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ON FOURIER TIME-SPLITTING METHODS FOR NONLINEAR

SCHRÖDINGER EQUATIONS IN THE SEMI-CLASSICAL

LIMIT II. ANALYTIC REGULARITY

RÉMI CARLES AND CLÉMENT GALLO

Abstract. We consider the time discretization based on Lie-Trotter splitting,
for the nonlinear Schrödinger equation, in the semi-classical limit, with initial
data under the form of WKB states. We show that both the exact and the
numerical solutions keep a WKB structure, on a time interval independent of
the Planck constant. We prove error estimates, which show that the quadratic
observables can be computed with a time step independent of the Planck con-
stant. The functional framework is based on time-dependent analytic spaces,
in order to overcome a previously encountered loss of regularity phenomenon.

1. Introduction

This paper is devoted to the analysis of the numerical approximation of the
solution to

(1.1) iε∂tu
ε +

ε2

2
∆uε = λ|uε|2σuε, (t, x) ∈ [0, T ]× R

d,

in the semi-classical limit ε→ 0. The nonlinearity is smooth and real-valued: λ ∈ R

and σ ∈ N. The initial data that we consider are BKW states:

(1.2) uε(0, x) = a0(x)e
iφ0(x)/ε =: uε0(x),

where φ0 : Rd → R is a real-valued phase, and a0 : Rd → C is a possibly complex-
valued amplitude. An important feature of such initial data is that in the context of
the semi-classical limit for (1.1), they yield solution which are in L∞(Rd) uniformly
in ε, at least on some time interval [0, T ] for some T > 0 independent of ε. Also, not
that even if φ0 = 0 (no rapid oscillation initially), for τ > 0 arbitrarily small and
independent of ε, uε(τ) takes the form of a WKB state as in (1.2) with amplitude
and phase solving (2.2)–(2.3) below (see [6]). Note that even if φ0 = 0, the coupling
shows that φε becomes non-trivial instantaneously.

We consider more precisely the time discretization for (1.1) based on Fourier
time splitting. We denote by Xt

ε the map vε(0, ·) 7→ vε(t, ·), where

(1.3) iε∂tv
ε +

ε2

2
∆vε = 0.

We also denote by Y t
ε the map wε(0, ·) 7→ wε(t, ·), where

(1.4) iε∂tw
ε = λ|wε|2σwε.

This work was supported by the French ANR projects SchEq (ANR-12-JS01-0005-01) and
BECASIM (ANR-12-MONU-0007-04).
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We consider the Lie-Trotter type splitting operator

(1.5) Zt
ε = Y t

εX
t
ε.

The Lie-Trotter operator Xt
εY

t
ε could be handled in the same fashion. The advan-

tage of splitting methods is that they involve sub-equations which are simpler to
solve than the initial equation. In our case, (1.3) is solved explicitly by using the
Fourier transform, defined by

ψ̂(ξ) =
1

(2π)d/2

∫

Rd

e−ix·ξψ(x)dx,

since it becomes an ordinary differential equation

(1.6) iε∂tv̂
ε − ε2

2
|ξ|2v̂ε = 0,

hence

X̂t
εv(ξ) = e−iε t

2 |ξ|
2

v̂(ξ).

Also, since λ ∈ R, in (1.4) the modulus of wε does not depend on time, hence

(1.7) Y t
εw(x) = w(x)e−iλ t

ε |w(x)|2σ .

In the case ε = 1, several results exist to prove that the Lie-Trotter time splitting
is of order one, and the Strang splitting of order two ([5, 17]). The drawback of
these proofs is that they rely on uniform Sobolev bounds for the exact solution, of
the form u ∈ L∞([0, T ];Hs(Rd)), for s > 2. However, in the framework of (1.1),
these norms are not uniformly bounded as ε→ 0, in the sense that we rather have
‖uε(t)‖Hs ≈ ε−s, due to the oscillatory nature of uε.

In the case of a linear potential (|uε|2σ is replaced by a known function of x in
(1.1)), error estimates are given in [3]; see also [11, 12]. In the nonlinear case, error
estimates are established in [7], but for other nonlinearities than in (1.1)–(1.2). The
proof there requires either to consider a weakly nonlinear regime, that is (1.1) is
replaced by

iε∂tu
ε +

ε2

2
∆uε = ελ|uε|2σuε, (t, x) ∈ [0, T ]× R

d,

with the same initial data (1.2), or to replace the nonlinearity in (1.1) with a
smoothing nonlinearity of Poisson type. We recall in Section 2 why these assump-
tions are made in [7]. The goal of this paper is to prove error estimates which
are similar to those established in [7], but for (1.1)–(1.2). Before stating our main
result, we introduce a few notations. The Fourier transform is normalized as

f̂(ξ) =
1

(2π)d/2

∫

Rd

e−ix·ξf(x)dx.

A tempered distribution f is in Hs(Rd) if ξ 7→ 〈ξ〉s f̂(ξ) belongs to L2(Rd), where

〈ξ〉 =
√
1 + |ξ|2.

Theorem 1.1. Suppose that d, σ ∈ N, d, σ > 1, and λ ∈ R. Let φ0, a0 such that
∫

Rd

e〈ξ〉
1+δ
(
|φ̂0(ξ)|2 + |â0(ξ)|2

)
dξ <∞,

for some δ > 0, and uε0 given by (1.2). There exist T, ε0, c0 > 0 and (Ck)k∈N such
that for all ε ∈ (0, ε0], the following holds:
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1. (1.1)-(1.2) has a unique solution uε = St
εu

ε
0 ∈ C([0, T ], H∞), where H∞ =

∩s∈RH
s. Moreover, there exist φε and aε with, for all k ∈ N,

sup
t∈[0,T ]

(
‖aε(t)‖Hk(Rd) + ‖φε(t)‖Hk(Rd)

)
6 Ck,

such that uε(t, x) = aε(t, x)eiφ
ε(t,x)/ε for all (t, x) ∈ [0, T ]× Rd.

2. For all ∆t ∈ (0, c0], for all n ∈ N such that tn = n∆t ∈ [0, T ], there exist φεn and
aεn with, for all k ∈ N,

‖aεn‖Hk(Rd) + ‖φεn‖Hk(Rd) 6 Ck,

such that (Z∆t
ε )n

(
a0e

iφ0/ε
)
= aεne

iφn/ε.
3. For all ∆t ∈ (0, c0], for all n ∈ N such that n∆t ∈ [0, T ], the following error
estimate holds:

‖aεn − aε(tn)‖Hk + ‖φεn − φε(tn)‖Hk 6 Ck∆t.

Example 1.2. The assumptions of Theorem 1.1 are satisfied as soon as φ̂0 and â0
are compactly supported, or in the case of Gaussian functions, typically.

Note that the first two points of the theorem imply that the functions a and φ are
not rapidly oscillatory: the oscillatory nature of both the exact and the numerical
solutions is encoded in the exponential which relates the functions a and φ to u.

We readily infer error estimates for the wave function and for quadratic observ-
ables,

Position density: ρε(t, x) = |uε(t, x)|2.
Current density: Jε(t, x) = ε Im (uε(t, x)∇uε(t, x)) .

Corollary 1.3. Under the assumptions of Theorem 1.1, there exist T > 0, ε0 > 0
and C, c0 independent of ε ∈ (0, ε0] such that for all ∆t ∈ (0, c0], for all n ∈ N such
that n∆t ∈ [0, T ], and for all ε ∈ (0, ε0],

∥∥(Z∆t
ε )nuε0 − Stn

ε u
ε
0

∥∥
L2(Rd)

6 C
∆t

ε
,

∥∥∥
∣∣(Z∆t

ε )nuε0
∣∣2 − |ρε(tn)|2

∥∥∥
L1(Rd)∩L∞(Rd)

6 C∆t,

∥∥∥Im
(
ε(Z∆t

ε )nuε0∇(Z∆t
ε )nuε0

)
− Jε(tn)

∥∥∥
L1(Rd)∩L∞(Rd)

6 C∆t.

This result is in agreement with the numerical experiments presented in [4]: to
simulate the wave function uε, the time step must satisfy ∆t = o(ε), while to
observe the quadratic observables, ∆t = o(1) can be chosen independent of ε.

