2k

(A0 − δ)2kk!

)
dx . ‖un‖2pL2p → 0 .

Consequently,

lim sup
n→∞

‖un‖Lφp ≤ A0 − δ,

which is in contradiction with Hypothesis (24). �

An immediate consequence of the previous proposition is the following corollary whose
proof is identical to the proof of Corollaries 2.4 and 2.5 in [5].

Corollary 2.2. Under the above notations, there exists a sequence (α
(1)
n ) in R+ tending

to infinity such that

4
∣∣∣vn(α

(1)
n )

A0

∣∣∣2 − α(1)
n

n→∞−→ ∞ (32)

and for n sufficiently large, there exists a positive constant C such that

A0

2

√
α

(1)
n ≤ |vn(α(1)

n )| ≤ C
√
α

(1)
n + ◦(1). (33)

Now, setting

ψn(y) =

√
2π

α
(1)
n

vn(α(1)
n y),

we obtain along the same lines as in Lemma 2.6 in [5] the following result:

Lemma 2.3. Under notations of Corollary 2.2, there exists a profile ψ(1) ∈ P such that,
up to a subsequence extraction

ψ′n ⇀ (ψ(1))′ in L2(R) and ‖(ψ(1))′‖L2 ≥
√
π

2
A0.

To achieve the proof of Theorem 1.10, let us consider the remainder term

r(1)
n (x) = un(x)− g(1)

n (x), (34)

where

g(1)
n (x) =

√
α

(1)
n

2π
ψ(1)

(
− log |x|
α

(1)
n

)
.

By straightforward computations, we can easily prove that (r
(1)
n ) is bounded in H1

rad(R2)
and satisfies the hypothesis (23) together with the following property:

lim
n→∞

‖∇r(1)
n ‖2L2(R2) = lim

n→∞
‖∇un‖2L2(R2) −

∥∥(ψ(1))′
∥∥2

L2(R)
. (35)
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Let us now define A1 = lim sup
n→∞

‖r(1)
n ‖Lφp . If A1 = 0, we stop the process. If not, arguing

as above, we prove that there exist a scale (α
(2)
n ) satisfying the statement of Corollary 2.2

with A1 instead of A0 and a profile ψ(2) in P such that

r(1)
n (x) =

√
α

(2)
n

2π
ψ(2)

(
− log |x|
α

(2)
n

)
+ r(2)

n (x),

with ‖(ψ(2))′‖L2 ≥
√

π
2A1 and

lim
n→∞

‖∇r(2)
n ‖2L2(R2) = lim

n→∞
‖∇r(1)

n ‖2L2(R2) −
∥∥(ψ(2))′

∥∥2

L2(R)
.

Moreover, as in [5] we can show that (α
(1)
n ) and (α

(2)
n ) are orthogonal. Finally, iterating

the process, we get at step `

un(x) =
∑̀
j=1

√
α

(j)
n

2π
ψ(j)

(
− log |x|
α

(j)
n

)
+ r(`)

n (x),

with

lim sup
n→∞

‖r(`)
n ‖2H1 . 1−A2

0 −A2
1 − · · · −A2

`−1 ,

which implies that A` → 0 as `→∞ and ends the proof of the theorem.

2.3. Extraction of the cores and profiles. This step is performed as the proof of
Theorem 1.16 in [4]. We sketch it here briefly for the convenience of the reader. Let
u∗n be the symmetric decreasing rearrangement of un. Since u∗n ∈ H1

rad(R2) and satisfies

the assumptions of Theorem 1.10, we infer that there exist a sequence (α
(j)
n ) of pairwise

orthogonal scales and a sequence of profiles (ϕ(j)) such that, up to subsequence extraction,

u∗n(x) =
∑̀
j=1

√
α

(j)
n

2π
ϕ(j)

(
− log |x|
α

(j)
n

)
+ r(`)

n (x), lim sup
n→∞

‖r(`)
n ‖Lφp

`→∞−→ 0.

Besides, in view of (27), we can assume that

A0 = lim
n→∞

∥∥∥∥∥∥
√
α

(1)
n

2π
ϕ(1)

(
− log |x|

α
(1)
n

)∥∥∥∥∥∥
LΦp

.