2. Overview of the proof

We present the general strategy for the proof of Theorem 1.1 in the case of a
more general nonlinearity,

(2.1) iε∂tu
ε +

ε2

2
∆uε = f

(
|uε|2

)
uε,

with f real-valued. For initial data of the form (1.2), it has been noticed in [7]
that the numerical discretization preserves such a structure, in the sense that the
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numerical solution satisfies the point 2. in Theorem 1.1. Indeed, the exact solution
can be represented as uε = aεeiφ

ε/ε, where aε and φε are given by

(2.2)





∂tφ
ε +

1

2
|∇φε|2 + f

(
|aε|2

)
= 0,

∂ta
ε +∇φε · ∇aε + 1

2
aε∆φε =

iε

2
∆aε,

with initial data

(2.3) φε|t=0 = φ0, aε|t=0 = a0.

The main feature of this representation is that even though they must be expected
to depend on ε, aε and φε are bounded in Sobolev spaces uniformly in ε ∈ (0, 1] on
some time interval [0, T ] for some T independent of ε.

The idea of representing the solution uε under this form goes back to E. Grenier
[15]. The main features of (2.2) is that the left hand side defines a symmetrizable
hyperbolic system under the assumption f ′ > 0, and the right hand side is skew
adjoint (hence plays no role at the level of energy estimates). Note that in the case
of (1.1), this forces λ > 0 and σ = 1 (cubic defocusing nonlinearity). For a nonlocal
nonlinearity, f(|u|2) = K ∗ |u|2, the approach of Grenier can easily be adapted if

K̂ decays at least like |ξ|−2 for large |ξ| (see e.g. [7]). The approach of Grenier has
also been generalized to more general nonlinearities: see [1, 10] for the defocusing
case, and [19] for the focusing case. However, we do not use these results, as we
now discuss.

Indeed, the splitting scheme for (2.1) amounts to some splitting technique on
(2.2). Suppose that one solves the linear equation (1.3) with initial data vε(0) =
a0e

iφ0/ε. Then the solution vε can be written as vε(t) = aε(t)eiφ(t)/ε, with aε and
φ given by

(2.4)





∂tφ+
1

2
|∇φ|2 = 0, φ|t=0 = φ0,

∂ta
ε +∇φ · ∇aε + 1

2
aε∆φ = i

ε

2
∆aε, aε|t=0 = a0.

Similarly, the solution to (1.4) with initial data wε(0) = a0e
iφ0/ε can be written as

wε(t) = a(t)eiφ(t)/ε, with a and φ given by

(2.5)

{
∂tφ+ f(|a|2) = 0, φ|t=0 = φ0,

∂ta = 0, a|t=0 = a0.

So computing the numerical solution amounts to solving successively (2.4) and (2.5),
which turns out to be a splitting scheme on (2.2). We denote by X t

ε : (φ0, a0) 7→
(φ(t, ·), aε(t, ·)) the flow for (2.4) and by Yt

ε : (φ0, a0) 7→ (φ(t, ·), a(t, ·)) the flow for
(2.5). The Lie-Trotter splitting operator we consider for (2.2) is then

(2.6) Zt
ε = Yt

εX t
ε

Now in the case of a cubic defocusing nonlinearity (which enters the framework
of [15]), we face a loss of regularity issue. Indeed, the reason why (2.2) is convenient
lies first in the structure of the left hand side, which enjoys symmetry properties:
the splitting leading to (2.4)–(2.5) ruins this property. Suppose for instance that
at time t = 0, φ0 ∈ Hs(Rd) and a0 ∈ Hk(Rd), for large s and k. In (2.4), the first
equation propagates the Hs regularity on a small time interval, provided s is large.
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The second equation shows that aε cannot be more regular than Hs−2, due to the
last term of the left hand side. Now if we start with φ0 ∈ Hs and a0 ∈ Hs−2 in
(2.5) (with f(|a|2) = |a|2 for a cubic defocusing nonlinearity), we see that φ ∈ Hs−2

(provided s−2 > d/2), and that no better regularity must be expected. So after one
iteration of the operator Zt

ε, φ has lost two levels of regularity. When iterating Z
with a small time step ∆t, this loss becomes fatal. This is why in [7], it is assumed
that either f is smoothing (to regain at least two levels of regularity) or that a
factor ε is present in front of f , so that (2.5) is altered to

{
∂tφ = 0, φ|t=0 = φ0,

∂ta = −if(|a|2)a, a|t=0 = a0.

The main technical originality of this paper is based on the remark that if instead of
working in Sobolev spaces, one works in time dependent analytic spaces, it is possible
to control the loss of regularity. Such an idea goes back to [13], to solve (2.2). The
fact that we consider decreasing time dependent weight to measure the analytic
regularity is strongly inspired by the analysis of J. Ginibre and G. Velo in the
context of long range scattering for Hartree equations [14], and is also reminiscent
of the functional framework used by J.Y. Chemin for the Navier-Stokes equation
[9] and developed by C. Mouhot and C. Villani to prove Landau damping [18].

The main technical tools needed here are presented in Section 3. Thanks to these
tools, we can prove that both the theoretical and the numerical solutions remains
analytic in a suitable sense on some time interval [0, T ] with T > 0 independent of
ε (Sections 4 and 5).

The next key estimate is the local error estimate, presented in Section 6. It is
based on the general formula established in [12]. As noticed in [7], we must apply
this formula to the system (2.4)–(2.5) and not only to (1.3)–(1.4).

With these propagating estimates and the local error estimate, the proof of The-
orem 1.1 follows from the trick known as Lady Windermere’s fan. Note however
that because of the nonlinear context, where global bounds for the numerical solu-
tions are not known a priori, the argument requires some extra care. We rely on
the induction technique introduced in [16], which is sufficiently robust to be readily
adapted to our case, as in [7].

3. Technical background

We recall here some of the technical tools introduced in [14]. We state the main
properties established there concerning time dependent Gevrey spaces, and simplify
as much as possible the framework, in view of the present context.

For 0 < ν 6 1 and ρ > 0, we introduce the exponential weight

w(ξ) = exp (ρmax(1, |ξ|)ν) ,
which is equivalent to exp(ρ 〈ξ〉ν). Define u> and u< by:

û<(ξ) = û(ξ)1|ξ|61, û>(ξ) = û(ξ)1|ξ|>1.

For k, ℓ ∈ R and 0 6 ℓ< < d/2, the following families of norms are defined in [14]:

a 7→
(
‖|ξ|kw(ξ)â>(ξ)‖2L2 + ‖w(ξ)â<(ξ)‖2L2

)1/2
,

φ 7→
(
‖|ξ|ℓ+2

w(ξ)φ̂>(ξ)‖2L2 + ‖|ξ|ℓ<w(ξ)φ̂<(ξ)‖2L2

)1/2
.
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The first norm is well suited to estimate amplitudes, and the second is adapted
to phases. As suggested by the above notations, the indices will be different for
amplitudes and phases. This can be related to the fact that in the hydrodynamical
setting with λ > 0, (2.2) with ε = 0 is a hyperbolic system in the unknown (∇φ, a),
and not in (φ, a). Indeed, eventually there will be a shift of one index between the
norm in φ and the norm in a (see Lemma 3.3 and Proposition 4.1 below).

In the properties related to these norms which will be used in this paper, the
value of ℓ< is irrelevant. Therefore, we set ℓ< = 0, and consider only one family of
norms: for ℓ > 0, we set

Hℓ
ρ = {ψ ∈ L2(Rd), ‖ψ‖Hℓ

ρ
<∞},

where ‖ψ‖2Hℓ
ρ
:= ‖|ξ|ℓw(ξ)ψ̂>(ξ)‖2L2 + ‖w(ξ)ψ̂<(ξ)‖2L2 ∼

∫

Rd

〈ξ〉2ℓ e2ρ〈ξ〉ν |ψ̂(ξ)|2dξ.

Remark 3.1. The above definition is slightly different from the standard definition
for Gevrey spaces, since low frequencies are smoothed out in the definition of the
weight w: max(1, |ξ|) (or 〈ξ〉) in w is usually replaced with |ξ|.

Note that the following estimate is a straightforward consequence of this defini-
tion: for any α ∈ Nd, ℓ > 0,

(3.1) ‖∂αψ‖Hℓ
ρ
6 ‖ψ‖

H
ℓ+|α|
ρ

, ∀ψ ∈ Hℓ+|α|
ρ .

Also, in view of the standard Sobolev embedding,

‖ψ‖L∞(Rd) 6 C‖ψ‖Hs(Rd),

valid for s > d/2, we have

(3.2) ‖ψ‖L∞(Rd) 6 C‖ψ‖Hs
ρ
,

with the same constant C independent of ρ > 0.

The above notation may seem rather heavy: it is chosen so because the weight
ρ will depend on time, as we now discuss. For a time-dependent ρ, we have:

(3.3)
d

dt
‖ψ‖2Hℓ

ρ
= 2ρ̇‖ψ‖2

H
ℓ+ν/2
ρ

+ 2Re 〈ψ, ∂tψ〉Hℓ
ρ
.

Even though ρ depends on time, we will consider below “continuous” Hℓ
ρ valued

functions. We mean functions that belong to

C(I,Hℓ
ρ) :=

{
ψ ∈ C(I, L2) such that wψ ∈ C(I,Hℓ

0) = C(I,Hℓ)
}

for some interval I.
To fix the technical framework once and for all, we recall another important

result from [14]. Consider the system

(3.4)





∂tφ+
1

2
|∇φ|2 + λRe

(
|∇|µ−daa

)
= 0,

∂ta+∇φ · ∇a+ 1

2
a∆φ = 0,

for some time interval I, and 0 < µ 6 d. Lemma 3.5 from [14], which uses (3.3) as
well as rather involved estimates, implies that under the assumptions

ℓ > d/2 + 1− ν, k > ν/2, ℓ > k + 1− ν,

k > ℓ+ µ− d+ 1− ν, 2k > ℓ+ µ− d+ 1− ν + d/2,
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any solution of (3.4) on I, such that (φ, a) ∈ C(I,Hℓ+1
ρ ×Hk

ρ)∩L2
loc(I,H

ℓ+1+ν/2
ρ ×

Hk+ν/2
ρ ), satisfies
∣∣∣∂t‖φ‖2Hℓ+1

ρ
− 2ρ̇‖φ‖2

H
ℓ+1+ν/2
ρ

∣∣∣ 6 C
(
‖φ‖2

H
ℓ+1+ν/2
ρ

‖φ‖Hℓ+1
ρ

+ ‖a‖
H

k+ν/2
ρ

‖φ‖
H

ℓ+1+ν/2
ρ

‖a‖Hk
ρ

)
,

∣∣∣∂t‖a‖2Hk
ρ
− 2ρ̇‖a‖2

H
k+ν/2
ρ

∣∣∣ 6 C
(
‖a‖2

H
k+ν/2
ρ

‖φ‖Hℓ+1
ρ

+ ‖a‖
H

k+ν/2
ρ

‖φ‖
H

ℓ+1+ν/2
ρ

‖a‖Hk
ρ

)
.

In the case of a cubic nonlinearity, we want to set µ = d. Therefore, the above
algebraic conditions

ℓ > k + 1− ν and k > ℓ+ 1− ν

imply ν > 1, hence ν = 1 and k = ℓ. In view of this remark, we suppose from now
on ν = 1, that is, we consider analytic functions (see [14]).

Since we consider only analytic functions, we borrow from [14] the only inequal-
ities that we will really use, which appear in [14, Lemma 3.4]:

Lemma 3.2. Let m > 0. Then,
1. For k + s > m+ d/2 + 2, and k, s > m+ 1,

‖∇φ · ∇a‖Hm
ρ
6 C‖φ‖Hs

ρ
‖a‖Hk

ρ
.

2. For k + s > m+ 2 + d/2, k > m and s > m+ 2,

‖a∆φ‖Hm
ρ
6 C‖φ‖Hs

ρ
‖a‖Hk

ρ
.

3. For s > d/2,

(3.5) ‖ψ1ψ2‖Hm
ρ
6 C

(
‖ψ1‖Hm

ρ
‖ψ2‖Hs

ρ
+ ‖ψ1‖Hs

ρ
‖ψ2‖Hm

ρ

)
.

The various constants C are independent of ρ.

We infer the important lemma:

Lemma 3.3. Set ν = 1, and let σ ∈ N, λ ∈ R, ℓ > d/2, and I be some time

interval. Let (ϕ, b) ∈ C(I,Hℓ+1
ρ ×Hℓ

ρ)∩L2
loc(I,H

ℓ+3/2
ρ ×Hℓ+1/2

ρ ). Then any solution

(φ, aε) ∈ C(I,Hℓ+1
ρ ×Hℓ

ρ) ∩ L2
loc(I,H

ℓ+3/2
ρ ×Hℓ+1/2

ρ ) to

(3.6)





∂tφ+
1

2
∇ϕ · ∇φ+ λ|b|2σ = 0,

∂ta
ε +∇ϕ · ∇aε + 1

2
aε∆ϕ =

iε

2
∆aε,

satisfies
∣∣∣∂t‖φ‖2Hℓ+1

ρ
− 2ρ̇‖φ‖2

H
ℓ+3/2
ρ

∣∣∣ 6 C
(
‖φ‖2

H
ℓ+3/2
ρ

‖ϕ‖Hℓ+1
ρ

+ ‖φ‖
H

ℓ+3/2
ρ

‖ϕ‖
H

ℓ+3/2
ρ

‖φ‖Hℓ+1
ρ

+ ‖b‖
H

ℓ+1/2
ρ

‖φ‖
H

ℓ+3/2
ρ

‖b‖2σ−1
Hℓ

ρ

)
,

∣∣∣∂t‖aε‖2Hℓ
ρ
− 2ρ̇‖aε‖2

H
ℓ+1/2
ρ

∣∣∣ 6 C
(
‖aε‖2

H
ℓ+1/2
ρ

‖ϕ‖Hℓ+1
ρ

+ ‖aε‖
H

ℓ+1/2
ρ

‖ϕ‖
H

ℓ+3/2
ρ

‖aε‖Hℓ
ρ

)
,

where C is independent of ε and ρ.

Proof. In view of (3.3) and (3.6), we have

∂t‖φ‖2Hℓ+1
ρ

− 2ρ̇‖φ‖2
H

ℓ+3/2
ρ

= −Re 〈φ,∇ϕ · ∇φ〉Hℓ+1
ρ

− 2λRe
〈
φ, |b|2σ

〉
Hℓ+1

ρ
.
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Cauchy-Schwarz inequality yields
∣∣∣〈φ,∇ϕ · ∇φ〉Hℓ+1

ρ

∣∣∣ 6 ‖φ‖
H

ℓ+3/2
ρ

‖∇ϕ · ∇φ‖
H

ℓ+1/2
ρ

.

Inequality (3.5) with m = ℓ+ 1/2 and s = ℓ yields

(3.7)
‖∇ϕ · ∇φ‖

H
ℓ+1/2
ρ

6 C
(
‖∇ϕ‖

H
ℓ+1/2
ρ

‖∇φ‖Hℓ
ρ
+ ‖∇ϕ‖Hℓ

ρ
‖∇φ‖

H
ℓ+1/2
ρ

)

6 C
(
‖ϕ‖

H
ℓ+3/2
ρ

‖φ‖Hℓ+1
ρ

+ ‖ϕ‖Hℓ+1
ρ

‖φ‖
H

ℓ+3/2
ρ

)
,

where we have used (3.1). The term involving b can be treated similarly. Indeed,
using (3.5) on the one hand with m = ℓ + 1/2 and s = ℓ and on the other hand
with m = ℓ = s, we can prove by induction on σ that

(3.8) ‖|b|2σ‖
H

ℓ+1/2
ρ

6 C‖b‖2σ−1
Hℓ

ρ
‖b‖

H
ℓ+1/2
ρ

,

hence the first inequality for Lemma 3.3.
For the second inequality,

∂t‖aε‖2Hℓ
ρ
− 2ρ̇‖aε‖2

H
ℓ+1/2
ρ

= −2Re 〈aε,∇ϕ · ∇aε〉Hℓ
ρ
− Re 〈aε, aε∆ϕ〉Hℓ

ρ

+ εRe 〈aε, i∆aε〉Hℓ
ρ
.

Remark that

Re 〈aε, i∆aε〉Hℓ
ρ
= 0,

so the Laplacian term is not present in energy estimates, which are therefore inde-
pendent of ε. Like before, Cauchy-Schwarz inequality yields

| 〈aε,∇ϕ · ∇aε〉Hℓ
ρ
| 6 ‖aε‖

H
ℓ+1/2
ρ

‖∇ϕ · ∇aε‖
H

ℓ−1/2
ρ

.