Now to extract the cores and profiles, we shall firstly reduce to the case of one scale
according to Section 2.3 in [4], where a suitable truncation of un was introduced. Then
assuming that

u∗n(x) =

√
α

(1)
n

2π
ϕ(1)

(
− log |x|
α

(1)
n

)
,

we apply the strategy developed in Section 2.4 in [4] to extract the cores and the profiles.
This approach is based on capacity arguments: to carry out the extraction process of
mass concentrations, we prove by contradiction that if the mass responsible for the lack
of compactness of the Sobolev embedding in the Orlicz space is scattered, then the energy
used would exceed that of the starting sequence. This main point can be formulated on
the following terms:
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Lemma 2.4 ( Lemma 2.5 in [4]). There exist δ0 > 0 and N1 ∈ N such that for any n ≥ N1

there exists xn such that

|En ∩B(xn, e
−bα

(1)
n )|

|En|
≥ δ0A

2
0, (36)

where En := {x ∈ R2; |un(x)| ≥
√

2α
(1)
n (1 − ε0

10)A0} with 0 < ε0 < 1
2 , B(xn, e

−bα
(1)
n )

designates the ball of center xn and radius e−bα
(1)
n with b = 1 − 2ε0 and |.| denotes the

Lebesgue measure.

Once extracting the first core (x
(1)
n ) making use of the previous lemma, we focus on the

extraction of the first profile. For that purpose, we consider the sequence

ψn(y, θ) =

√
2π

α
(1)
n

vn(α(1)
n y, θ),

where vn(s, θ) = (τ
x

(1)
n
un)(e−s cos θ, e−s sin θ) and (x

(1)
n ) satisfies

|En ∩B(xn, e
−(1−2ε0)α

(1)
n |

|En|
≥ δ0A

2
0.

Taking advantage of the invariance of Lebesgue measure under translations, we deduce
that

‖∇un‖2L2 =
1

2π

∫
R

∫ 2π

0
|∂yψn(y, θ)|2dydθ

+
α

(1)
n

2π

∫
R

∫ 2π

0
|∂θψn(y, θ)|2dydθ.

Since the scale α
(1)
n tends to infinity and the sequence (un) is bounded in H1(R2), this

implies that up to a subsequence extraction ∂θψn →
n→∞

0 and ∂yψn →
n→∞

g in L2(R×[0, 2π]),

where g only depends on the variable y. Thus introducing the function

ψ(1)(y) =

∫ y

0
g(τ)dτ,

we obtain along the same lines as in Proposition 2.8 in [4] the following result:

Proposition 2.5. The function ψ(1) belongs to the set of profiles P. Besides for any
y ∈ R, we have

1

2π

∫ 2π

0
ψn(y, θ) dθ → ψ(1)(y), (37)

as n tends to infinity and there exists an absolute constant C such that

‖ψ(1)′‖L2 ≥ C A0. (38)

2.4. End of the proof. To achieve the proof of the theorem, we argue exactly as in
Section 2.5 in [4] by iterating the process exposed in the previous section. For that
purpose, we set

r(1)
n (x) = un(x)− g(1)

n (x),

where

g(1)
n (x) =

√
α

(1)
n

2π
ψ(1)

(
− log |x− x(1)

n |
α

(1)
n

)
.
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One can easily check that the sequence (r
(1)
n ) weakly converges to 0 in H1(R2). Moreover,

since ψ
(1)
|]−∞,0] = 0, we have for any R ≥ 1

‖r(1)
n ‖LΦp (|x−x(1)

n |≥R)
= ‖un‖LΦp (|x−x(1)

n |≥R)
. (39)

But by assumption, the sequence (un) is compact at infinity in the Orlicz space LΦp .

Thus the core (x
(1)
n ) is bounded in R2, which ensures in view of (39) that (r

(1)
n ) satisfies

the hypothesis of compactness at infinity (18). Finally, taking advantage of the weak

convergence of (∂yψn) to ψ(1)′ in L2(y, θ) as n goes to infinity, we get

lim
n→∞

‖∇r(1)
n ‖2L2 = lim

n→∞
‖∇u(1)

n ‖2L2 − ‖ψ(1)′‖2L2 .

Now, let us define A1 := lim sup
n→∞

‖r(1)
n ‖LΦp . If A1 = 0, we stop the process. If not, knowing

that (r
(1)
n ) verifies the assumptions of Theorem 1.7, we apply the above reasoning, which

gives rise to the existence of a scale (α
(2)
n ), a core (x

(2)
n ) satisfying the statement of Lemma

2.4 with A1 instead of A0 and a profile ψ(2) in P such that

r(1)
n (x) =

√
α

(2)
n

2π
ψ(2)

(
− log |x− x(2)

n |
α

(2)
n

)
+ r(2)

n (x),

with ‖ψ(2)′‖L2 ≥ C A1 and

lim
n→∞

‖∇r(2)
n ‖2L2 = lim

n→∞
‖∇r(1)

n ‖2L2 − ‖ψ(2)′‖2L2 .