The last term is estimated thanks to the first point in Lemma 3.2, with

m = ℓ− 1

2
, k = ℓ+

1

2
, s = ℓ+ 1.

Similarly,

| 〈aε, aε∆ϕ〉Hℓ
ρ
| 6 ‖aε‖

H
ℓ+1/2
ρ

‖aε∆ϕ‖
H

ℓ−1/2
ρ

,

and the last term is estimated thanks to the second point in Lemma 3.2, with

m = ℓ − 1

2
, k = ℓ, s = ℓ+

3

2
.

The lemma follows easily. �

4. A fundamental estimate

In the framework of Theorem 1.1, the initial datum uε|t=0 = a0e
iφ0/ε belongs to

H∞, so the existence of T ε > 0 (depending a priori on ε), and of a unique solution
uε ∈ C([0, T ε], H∞) to (1.1)-(1.2), stems from standard theory (see e.g. [8]). The
fact that the existence time may be chosen independent of ε, along with the rest of
the first point of Theorem 1.1, stems from Proposition 4.1 below.

For a decreasing function ρ, we introduce the norm defined by

(4.1) |||ψ|||2ℓ,t = max

(
sup

06s6t
‖ψ(s)‖2Hℓ

ρ(s)
, 2

∫ t

0

|ρ̇(s)|‖ψ(s)‖2
H

ℓ+1/2

ρ(s)

ds

)
.
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Proposition 4.1. Let λ ∈ R, ℓ > d/2 + 1, M0 > 0 and (φ0, a0) ∈ Hℓ+1
M0

×Hℓ
M0

.
1. There exists M ≫ 1 such that if T < M0/M and ρ(t) = M0 −Mt, (2.2)–(2.3)
has a unique solution

(φε, aε) ∈ C([0, T ],Hℓ+1
ρ ×Hℓ

ρ) ∩ L2([0, T ],Hℓ+3/2
ρ ×Hℓ+1/2

ρ ),

with

(4.2) |||φε|||2ℓ+1,T 6 2‖φ0‖2Hℓ+1
M0

+ ‖a0‖4σHℓ
M0

, |||aε|||2ℓ,T 6 2‖a0‖2Hℓ
M0

.

2. If R > 0 and (φ0, a0), (ϕ0, b0) ∈ Hℓ+1
M0

×Hℓ
M0

, with

‖φ0‖Hℓ+1
M0

+ ‖a0‖Hℓ
M0

6 R, ‖ϕ0‖Hℓ+1
M0

+ ‖b0‖Hℓ
M0

6 R,

there existsK = K(R) such that ifM is chosen sufficiently large such that according
to the first part of the proposition, (2.2)–(2.3) has solutions (φε, aε) and (ϕε, bε) on
[0, T ] corresponding respectively to the initial data (φ0, a0) and (ϕ0, b0) (with the
same choice of ρ and the same assumption T < M0/M), then

|||φε − ϕε|||ℓ+1,T+|||aε − bε|||ℓ,T 6 K
(
‖φ0 − ϕ0‖Hℓ+1

M0

+ ‖a0 − b0‖Hℓ
M0

)
.

Remark 4.2. The proof yields a rather implicit dependence of M upon M0 and
(φ0, a0). As a consequence, it is not clear how to choose the best possible T , even
for initial data whose Fourier transform is compactly supported. For our present
concern, the important information is that we get some positive T independent of
ε.

Proof. To construct the solution, we resume the standard scheme from hyperbolic
symmetric systems (see e.g. [2]), that is, we consider the iterative scheme defined
by

(4.3)





∂tφ
ε
j+1 +

1

2
∇φεj · ∇φεj+1 + f(|aεj |2) = 0, φεj+1|t=0 = φ0,

∂ta
ε
j+1 +∇φεj · ∇aεj+1 +

1

2
aεj+1∆φ

ε
j =

iε

2
∆aεj+1, aεj+1|t=0 = a0,

with f(|a|2) = λ|a|2σ, initialized with (φε0, a
ε
0)(t) = (φ0, a0). For functions at the

level of regularity of the norm (4.1) with ℓ > d/2, the above scheme is well defined:
if |||φεj |||ℓ+1,T+|||aεj |||ℓ,T is finite, then φεj+1 and aεj+1 are well-defined. Indeed, in the
first equation, φεj+1 solves a linear transport equation with smooth coefficients, and
the second equation is equivalent to the linear Schrödinger equation

iε∂tv
ε
j+1 +

ε2

2
∆vεj+1 = −

(
∂tφ

ε
j +

1

2
|∇φεj |2

)
vεj+1, vεj+1|t=0 = a0e

iφε
j(0)/ε,

through the relation vεj+1 = aεj+1e
iφε

j/ε. This is a linear Schrödinger equation with
a smooth and bounded external time-dependent potential, for which the existence
of an L2-solution is granted.

The proof of the first part of the proposition goes in two steps: first, we prove
that the sequence (|||φεj |||ℓ+1,T+|||aεj |||ℓ,T )j>0 is bounded for some T > 0 sufficiently
small, but independent of ε. Then we show that up to decreasing T , the series

∑

j>0

(
|||φεj+1 − φεj |||ℓ+1,T+|||aεj+1 − aεj |||ℓ,T

)

is converging. Note that unlike in the case of hyperbolic symmetric systems in
Sobolev spaces, the regularity is the same at the two steps of the proof (in Sobolev
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spaces, the standard proof involves first a bound in the large norm, then convergence
in the small norm).

First step: the sequence is bounded. By integration, Lemma 3.3 yields, for a
decreasing ρ(t) and T > 0 to be chosen later,

|||φεj+1|||2ℓ+1,T 6 ‖φ0‖2Hℓ+1
ρ(0)

+ C

∫ T

0

1

|ρ̇(t)| |ρ̇(t)|‖φ
ε
j+1(t)‖2Hℓ+3/2

ρ(t)

‖φεj(t)‖Hℓ+1
ρ(t)
dt

+ C

∫ T

0

1

|ρ̇(t)| |ρ̇(t)|‖φ
ε
j+1(t)‖Hℓ+3/2

ρ(t)

‖φεj(t)‖Hℓ+3/2

ρ(t)

‖φεj+1(t)‖Hℓ+1
ρ(t)
dt

+ C

∫ T

0

1

|ρ̇(t)| |ρ̇(t)|‖a
ε
j(t)‖Hℓ+1/2

ρ(t)

‖φεj+1(t)‖Hℓ+3/2

ρ(t)

‖aεj(t)‖2σ−1
Hℓ

ρ(t)

dt,

|||aεj+1|||2ℓ,T 6 ‖a0‖2Hℓ
ρ(0)

+ C

∫ T

0

1

|ρ̇(t)| |ρ̇(t)|‖a
ε
j+1(t)‖2Hℓ+1/2

ρ(t)

‖φεj(t)‖Hℓ+1
ρ(t)
dt

+ C

∫ T

0

1

|ρ̇(t)| |ρ̇(t)|‖a
ε
j+1(t)‖Hℓ+1/2

ρ(t)

‖φεj(t)‖Hℓ+3/2

ρ(t)

‖aεj+1(t)‖Hℓ
ρ(t)
dt.

Hölder and Cauchy-Schwarz inequalities yield

|||φεj+1|||2ℓ+1,T 6 ‖φ0‖2Hℓ+1
ρ(0)

+ C

(
sup

06t6T

1

|ρ̇(t)|

)
|||φεj+1|||2ℓ+1,T |||φεj |||ℓ+1,T

+ C

(
sup

06t6T

1

|ρ̇(t)|

)
|||φεj+1|||ℓ+1,T |||aεj |||2σℓ,T ,

|||aεj+1|||2ℓ,T 6 ‖a0‖2Hℓ
ρ(0)

+ C

(
sup

06t6T

1

|ρ̇(t)|

)
|||aεj+1|||2ℓ,T |||φεj |||ℓ+1,T .

Recall that M0 > 0 is given. Take φ0 ∈ Hℓ+1
M0

, a0 ∈ Hℓ
M0

and set ρ(t) =M0 −Mt.
Under the condition

(4.4)
C

M
|||φεj |||ℓ+1,T 6

1

4
,

the previous inequalities imply

1

2
|||φεj+1|||2ℓ+1,T 6 ‖φ0‖2Hℓ+1

M0

+
C2

M2
|||aεj |||4σℓ,T ,

3

4
|||aεj+1|||2ℓ,T 6 ‖a0‖2Hℓ

M0

.

Let us now choose M = |ρ̇(t)| is sufficiently large such that (4.4) holds for j = 0
and such that

2‖φ0‖2Hℓ+1
M0

+
2C2

M2

(
4

3
|||aε0|||2ℓ,T

)2σ

6
M2

16C2
,

2C2

M2

(
4

3

)2σ

6 1.

Note that in view of (4.1), for all T < M0/M (so that ρ remains positive on [0, T ]),

|||aε0|||2ℓ,T = max

(
‖a0‖2Hℓ

M0

,

∫
〈ξ〉2ℓ e2M0〈ξ〉|â0(ξ)|2

∫ T

0

2M 〈ξ〉 e−2Mt〈ξ〉dtdξ

)
= ‖a0‖2Hℓ

M0

,
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and similarly
|||φε0|||2ℓ+1,T = ‖φ0‖2Hℓ+1

M0

,

so that our constraint on M only depends on ‖φ0‖Hℓ+1
M0

and ‖a0‖Hℓ
M0

. Then, for

T < M0/M , the above inequalities yield, by induction, for all j > 1,

|||φεj |||2ℓ+1,T 6 2‖φ0‖2Hℓ+1
M0

+
2C2

M2

(
4

3
‖a0‖2Hℓ

M0

)2σ

6 2‖φ0‖2Hℓ+1
M0

+ ‖a0‖4σHℓ
M0

,

|||aεj |||2ℓ,T 6
4

3
‖a0‖2Hℓ

M0

.

Second step: the sequence converges. For j > 1, consider the difference of
two successive iterates: in the case of the phase, we have

∂t(φ
ε
j+1 − φεj) +

1

2

(
∇φεj · ∇φεj+1 −∇φεj−1 · ∇φεj

)
+ f(|aεj |2)− f(|aεj−1|2) = 0,

along with zero initial data. Inserting the term |∇φεj |2, and denoting by δφεj+1 =
φεj+1 − φεj , we can rewrite the above equation as

∂tδφ
ε
j+1 +

1

2

(
∇φεj · ∇δφεj+1 +∇δφεj · ∇φεj

)
+ f(|aεj |2)− f(|aεj−1|2) = 0.

(3.3) yields, along with Cauchy-Schwarz inequality as in the first step of the proof
of Proposition 4.1:

|||δφεj+1|||2ℓ+1,T 6

∫ T

0

‖δφεj+1(t)‖Hℓ+3/2

ρ(t)

‖∇φεj · ∇δφεj+1‖Hℓ+1/2

ρ(t)

dt

+

∫ T

0

‖δφεj+1(t)‖Hℓ+3/2

ρ(t)

‖∇δφεj · ∇φεj‖Hℓ+1/2

ρ(t)

dt

+ 2

∫ T

0

‖δφεj+1(t)‖Hℓ+3/2

ρ(t)

‖f(|aεj|2)− f(|aεj−1|2)‖Hℓ+1/2

ρ(t)

dt.

The first two terms are estimated thanks to the last point in Lemma 3.2, as in (3.7).

Since f(|z|2) is a polynomial in (z, z̄), the last point of Lemma 3.2 yields

‖f(|aεj|2)− f(|aεj−1|2)‖Hℓ+1/2
ρ

6 C
(
‖aεj‖2σ−2

Hℓ
ρ

+ ‖aεj−1‖2σ−2
Hℓ

ρ

)
×

×
((

‖aεj‖Hℓ
ρ
+ ‖aεj−1‖Hℓ

ρ

)
‖δaεj‖Hℓ+1/2

ρ
+
(
‖aεj‖Hℓ+1/2

ρ
+ ‖aεj−1‖Hℓ+1/2

ρ

)
‖δaεj‖Hℓ

ρ

)
.

We conclude:

|||δφεj+1|||2ℓ+1,T 6
K

M

(
|||δφεj+1|||2ℓ+1,T+|||δφεj |||2ℓ+1,T+|||δaεj |||2ℓ,T

)
,

where K stems from the first step. For M sufficiently large,

|||δφεj+1|||2ℓ+1,T 6
2K

M

(
|||δφεj |||2ℓ+1,T+|||δaεj |||2ℓ,t

)
.

Similarly, δaεj+1 solves

∂tδa
ε
j+1 +∇φεj · ∇δaεj+1 +∇δφεj · ∇aεj +

1

2
δaεj+1∆φ

ε
j +

1

2
aεj∆δφ

ε
j = i

ε

2
∆δaεj+1.

The last term is skew-symmetric, and thus does not appear in energy estimates.
Resuming the same estimates as in the proof of Lemma 3.3, we come up with:

|||δaεj+1|||2ℓ,T 6
K

M

(
|||δaεj+1|||2ℓ,T+|||δφεj |||2ℓ+1,T+|||δaεj |||2ℓ,T

)
,
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hence

|||δaεj+1|||2ℓ,T 6
2K

M

(
|||δφεj |||2ℓ+1,T+|||δaεj |||2ℓ,T

)
,

up to increasingM (hence decreasing T ). ForM possibly even larger, we infer that
the series ∑

j>0

(
|||φεj+1 − φεj |||ℓ+1,T+|||aεj+1 − aεj |||ℓ,T

)

converges geometrically. Uniqueness is a direct consequence of the estimates used
in this second step. (4.2) is obtained by letting j go to infinity in the estimates at
the end of the first step.

The Lipschitzean property of the flow follows from calculations similar to those
of the second step of the proof. �

5. Bounds on the numerical solution

Proposition 5.1. Let λ ∈ R, σ ∈ N, and let (φε, aε) be the solution of either of the
systems (2.2), (2.4), or (2.5), with the notation f(|z|2) = λ|z|2σ. Let s > d/2 + 1,
µ > 0, and ℓ > s. Suppose that (φε, aε) satisfies

(φε, aε) ∈ C([0, T ],Hs+1
ρ ×Hs

ρ),

where ρ(t) =M0 −Mt and 0 < T < M0/M , with

sup
t∈[0,T ]

‖φε(t)‖Hs+1
ρ(t)

+ sup
t∈[0,T ]

‖aε(t)‖Hs
ρ(t)

6 µ.

Then, up to increasing M (and decreasing T ),

‖φε(t)‖Hℓ+1
ρ(t)

+ ‖aε(t)‖Hℓ
ρ(t)

6 ‖φε(0)‖Hℓ+1
M0

+ ‖aε(0)‖Hℓ
M0

, ∀t ∈ [0, T ].

Note that the assumption carries over a regularity at level s > d/2 + 1, while
the conclusion addresses the regularity at level ℓ > s: the above proposition may
be viewed as a tame estimate result.

Proof. First, remark that |||φε(T )|||s+1+|||aε(T )|||s is a non-increasing function ofM ,
provided that the constraint T < M0/M remains fulfilled.

Second, note that it suffices to establish the result in the case of (2.2), since the
other systems contain fewer terms, and we will estimate each term present in (2.2).

The idea of the result is then to view (3.3) as a parabolic estimate, with diffusive
coefficient −ρ̇ =M . Indeed, like in the proof of Lemma 3.3, we have

∂t‖φε‖2Hℓ+1
ρ

+ 2M‖φε‖2
H

ℓ+3/2
ρ

6 C‖φε‖
H

ℓ+3/2
ρ

(
‖∇φε · ∇φε‖

H
ℓ+1/2
ρ

+ ‖|aε|2σ‖
H

ℓ+1/2
ρ

)
,

∂t‖aε‖2Hℓ
ρ
+ 2M‖aε‖2

H
ℓ+1/2
ρ

6 C‖aε‖
H

ℓ+1/2
ρ

(
‖∇φε · ∇aε‖

H
ℓ−1/2
ρ

+ ‖aε∆φε‖
H

ℓ−1/2
ρ

)
.