Arguing as in [4], we show that the triplets
(
α

(1)
n , x

(1)
n , ψ(1)

)
and

(
α

(2)
n , x

(2)
n , ψ(2)

)
are or-

thogonal in the sense of Definition 1.3 and prove that the process of extraction of the
elementary concentration converges. This ends the proof of Decomposition (10). The
orthogonality equality (11) derives immediately from Proposition 2.10 in [4]. The proof
of Theorem 1.7 is then achieved.

3. Nonlinear wave equation

3.1. Statement of the results. In this section, we investigate the initial value problem
for the following nonlinear wave equation:

�u+ u+ u

(
e4πu2 −

p−1∑
k=0

(4π)ku2k

k!

)
= 0,

u(0) = u0 ∈ H1(R2), ∂tu(0) = u1 ∈ L2(R2),

(40)

where p ≥ 1 is an integer, u = u(t, x) is a real-valued function of (t, x) ∈ R × R2 and
� = ∂2

t −∆ is the wave operator.

Let us recall that in [17, 18], the authors proved the global well-posedness for the Cauchy
problem (40) when p = 1 and the scattering when p = 2 in the subcritical and critical
cases (i.e when the energy is less or equal to some threshold). Note also that in [24, 25],
M. Struwe constructed global smooth solutions to (40) with smooth data of arbitrary size
in the case p = 1.
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Formally, the solutions of the Cauchy problem (40) satisfy the following conservation
law:

Ep(u, t) := ‖∂tu(t)‖2L2 + ‖∇u(t)‖2L2 +
1

4π

∥∥∥∥∥e4πu(t)2 − 1−
p∑

k=2

(4π)k

k!
u(t)2k

∥∥∥∥∥
L1

(41)

= Ep(u, 0) := E0
p .

This conducts us, as in [17], to define the notion of criticality in terms of the size of the
initial energy E0

p with respect to 1.

Definition 3.1. The Cauchy problem (40) is said to be subcritical if

E0
p < 1.

It is said to be critical if E0
p = 1 and supercritical if E0

p > 1.

We shall prove the following result:

Theorem 3.2. Assume that E0
p ≤ 1. Then the Cauchy problem (40) has a unique global

solution u in the space

C(R, H1(R2)) ∩ C1(R, L2(R2)).

Moreover, u ∈ L4(R, C1/4) and scatters.

3.2. Technical tools. The proof of Theorem 3.2 is based on a priori estimates. This
requires the control of the nonlinear term

Fp(u) := u

(
e4πu2 −

p−1∑
k=0

(4π)ku2k

k!

)
(42)

in L1
t (L

2
x). To achieve our goal, we will resort to Strichartz estimates for the 2D Klein-

Gordon equation. These estimates, proved in [15], state as follows:

Proposition 3.3. Let T > 0 and (q, r) ∈ [4,∞]× [2,∞] an admissible pair, i.e

1

q
+

2

r
= 1.

Then,

‖v‖Lq([0,T ],B1
r,2(R2)) .

[
‖v(0)‖H1(R2) + ‖∂tv(0)‖L2(R2) + ‖�v + v‖L1([0,T ],L2(R2))

]
, (43)

where B1
r,2(R2) stands for the usual inhomogeneous Besov space (see for example [12] or

[23] for a detailed exposition on Besov spaces).

Noticing that (q, r) = (4, 8/3) is an admissible pair and recalling that

B1
8/3,2(R2) ↪→ C1/4(R2),

we deduce that

‖v‖L4([0,T ],C1/4(R2)) .
[
‖v(0)‖H1(R2) + ‖∂tv(0)‖L2(R2) + ‖�v + v‖L1([0,T ],L2(R2))

]
. (44)

To control the nonlinear term Fp(u) in L1
t (L

2
x), we will make use of the following logarith-

mic inequalities proved in [16, Theorem 1.3].
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Proposition 3.4. For any λ > 2
π and any 0 < µ ≤ 1, a constant Cλ,µ > 0 exists such

that for any function u in H1(R2) ∩ C1/4(R2), we have

‖u‖2L∞ ≤ λ‖u‖2µ log

(
Cλ,µ +

2‖u‖C1/4

‖u‖µ

)
, (45)

where ‖u‖2µ := ‖∇u‖2L2 + µ2‖u‖2L2.

3.3. Proof of Theorem 3.2. The proof of this result, divided into three steps, is inspired
from the proofs of Theorems 1.8, 1.11, 1.12 in [17] and Theorem 1.3 in [18].

3.3.1. Local existence. Let us start by proving the local existence to the Cauchy problem
(40). To do so, we use a standard fixed-point argument and introduce for any nonnegative
time T the following space:

ET = C([0, T ], H1(R2)) ∩ C1([0, T ], L2(R2)) ∩ L4([0, T ], C1/4(R2))

endowed with the norm

‖u‖T = sup
0≤t≤T

[
‖u(t)‖H1 + ‖∂tu(t)‖L2

]
+ ‖u‖L4([0,T ],C1/4).