We then invoke Lemma 3.2 once more. Since the first two points in Lemma 3.2
involve the constraint k, s > m, we can rely only on (3.5). We have

‖∇φε · ∇φε‖
H

ℓ+1/2
ρ

6 C‖∇φε‖
H

ℓ+1/2
ρ

‖∇φε‖Hs−1
ρ

6 C‖φε‖
H

ℓ+3/2
ρ

‖φε‖Hs
ρ
,

since s > d/2 + 1. We have already used the estimate

‖|aε|2σ‖
H

ℓ+1/2
ρ

6 C‖aε‖2σ−1
Hs

ρ
‖aε‖

H
ℓ+1/2
ρ

,

so that Young inequality yields

∂t‖φε‖2Hℓ+1
ρ

+ 2M‖φε‖2
H

ℓ+3/2
ρ

6 C
(
µ+ µ2σ−1

) (
‖φε‖2

H
ℓ+3/2
ρ

+ ‖aε‖2
H

ℓ+1/2
ρ

)
.
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Again, (3.5) yields

‖∇φε · ∇aε‖
H

ℓ−1/2
ρ

6 C
(
‖∇φε‖

H
ℓ−1/2
ρ

‖∇aε‖Hs−1
ρ

+ ‖∇φε‖Hs−1
ρ

‖∇aε‖
H

ℓ−1/2
ρ

)

6 C
(
‖φε‖

H
ℓ+1/2
ρ

‖aε‖Hs
ρ
+ ‖φε‖Hs

ρ
‖aε‖

H
ℓ+1/2
ρ

)
,

and

‖aε∆φε‖
H

ℓ−1/2
ρ

6 C
(
‖∆φε‖

H
ℓ−1/2
ρ

‖aε‖Hs−1
ρ

+ ‖∆φε‖Hs−1
ρ

‖aε‖
H

ℓ−1/2
ρ

)

6 C
(
‖φε‖

H
ℓ+3/2
ρ

‖aε‖Hs
ρ
+ ‖φε‖Hs+1

ρ
‖aε‖

H
ℓ+1/2
ρ

)
.

We come up with

∂t

(
‖φε‖2

Hℓ+1
ρ

+ ‖aε‖2Hℓ
ρ

)
+2M

(
‖φε‖2

H
ℓ+3/2
ρ

+ ‖aε‖2
H

ℓ+1/2
ρ

)

6 C
(
µ+ µ2σ−1

) (
‖φε‖2

H
ℓ+3/2
ρ

+ ‖aε‖2
H

ℓ+1/2
ρ

)
.

Choosing 2M > C
(
µ+ µ2σ−1

)
thus yields the result. �

We readily infer:

Corollary 5.2. Let ℓ > s > d/2 + 1, and τ > 0. Suppose that the numerical
solution

Zt
ε

(
φε0
aε0

)
=

(
φεt
aεt

)

satisfies

sup
t∈[0,τ ]

‖φεt‖Hs+1
ρ(t)

+ sup
t∈[0,τ ]

‖aεt‖Hs
ρ(t)

6 µ,

where ρ(t) =M0 −Mt. Then, up to increasing M (and possibly decreasing τ),

‖φεt‖Hℓ+1
ρ(t)

+ ‖aεt‖Hℓ
ρ(t)

6 ‖φε0‖Hℓ+1
M0

+ ‖aε0‖Hℓ
M0

, ∀t ∈ [0, τ ].

6. Local error estimate

We resume the computations from [7], based on the general formula established
in [12]. For a possibly nonlinear operator A, we denote by EA the associated flow:

∂tEA(t, v) = A (EA(t, v)) ; EA(0, v) = v.

Theorem 6.1 (Theorem 1 from [12]). Suppose that F (u) = A(u) + B(u), and
denote by

St(u) = EF (t, u) and Zt(u) = EB (t, EA(t, u))
the exact flow and the Lie-Trotter flow, respectively. Let L(t, u) = Zt(u) − St(u).
We have the exact formula

L(t, u) =
∫ t

0

∫ τ1

0

∂2EF (t− τ1,Zτ1(u)) ∂2EB (τ1 − τ2, EA(τ1, u))

× [B,A] (EB (τ2, EA (τ1, u))) dτ2dτ1,

where [B,A](v) = B′(v)A(v) −A′(v)B(v).
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In the case of the Lie-Trotter splitting (1.5) for equation (1.1), we would have

A = i
ε

2
∆; B(v) = − i

ε
f(|v|2)v, f(|v|2) = λ|v|2σ; F (v) = A(v) +B(v),

where we have omitted the dependence upon ε in the notations for the sake of
brevity.

However, as pointed out in [7], using the above result directly in terms of the
wave function uε does not seem convenient. In the context of WKB regime, we
rather consider the operators A and B defined by

(6.1) A

(
φ
a

)
=

(
− 1

2 |∇φ|2
−∇φ · ∇a− 1

2a∆φ+ i ε2∆a

)
, B

(
φ
a

)
=

(
−f(|a|2)

0

)
.

We note that with this approach, neither A nor B is a linear operator.

Lemma 6.2. Let A and B defined by (6.1). Their commutator is given by

[A,B]

(
φ
a

)
=

(
∇φ · ∇f

(
|a|2
)
− div

(
|a|2∇φ+ ε Im(a∇a)

)
f ′(|a|2)

∇a · ∇f
(
|a|2
)
+ 1

2a∆f
(
|a|2
)

)
.

As a consequence, if ℓ > d/2+3, ρ > 0, ‖φ‖Hℓ+1
ρ

6 µ, ‖a‖Hℓ
ρ
6 µ, then there exists

C = C(µ) independent of ε ∈ [0, 1] such that

(
ϕ
b

)
= [A,B]

(
φ
a

)
satisfies





‖ϕ‖Hℓ−2
ρ

6 C
(
‖φ‖Hℓ+1

ρ
+ ‖a‖Hℓ

ρ

)
,

‖b‖Hℓ−3
ρ

6 C‖a‖Hℓ
ρ
.

Proof. Like in [7], we have

A′

(
φ
a

)(
ϕ
b

)
=

(
−∇φ · ∇ϕ

−∇φ · ∇b−∇ϕ · ∇a− 1
2b∆φ− 1

2a∆ϕ+ i ε2∆b

)
,

whereas unlike in [7], we consider a function f which is not necessarily linear, so
that the linearized operator of B is given by

B′

(
φ
a

)(
ϕ
b

)
=

(
−2Re(ab)f ′(|a|2)

0

)

and thus

B′

(
φ
a

)(
A

(
φ
a

))
=

((
2Re(a∇a · ∇φ) + |a|2∆φ+ ε Im(a∆a)

)
f ′(|a|2)

0

)
.

The explicit formula for [A,B] follows as in [7]. The estimates then follow directly
from (3.5) and (3.1). �

We have the explicit formula

(6.2) Yt
ε

(
φ
a

)
= EB

(
t,

(
φ
a

))
=

(
φ− tf(|a|2)

a

)
,

and we readily infer

(6.3) ∂2EB
(
t,

(
φ
a

))(
ϕ
b

)
=

(
ϕ− 2σλt|a|2σ−2 Re(ab)

b

)
.

Finally, we compute that
(
ϕ(t)
b(t)

)
= ∂2EF

(
t,

(
φ0
a0

))(
ϕ0

b0

)
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solves the system

(6.4)




∂tϕ+∇φ · ∇ϕ+ 2σλ|a|2σ−2 Re(ab) = 0; ϕ|t=0 = ϕ0,

∂tb+∇φ · ∇b+∇ϕ · ∇a+ 1

2
(b∆φ+ a∆ϕ) = i

ε

2
∆b; b|t=0 = b0,

where

(
φ(t)
a(t)

)
= EF

(
t,

(
φ0
a0

))
.

Lemma 6.3. Let ℓ > d/2 + 1, s > ℓ and (ϕ0, b0) ∈ Hℓ+1
M0

× Hℓ
M0

. Assume that

(φ, a) ∈ C([0, T ],Hs+1
ρ ×Hs

ρ)∩L2([0, T ],Hs+3/2
ρ ×Hs+1/2

ρ ). Then for M sufficiently
large and T < M0/M , the solution to (6.4) satisfies

|||ϕ|||2ℓ+1,T+|||b|||2ℓ,T 6 4‖ϕ0‖2Hℓ+1
M0

+ 4‖b0‖2Hℓ
M0

.

Proof. The proof is quite similar to the one of Lemma 3.3 and Proposition 4.1. We
take the Hℓ+1

ρ scalar product of the first equation in (6.4) with ϕ, and the Hℓ
ρ scalar

product of the second one with b. We get

∂t‖ϕ‖2Hℓ+1
ρ

+ 2M‖ϕ‖2
H

ℓ+3/2
ρ

6 C‖ϕ‖
H

ℓ+3/2
ρ

(
‖∇φ · ∇ϕ‖

H
ℓ+1/2
ρ

+ ‖|a|2σ−2 Re(ab)‖
H

ℓ+1/2
ρ

)
,

∂t‖b‖2Hℓ
ρ
+ 2M‖b‖2

H
ℓ+1/2
ρ

6 C‖b‖
H

ℓ+1/2
ρ

(
‖∇φ · ∇b‖

H
ℓ−1/2
ρ

+ ‖∇ϕ · ∇a‖
H

ℓ−1/2
ρ

+‖b∆φ‖
H

ℓ−1/2
ρ

+ ‖a∆ϕ‖
H

ℓ−1/2
ρ

)
.