For a positive time T and a positive real number δ, we denote by ET (δ) the ball in the
space ET of radius δ and centered at the origin. On this ball, we define the map Φ by

v 7−→ Φ(v) = ṽ,

where
�ṽ + ṽ = −Fp(v + v0), ṽ(0) = ∂tṽ(0) = 0

and v0 is the solution of the free Klein-Gordon equation

�v0 + v0 = 0, v0(0) = u0, and ∂tv0(0) = u1.

Now, the goal is to show that if δ and T are small enough, then the map Φ is well-defined
from ET (δ) into itself and it is a contraction. To prove that Φ is well-defined, it suffices in
view of the Strichartz estimates (43) to estimate Fp(v+v0) in the space L1([0, T ], L2(R2)).
Arguing as in [17] and using the Hölder inequality and the Sobolev embedding, we obtain
for any ε > 0∫

R2

|Fp(v + v0)|2 dx ≤
∫
R2

|F1(v + v0)|2 dx

. ‖v + v0‖2H1 e4π‖v+v0‖2L∞
∥∥∥e4π(v+v0)2 − 1

∥∥∥
L1+ε

.

Note that the assumption E0
p ≤ 1 implies that ‖∇u0‖L2 < 1. Hence, we can choose µ > 0

such that ‖u0‖µ < 1. Since v0 is continuous in time, there exist a time T0 and a constant
0 < c < 1 such that for any t in [0, T0] we have

‖v0(t)‖µ ≤ c.
According to Proposition 3.4, we infer that

e4π‖v+v0‖2L∞ .

(
1 +
‖v + v0‖C1/4

δ + c

)8η

,

for some 0 < η < 1. Besides, applying the Trudinger-Moser inequality (5) for p = 1, the
fact that

4π(1 + ε)(δ + c)2 −→ 4πc < 4π as ε, δ → 0 and

∥∥∥∥∇(v + v0

δ + c

)∥∥∥∥
L2

≤ 1
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ensures that ∥∥∥e4π(v+v0)2 − 1
∥∥∥1+ε

L1+ε
≤ Cε

∥∥∥e4π(1+ε)(v+v0)2 − 1
∥∥∥
L1

≤ Cε,δ‖v + v0‖2L2

≤ Cε,δ(1 + ‖u0‖H1 + ‖u1‖L2)2.

Therefore, for any 0 < T ≤ T0, we obtain that

‖Fp(v + v0)‖L1([0,T ],L2(R2)) . T
1−η(1 + ‖u0‖H1 + ‖u1‖L2)4η.

Now, to prove that Φ is a contraction (at least for T small), let us consider two elements
v1 and v2 in ET (δ). Notice that, for any ε > 0,

|Fp(v1 + v0)− Fp(v2 + v0)| = |v1 − v2|(1 + 8πv2)

(
e4πv2 −

p−2∑
k=0

(4π)kv2k

k!

)
≤ Cε|v1 − v2|

(
e4π(1+ε)v2 − 1

)
,

where v = (1 − θ)(v0 + v1) + θ(v0 + v2), for some θ = θ(t, x) ∈ [0, 1]. Using a convexity
argument, we get

|Fp(v1 + v0)− Fp(v2 + v0)| ≤ Cε

∣∣∣(v1 − v2)
(

e4π(1+ε)(v1+v0)2 − 1
)∣∣∣

+ Cε

∣∣∣(v1 − v2)
(

e4π(1+ε)(v2+v0)2 − 1
)∣∣∣ .

This implies, in view of Strichartz estimates (44), that

‖Φ(v1)− Φ(v2)‖T . ‖Fp(v1 + v0)− Fp(v2 + v0)‖L1([0,T ],L2(R2))

≤ Cε

∫ T

0

∥∥∥(v1 − v2)
(

e4π(1+ε)(v1+v0)2 − 1
)∥∥∥

L2
dt

+ Cε

∫ T

0

∥∥∥(v1 − v2)
(

e4π(1+ε)(v2+v0)2 − 1
)∥∥∥

L2
dt,

which leads along the same lines as above to

‖Φ(v1)− Φ(v2)‖T . T 1−(1+ε)η(1 + ‖u0‖H1 + ‖u1‖L2)4(1+ε)η‖v1 − v2‖T .

If the parameter ε is small enough, then (1 + ε)η < 1 and therefore, for T small enough,
Φ is a contraction map. This implies the uniqueness of the solution in v0 + ET (δ).
Now, we shall prove the uniqueness in the energy space. The idea here is to establish that,
if u = v0 + v is a solution of (40) in C([0, T ], H1(R2))∩C1([0, T ], L2(R2)), then necessarily
v ∈ ET (δ) at least for T small. Starting from the fact that v satisfies

�v + v = −Fp(v + v0), v(0) = ∂tv(0) = 0,

we are reduced, thanks to the Strichartz estimates (43), to control the term Fp(v + v0)
in the space L1([0, T ], L2(R2)). But |Fp(v + v0)| ≤ |F1(v + v0)|, which leads to the result
arguing exactly as in [17].
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3.3.2. Global existence. In this section, we shall establish that our solution is global in time
both in subcritical and critical cases. Firstly, let us notice that the assumption E0

p ≤ 1
implies that ‖∇u0‖L2(R2) < 1, which ensures in view of Section 3.3.1 the existence of a
unique maximal solution u defined on [0, T ∗) where 0 < T ∗ ≤ ∞ is the lifespan time of
u. We shall proceed by contradiction assuming that T ∗ <∞. In the subcritical case, the
conservation law (41) implies that

sup
t∈(0,T ∗)

‖∇u(t)‖L2(R2) < 1.

Let then 0 < s < T ∗ and consider the following Cauchy problem:

�v + v + Fp(v) = 0, v(s) = u(s), and ∂tv(s) = ∂tu(s). (46)

As in the first step of the proof, a fixed-point argument ensures the existence of τ > 0 and
a unique solution v to (46) on the interval [s, s+ τ ]. Noticing that τ does not depend on
s, we can choose s close to T ∗ such that T ∗ − s < τ . So, we can prolong the solution u
after the time T ∗, which is a contradiction.
In the critical case, we cannot apply the previous argument because it is possible that the
following concentration phenomenon holds:

lim sup
t→T ∗

‖∇u(t)‖L2(R2) = 1. (47)

In fact, we shall show that (47) cannot hold in this case. To go to this end, we argue
as in the proof of Theorem 1.12 in [17]. Firstly, since the first equation of the Cauchy
problem (40) is invariant under time translation, we can assume that T ∗ = 0 and that the
initial time is t = −1. Similarly to [17, Proposition 4.2, Corollary 4.4], it follows that the
maximal solution u satisfies

lim sup
t→0−

‖∇u(t)‖L2(R2) = 1, (48)

lim
t→0−

‖u(t)‖L2(R2) = 0, (49)

lim
t→0−

∫
|x−x∗|≤−t

|∇u(t, x)|2 dx = 1, and (50)

∀t < 0,

∫
|x−x∗|≤−t

ep(u)(t, x) dx = 1, (51)

for some x∗ ∈ R2, where ep(u) denotes the energy density defined by

ep(u)(t, x) := (∂tu)2 + |∇u|2 +
1

4π

(
e4πu2 − 1−

p∑
k=2

(4π)ku2k

k!

)
.

Without loss of generality, we can assume that x∗ = 0, then multiplying the equation of
the problem (40) respectively by ∂tu and u, we obtain formally

∂tep(u)− divx(2∂tu∇u) = 0, (52)

∂t(u∂tu)− divx(u∇u) + |∇u|2 − |∂tu|2 + u2e4πu2 −
p−1∑
k=1

(4π)ku2k+2

k!
= 0. (53)

Integrating the conservation laws (52) and (53) over the backward truncated cone

KT
S :=

{
(t, x) ∈ R× R2 such that S ≤ t ≤ T and |x| ≤ −t

}
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for S < T < 0, we get ∫
B(−T )

ep(u)(T, x) dx−
∫
B(−S)

ep(u)(S, x) dx (54)

=
−1√

2

∫
MT
S

[∣∣∣∣∂tu x|x| +∇u
∣∣∣∣2 +

1

4π

(
e4πu2 − 1−

p∑
k=2

(4π)ku2k

k!

)
dx dt

]
,

∫
B(−T )

∂tu(T )u(T ) dx−
∫
B(−S)

∂tu(S)u(S) dx+
1√
2

∫
MT
S

(
∂tu+∇u. x

|x|

)
u dx dt (55)

+

∫
KT
S

(
|∇u|2 − |∂tu|2 + u2e4πu2 −

p−1∑
k=1

(4π)ku2k+2

k!

)
dx dt = 0,

where B(r) is the ball centered at 0 and of radius r and

MT
S :=

{
(t, x) ∈ R× R2 such that S ≤ t ≤ T and |x| = −t

}
.

According to (51) and (54), we infer that∫
MT
S

[∣∣∣∣∂tu x|x| +∇u
∣∣∣∣2 +

1

4π

(
e4πu2 − 1−

p∑
k=2

(4π)ku2k

k!

)]
dx dt = 0.