Then, the use of (3.5) with m > d/2 and integration in time yield, with estimates
similar to those presented in the proof of Proposition 4.1,

‖ϕ(t)‖2
Hℓ+1

ρ(t)

+ 2M

∫ t

0

‖ϕ(τ)‖2
H

ℓ+3/2

ρ(τ)

dτ 6 ‖ϕ0‖2Hℓ+1
M0

+C

∫ t

0

‖ϕ(τ)‖
H

ℓ+3/2

ρ(τ)

‖φ(τ)‖
H

ℓ+3/2

ρ(τ)

‖ϕ(τ)‖Hm+1
ρ(τ)

dτ

+C

∫ t

0

‖ϕ(τ)‖2
H

ℓ+3/2

ρ(τ)

‖φ(τ)‖Hm+1
ρ(τ)

dτ

+C

∫ t

0

‖ϕ(τ)‖
H

ℓ+3/2

ρ(τ)

‖a(τ)‖
H

ℓ+1/2

ρ(τ)

‖a(τ)‖2σ−2
Hm

ρ(τ)
‖b(τ)‖Hm

ρ(τ)
dτ

+C

∫ t

0

‖ϕ(τ)‖
H

ℓ+3/2

ρ(τ)

‖b(τ)‖
H

ℓ+1/2

ρ(τ)

‖a(τ)‖2σ−1
Hm

ρ(τ)
dτ,
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‖b(t)‖2Hℓ
ρ(t)

+ 2M

∫ t

0

‖b(τ)‖2
H

ℓ+1/2

ρ(τ)

dτ 6 ‖b0‖2Hℓ
M0

+ C

∫ t

0

‖b(τ)‖
H

ℓ+1/2

ρ(τ)

‖φ(τ)‖
H

ℓ+1/2

ρ(τ)

‖b(τ)‖Hm+1
ρ(τ)

dτ

+ C

∫ t

0

‖b(τ)‖2
H

ℓ+1/2

ρ(τ)

‖φ(τ)‖Hm+1
ρ(τ)

dτ

+ C

∫ t

0

‖b(τ)‖
H

ℓ+1/2

ρ(τ)

‖ϕ(τ)‖
H

ℓ+1/2

ρ(τ)

‖a(τ)‖Hm+1
ρ(τ)

dτ

+ C

∫ t

0

‖b(τ)‖
H

ℓ+1/2

ρ(τ)

‖a(τ)‖
H

ℓ+1/2

ρ(τ)

‖ϕ(τ)‖Hm+1
ρ(τ)

dτ

+ C

∫ t

0

‖b(τ)‖
H

ℓ+1/2

ρ(τ)

‖b(τ)‖
H

ℓ−1/2

ρ(τ)

‖φ(τ)‖Hm+2
ρ(τ)

dτ

+ C

∫ t

0

‖b(τ)‖
H

ℓ+1/2

ρ(τ)

‖φ(τ)‖
H

ℓ+3/2

ρ(τ)

‖b(τ)‖Hm
ρ(τ)

dτ

+ C

∫ t

0

‖b(τ)‖
H

ℓ+1/2

ρ(τ)

‖a(τ)‖
H

ℓ−1/2

ρ(τ)

‖ϕ(τ)‖Hm+2
ρ(τ)

dτ

+ C

∫ t

0

‖b(τ)‖
H

ℓ+1/2

ρ(τ)

‖ϕ(τ)‖
H

ℓ+3/2

ρ(τ)

‖a(τ)‖Hm
ρ(τ)

dτ

We choose m = ℓ > d/2 + 1 in the estimate for ϕ and m = ℓ − 1 > d/2 in the
estimate for b. Denoting

µ =|||φ|||ℓ+1,T+|||a|||ℓ,T ,
and

‖ψ‖2L2
tH

k
ρ
=

∫ t

0

‖ψ(τ)‖2Hk
ρ(τ)

dτ,

since the Hk
ρ norms are increasing with k, Cauchy-Schwarz in time yields

‖ϕ(t)‖2
Hℓ+1

ρ(t)

+ 2M‖ϕ‖2
L2

tH
ℓ+3/2
ρ

6 ‖ϕ0‖2Hℓ+1
M0

+ C‖ϕ‖
L2

tH
ℓ+3/2
ρ

×
(

µ√
M

sup
06τ6t

‖ϕ(τ)‖Hℓ+1
ρ(τ)

+ µ‖ϕ‖
L2

tH
ℓ+3/2
ρ

+
µ2σ−1

√
M

sup
06τ6t

‖b(τ)‖Hℓ
ρ(τ)

+ µ2σ−1‖b‖
L2

tH
ℓ+1/2
ρ

)
,

‖b(t)‖2Hℓ
ρ(t)

+ 2M‖b‖2
L2

tH
ℓ+1/2
ρ

6 ‖b0‖2Hℓ
M0

+ Cµ‖b‖
L2

tH
l+1/2
ρ

×
(

1√
M

sup
06τ6t

‖b(τ)‖Hl
ρ(τ)

+ ‖b‖
L2

tH
l+1/2
ρ

+ ‖ϕ‖
L2

tH
l+3/2
ρ

+
1√
M

sup
06τ6t

‖ϕ(τ)‖Hl+1
ρ(τ)

)
.

Adding the last two inequalities, we deduce, for µ 6 C,

‖ϕ(t)‖2
Hℓ+1

ρ(t)

+ ‖b(t)‖2Hℓ
ρ(t)

+ 2M‖ϕ‖2
L2

tH
ℓ+3/2
ρ

+ 2M‖b‖2
L2

tH
ℓ+1/2
ρ

6 ‖ϕ0‖2Hℓ+1
M0

+ ‖b0‖2Hℓ
M0

+ C
µ

M

(
sup

06τ6t
‖ϕ(τ)‖2

Hl+1
ρ(τ)

+ sup
06τ6t

‖b(τ)‖2Hl
ρ(τ)

+M‖ϕ‖2
L2

tH
l+3/2
ρ

+M‖b‖2
L2

tH
l+1/2
ρ

)
,

from which the inequality of the lemma easily follows provided M is sufficiently
large. �

We infer the WKB local error estimate:
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Theorem 6.4 (Local error estimate for WKB states). Let ℓ > d/2 + 5, M0 > 0,

M ≫ 1, ρ(t) =M0 −Mt and µ > 0. Let (φ0, a0) ∈ Hℓ+1
M0

×Hℓ
M0

such that

‖φ0‖Hℓ+1
M0

6 µ, ‖a0‖Hℓ
M0

6 µ.

There exist C, c0 > 0 (depending on µ) independent of ε ∈ (0, 1] such that

L
(
t,

(
φ0
a0

))
:= Zt

ε

(
φ0
a0

)
− St

ε

(
φ0
a0

)
=

(
Ψε(t)
Aε(t)

)
,

satisfies

‖Ψε(t)‖Hℓ−3
ρ(t)

+ ‖Aε(t)‖Hℓ−4
ρ(t)

6 Ct2, 0 6 t 6 c0.

The above result obviously involves a loss of regularity, between the initial as-
sumptions and the conclusion. It is important to note that the local error estimate
is used only once in the final Lady Windermere’s fan argument presented in the
next section, so this loss is not a serious problem.

Proof. Let t ∈ [0, c0], and fix τ1, τ2 such that 0 6 τ2 6 τ1 6 t. Introduce the
following intermediary notations:

(
φ1
aε1

)
= EA

(
τ1,

(
φ0
a0

))
,

(
φε2
aε2

)
= EB

(
τ2,

(
φ1
aε1

))
,

(
φ̃ε2
ãε2

)
= EB

(
τ1,

(
φ1
aε1

))

(
φε3
aε3

)
= [B,A]

(
φε2
aε2

)
,

(
φε4
aε4

)
= ∂2EB

(
τ1 − τ2,

(
φ1
aε1

))(
φε3
aε3

)
.