This implies, using (55) and Cauchy-Schwarz inequality, that∫
B(−T )

∂tu(T )u(T ) dx−
∫
B(−S)

∂tu(S)u(S) dx (56)

+

∫
KT
S

(
|∇u|2 − |∂tu|2 + u2e4πu2 −

p−1∑
k=1

(4π)ku2k+2

k!

)
dx dt = 0,

By virtue of Identities (48) and (49) and the conservation law (41), it can be seen that

∂tu(t) −→
t→0

0 in L2(R2), (57)

which ensures by Cauchy-Schwarz inequality that∫
B(−T )

∂tu(T )u(T ) dx→ 0. (58)

Letting T → 0 in (56), we deduce from (58) and the fact that u2e4πu2 −
p−1∑
k=1

(4π)ku2k+2

k!
is

positive

−
∫
B(−S)

∂tu(S)u(S) dx ≤ −
∫
K0
S

|∇u|2 dx dt+

∫
K0
S

|∂tu|2 dx dt. (59)

Multiplying Inequality (59) by the positive number − 1
S , we infer that∫

B(−S)
∂tu(S)

u(S)

S
dx ≤ 1

S

∫
K0
S

|∇u|2 dx dt− 1

S

∫
K0
S

|∂tu|2 dx dt. (60)

Now, Identity (57) leads to

lim
S→0−

1

S

∫
K0
S

|∂tu|2 dx dt = 0. (61)
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Moreover, using (50), it is clear that

lim
S→0−

1

S

∫
K0
S

|∇u|2 dx dt = −1. (62)

Finally, since

u(S)

S
=

1

S

∫ S

0
∂tu(τ) dτ,

then (u(S)
S ) is bounded in L2(R2) and hence

lim
S→0−

∫
B(−S)

∂tu(S)
u(S)

S
dx = 0. (63)

The identities (61), (62) and (63) yield a contradiction in view of (60). This achieves the
proof of the global existence in the critical case.

3.3.3. Scattering. Our concern now is to prove that, in the subcritical and critical cases,
the solution of the equation (40) approaches a solution of a free wave equation when the
time goes to infinity. Using the fact that

|Fp(u)| ≤ |F2(u)|, ∀p ≥ 2, (64)

we can apply the arguments used in [18]. More precisely, in the subcritical case the key
point consists to prove that there exists an increasing function C : [0, 1[−→ [0,∞[ such
that for any 0 ≤ E < 1, any global solution u of the Cauchy problem (40) with Ep(u) ≤ E
satisfies

‖u‖X(R) ≤ C(E), (65)

where X(R) = L8(R, L16(R2)). Now, denoting by

E∗ := sup{0 ≤ E < 1; sup
Ep(u)≤E

‖u‖X(R) <∞},

and arguing as in [18, Lemma 4.1], we can show that Inequality (65) is satisfied if Ep(u)
is small, which implies that E∗ > 0. Now our goal is to prove that E∗ = 1. To do so, let
us proceed by contradiction and assume that E∗ < 1. Then, for any E ∈]E∗, 1[ and any
n > 0, there exists a global solution u to (40) such that Ep(u) ≤ E and ‖u‖X(R) > n. By
time translation, one can reduce to

‖u‖X(]0,∞[) >
n

2
. (66)

Along the same lines as the proof of Proposition 5.1 in [18], we can show taking advantage
of (64) that if E is close enough to E∗, then n cannot be arbitrarily large which yields a
contradiction and ends the proof of the result in the subcritical case.
The proof of the scattering in the critical case is done as in Section 6 in [18] once we
observed Inequality (64). It is based on the notion of concentration radius rε(t) introduced
in [18].

Remark 3.5. Lower order nonlinear terms become more difficult when we look for global
decay properties of the solutions. In [18], the authors avoid this problem by subtracting the
cubic part from the nonlinearity Fp(u) for p = 1, which is the lower critical power for the
scattering problem in R2.
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3.4. Qualitative study. In this section we shall investigate the feature of solutions of
the two-dimensional nonlinear Klein-Gordon equation (40) taking into account the dif-
ferent regimes. As in [5], the approach that we adopt here is the one introduced by P.
Gérard in [13] which consists in comparing the evolution of oscillations and concentration
effects displayed by sequences of solutions of the nonlinear Klein-Gordon equation (40)
and solutions of the linear Klein-Gordon equation

�v + v = 0. (67)

More precisely, let (ϕn, ψn) be a sequence of data in H1×L2 supported in some fixed ball
and satisfying

ϕn ⇀ 0 in H1, ψn ⇀ 0 in L2, (68)

such that

Enp ≤ 1, n ∈ N (69)

where Enp stands for the energy of (ϕn, ψn) given by

Enp = ‖ψn‖2L2 + ‖∇ϕn‖2L2 +
1

4π

∥∥∥e4πϕ2
n − 1−

p∑
k=2

(4π)k

k!
ϕ2k
n

∥∥∥
L1
,

and let us consider (un) and (vn) the sequences of finite energy solutions of (40) and (67)
such that

(un, ∂tun)(0) = (vn, ∂tvn)(0) = (ϕn, ψn).

Arguing as in [13], the notion of linearizability is defined as follows:

Definition 3.6. Let T be a positive time. We shall say that the sequence (un) is lineariz-
able on [0, T ], if

sup
t∈[0,T ]

Ec(un − vn, t) −→ 0 as n→∞,

where Ec(w, t) denotes the kinetic energy defined by:

Ec(w, t) =

∫
R2

[
|∂tw|2 + |∇xw|2 + |w|2

]
(t, x) dx.

For any time slab I ⊂ R, we shall denote

‖v‖ST(I) := sup
(q,r) admissible

‖v‖Lq(I;B1
r,2(R2)) .

By interpolation argument, this Strichartz norm is equivalent to

‖v‖L∞(I;H1(R2)) + ‖v‖L4(I;B1
8/3,2

(R2)) .

As B1
r,2(R2) ↪→ Lp(R2) for all r ≤ p <∞ (and r ≤ p ≤ ∞ if r > 2), it follows that

‖v‖Lq(I;Lp) . ‖v‖ST(I),
1

q
+

2

p
≤ 1 . (70)

As in [5], in the subcritical case, i.e lim sup
n→∞

Enp < 1, the nonlinearity does not induce any

effect on the behavior of the solutions. But, in the critical case i.e lim sup
n→∞

Enp = 1, it turns

out that a nonlinear effect can be produced. More precisely, we have the following result:

Theorem 3.7. Let T be a strictly positive time. Then

(1) If lim sup
n→∞

Enp < 1, the sequence (un) is linearizable on [0, T ].
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(2) If lim sup
n→∞

Enp = 1, the sequence (un) is linearizable on [0, T ] provided that the

sequence (vn) satisfies

lim sup
n→∞

‖vn‖L∞([0,T ];LΦp ) <
1√
4π
· (71)

Proof. The proof of Theorem 3.7 is similar to the one of Theorem 3.3 and 3.5 in [5].
Denoting by wn = un − vn, it is clear that wn is the solution of the nonlinear wave
equation

�wn + wn = −Fp(un)

with null Cauchy data.
Under energy estimate, we obtain

‖wn‖T . ‖Fp(un)‖L1([0,T ],L2(R2)),

where ‖wn‖2T
def
= supt∈[0,T ]Ec(wn, t). Therefore, it suffices to prove in the subcritical and

critical cases that
‖Fp(un)‖L1([0,T ],L2(R2)) −→ 0 as n→∞. (72)

Let us begin by the subcritical case. Our goal is to prove that the nonlinear term does
not affect the behavior of the solutions. By hypothesis, there exists some nonnegative real
ρ such that lim sup

n→∞
Enp = 1 − ρ. The main point for the proof is based on the following

lemma, the proof of which is similar to the proof of Lemma 3.16 in [5] once we observed
that

|Fp(u)| ≤ |F1(u)|, ∀p ≥ 1.

Lemma 3.8. For every T > 0 and E0
p < 1, there exists a constant C(T,E0

p), such that

every solution u of the nonlinear Klein-Gordon equation (40) of energy Ep(u) ≤ E0
p ,

satisfies

‖u‖L4([0,T ];C1/4) ≤ C(T,E0
p). (73)

Now to establish (72), it suffices to prove that the sequence (Fp(un)) is bounded
in L1+ε([0, T ], L2+ε(R2)) for some nonnegative ε and converges to 0 in measure in [0, T ]×R2.
This can done exactly as in [5] using the fact that |Fp(un)| ≤ |F1(un)|.

Let us now prove (72) in the critical case. For that purpose, let T > 0 and assume
that

L := lim sup
n→∞

‖vn‖L∞([0,T ];LΦp ) <
1√
4π
· (74)

Applying Taylor’s formula, we obtain

Fp(un) = Fp(vn + wn) = Fp(vn) + F ′p(vn)wn +
1

2
F ′′p (vn + θnwn)w2

n,

for some 0 ≤ θn ≤ 1. Strichartz estimates (43) yield

‖wn‖ST([0,T ]) . In + Jn +Kn,

where

In = ‖Fp(vn)‖L1([0,T ];L2(R2)),

Jn = ‖F ′p(vn)wn‖L1([0,T ];L2(R2)), and

Kn = ‖F ′′p (vn + θnwn)w2
n‖L1([0,T ];L2(R2)).
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As in [5], we have

In −→
n→∞

0 and

Jn ≤ εn‖wn‖ST ([0,T ]),

where εn → 0. Besides, provided that

lim sup
n→∞

‖wn‖L∞([0,T ];H1) ≤
1− L

√
4π

2
, (75)

we get

Kn ≤ εn‖wn‖2ST ([0,T ]), εn → 0.

Since ‖wn‖ST ([0,T ]) . In + εn‖wn‖2ST ([0,T ]), wet obtain by bootstrap argument

‖wn‖ST ([0,T ]) . εn,

which ends the proof of the result. �

4. Appendix: Proof of Proposition 1.2

The proof uses in a crucial way the rearrangement of functions (for a complete presen-
tation and more details, we refer the reader to [20]). By virtue of density arguments and
the fact that for any function f ∈ H1(R2) and f∗ the rearrangement of f, we have

‖∇f‖L2 ≥ ‖∇f∗‖L2 ,

‖f‖Lp = ‖f∗‖Lp ,
‖f‖Lφp = ‖f∗‖Lφp ,

one can reduce to the case of a nonnegative radially symmetric and non-increasing function
u belonging to D(R2). With this choice, let us introduce the function

w(t) = (4π)
1
2u(|x|), where |x| = e−

t
2 .

It is then obvious that the functions w(t) and w′(t) are nonnegative and satisfy∫
R2

|∇u(x)|2 dx =

∫ +∞

−∞
|w′(t)|2 dt,∫

R2

|u(x)|2p dx =
1

4p πp−1

∫ +∞

−∞
|w(t)|2p e−t dt

∫
R2

(
eα|u(x)|2 −

p−1∑
k=0

αk|u(x)|2k

k!

)
dx = π

∫ +∞

−∞

(
e
α
4π
|w(t)|2 −

p−1∑
k=0

αk|w(t)|2k

(4π)kk!

)
e−t dt.

So we are reduced to prove that for all β ∈ [0, 1[, there exists Cβ ≥ 0 so that∫ +∞

−∞

(
eβ|w(t)|2 −

p−1∑
k=0

βk|w(t)|2k

k!

)
e−tdt ≤ C(β, p)

∫ +∞

−∞
|w(t)|2pe−t dt, ∀β ∈ [0, 1[,

when
∫ +∞
−∞ |w

′(t)|2dt ≤ 1. For that purpose, let us set

T0 = sup {t ∈ R, w(t) ≤ 1} .
The existence of a real number t0 such that w(t0) = 0 ensures that the set {t ∈ R, w(t) ≤ 1}
is non empty. Then

T0 ∈]−∞,+∞].
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Knowing that w is nonnegative and increasing function, we deduce that

w :]−∞, T0] −→ [0, 1].

Therefore, observing that es −
p−1∑
k=0

sk

k!
≤ cp sp es for any nonnegative real s, we obtain

∫ T0

−∞

(
eβ|w(t)|2 −

p−1∑
k=0

βk|w(t)|2k

k!

)
e−tdt ≤ cpβp eβ

∫ T0

−∞
|w(t)|2pe−tdt.

To estimate the integral on [T0,+∞[, let us first notice that in view of the definition of
T0, we have for all t ≥ T0

w(t) = w(T0) +

∫ t

T0

w′(τ)dτ

≤ w(T0) + (t− T0)
1
2

(∫ +∞

T0

w′(τ)2dτ

) 1
2

≤ 1 + (t− T0)
1
2 .

Thus, using the fact that for any ε > 0 and any s ≥ 0, we have

(1 + s
1
2 )2 ≤ (1 + ε)s+ 1 +

1

ε
= (1 + ε)s+ Cε,

we infer that for for any ε > 0 and all t ≥ T0

|w(t)|2 ≤ (1 + ε)(t− T0) + Cε. (76)

Now β being fixed in [0, 1[, let us choose ε > 0 so that β(1 + ε) < 1. Then by virtue of
(76) ∫ +∞

T0

(
eβ|w(t)|2 −

p−1∑
k=0

βk|w(t)|2k

k!

)
e−t dt ≤

∫ +∞

T0

eβ|w(t)|2e−t dt

≤ eβCε−T0

1− β(1 + ε)
·

But

e−T0 =

∫ +∞

T0

e−t dt ≤
∫ +∞

T0

|w(t)|2p e−t dt,

which gives rise to∫ +∞

T0

(
eβ|w(t)|2 −

p−1∑
k=0

βk|w(t)|2k

k!

)
e−tdt ≤ eβCε

1− β(1 + ε)

∫ ∞
T0

|w(t)|2pe−t dt.

Choosing C(β, p) = max
(
cpe

ββp,
eβCε

1− β(1 + ε)

)
ends the proof of the proposition.
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