Then in view of Theorem 6.1, we have
(
Ψε(t)
Aε(t)

)
=

∫ t

0

∫ τ1

0

∂2EF
(
t− τ1,

(
φ̃ε2
ãε2

))(
φε4
aε4

)
dτ2dτ1.

Since ℓ > d/2+ 1, Proposition 4.1 for λ = 0 ensures that (φ1, a
ε
1) ∈ Hℓ+1

ρ(τ1)
×Hℓ

ρ(τ1)

is well defined provided τ1 6 c0 < M0/M , with (according to (4.2) where we can
remove the ‖a0‖4σHℓ

M0

term because λ = 0)

‖φ1‖Hℓ+1
ρ(τ1)

6 2µ, ‖aε1‖Hℓ
ρ(τ1)

6 2µ.

(6.2) writes (φε2, a
ε
2) = (φε1 −λτ2|aε1|2σ, aε1) and thus (3.5) yields (in the calculations

below, the constant C may depend on µ and may change from line to line)

‖φε2‖Hℓ
ρ(τ1)

6 2µ+ Cµ2σ 6 Cµ, ‖aε2‖Hℓ
ρ(τ1)

6 2µ,

because ℓ > d/2. Similarly,

(6.5) ‖φ̃ε2‖Hℓ
ρ(τ1)

6 Cµ, ‖ãε2‖Hℓ
ρ(τ1)

6 2µ.

Next, since ℓ− 1 > d/2 + 3, Lemma 6.2 implies

‖φε3‖Hℓ−3
ρ(τ1)

6 Cµ, ‖aε3‖Hℓ−4
ρ(τ1)

6 Cµ.

In view of (6.3), we have

φε4 = φε3 − 2σλ(τ1 − τ2)|aε1|2σ−2 Re (aε1a
ε
3) , aε4 = aε3,
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and therefore

(6.6) ‖φε4‖Hℓ−3
ρ(τ1)

6 Cµ, ‖aε4‖Hℓ−4
ρ(τ1)

6 Cµ,

since ℓ− 3 > d/2 and thanks to (3.5).

Finally, we prove that if ℓ > d/2 + 5, the Hℓ−3
ρ(t) ×Hℓ−4

ρ(t) norm of

(
φε5
aε5

)
= ∂2EF

(
t− τ1,

(
φ̃ε2
ãε2

))(
φε4
aε4

)

is uniformly bounded in t, τ1, τ2 as long as 0 6 τ2 6 τ1 6 t 6 T < M0/M . For this
purpose, first note that since ℓ−1 > d/2+1, it follows from (6.5) and Proposition 4.1
that we can chooseM =M(µ) sufficiently large such that if 0 < T − τ1 < ρ(τ1)/M ,

(
φ
a

)
(τ) = EF

(
τ − τ1,

(
φ̃ε2
ãε2

))
is such that

(
φ
a

)
∈ C

(
[τ1, T ],Hℓ

ρ ×Hℓ−1
ρ

)
∩ L2

(
[τ1, T ],Hℓ+1/2

ρ ×Hℓ−1/2
ρ

)
,

with

max

(
sup

τ16τ6T
‖φ(τ)‖2Hℓ

ρ(τ)
, sup
τ16τ6T

‖a(τ)‖2
Hℓ−1

ρ(τ)

,

2M

∫ T

τ1

‖φ(τ)‖2
H

ℓ+1/2

ρ(τ)

dτ, 2M

∫ T

τ1

‖a(τ)‖2
H

ℓ−1/2

ρ(τ)

dτ

)
6 C(µ+ µ2σ).

(Note that ρ(τ) = ρ(τ1)−M(τ − τ1)). Then, thanks to (6.6) and Lemma 6.3, since
ℓ− 4 > d/2 + 1 and s = ℓ− 1 > ℓ− 4, choosing possibly M =M(µ) even larger,

max
(
‖φε5‖Hℓ−3

ρ(t)
, ‖aε5‖Hℓ−4

ρ(t)

)
6 Cµ.

The theorem follows. �

Back to the wave functions, we obtain an estimate similar to the one presented
in [12, Section 4.2.2]:

Corollary 6.5. Under the assumptions of Theorem 6.4, denoting
(
φεt
aεt

)
= Zt

ε

(
φ0
a0

)
,

(
φε(t)
aε(t)

)
= St

ε

(
φ0
a0

)
,

there exist C, c0 > 0 (depending on µ) independent of ε ∈ (0, 1] such that

∥∥∥aεteiφ
ε
t/ε − aε(t)eiφ

ε(t)/ε
∥∥∥
L2

6 C
t2

ε
, 0 6 t 6 c0.

Proof. With the same notations as in Theorem 6.4, the Sobolev embedding of Hℓ−4
ρ(t)

into L∞ (ℓ > d/2 + 5) ensures
∥∥∥aεteiφ

ε
t/ε − aε(t)eiφ

ε(t)/ε
∥∥∥
L2

6 ‖aεt − aε(t)‖L2 +
∥∥∥aε(t)

(
eiφ

ε
t/ε − eiφ

ε(t)/ε
)∥∥∥

L2

6 ‖Aε(t)‖L2 +
1

ε
‖aε(t)‖L∞ ‖Ψε(t)‖L2 6

Ct2

ε

�
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This result will not be used in the sequel, but shows how a 1/ε factor appears
when going back to the wave function, in agreement with the observations in [4].
The above computation also shows how to infer the first point in Corollary 1.3 from
Theorem 1.1.

7. Lady Windermere’s fan

Let M0 > 0, ℓ > d/2 + 5, and v0 = (φ0, a0) ∈ Hℓ+1
M0

× Hℓ
M0

. For the sake of
conciseness, we use the following notations: for t > 0, n ∈ N and ∆t > 0,

vε(t) = (φε(t), aε(t)) = St
εv0, vεn = (φεn, a

ε
n) =

(
Z∆t

ε

)n
v0.

For ρ > 0 and v = (φ, a) ∈ Hℓ+1
ρ ×Hℓ

ρ, we also denote

‖v‖ρ,ℓ = ‖φ‖Hℓ+1
ρ

+ ‖a‖Hℓ
ρ
.

According to Proposition 4.1, if M > 0 is sufficiently large, T < M0/M and ρ(t) =
M0 −Mt, (2.2)-(2.3) has a unique solution vε ∈ C([0, T ],Hℓ+1

ρ ×Hℓ
ρ), with

sup
06t6T

‖vε(t)‖ρ(t),ℓ 6 R,

where R = 2‖v0‖M0,ℓ.
We recall the notation tn = n∆t, and we set ρn = ρ(tn). We now prove by

induction on n that there exists c0 > 0 such that if ∆t ∈ (0, c0], for every n > 0
such that n∆t 6 T , we have

‖vεn‖ρn,ℓ−4 6 R+ δ,(7.1)

‖vεn − vε(tn)‖ρn,ℓ−4 6 γ∆t,(7.2)

‖vεn‖ρn,ℓ 6 R/2,(7.3)

for some δ, γ > 0 that will be given later. (7.1)n-(7.2)n-(7.3)n obviously hold for
n = 0. Let n > 0 such that n∆t 6 T and assume that (7.1)j-(7.2)j-(7.3)j hold for
all j ∈ {0, · · · , n− 1}. Then, for all j ∈ {0, · · · , n− 2}, (7.1)j+1 yields

(7.4)
∥∥Z∆t

ε vεj
∥∥
ρj+1,ℓ−4

=
∥∥vεj+1

∥∥
ρj+1,ℓ−4

6 R+ δ.

On the other hand, for j ∈ {0, · · · , n− 2}, we also have
∥∥S∆t

ε vεj
∥∥
ρj+1,ℓ−4

6
∥∥S∆t

ε vεj − S∆t
ε vε(tj)

∥∥
ρj+1,ℓ−4

+ ‖vε(tj+1)‖ρj+1,ℓ−4

6
∥∥S∆t

ε vεj − S∆t
ε vε(tj)

∥∥
ρj+1,ℓ−4

+R.

From (7.3)j ,
∥∥vεj
∥∥
ρj ,ℓ−4

6 R/2, whereas ‖vε(tj)‖ρj ,ℓ−4 6 R by choice of R. Thus,

since ℓ− 4 > d/2 + 1, Proposition 4.1 and (7.2)j imply (up to increasing M)
∥∥S∆t

ε vεj − S∆t
ε vε(tj)

∥∥
ρj+1,ℓ−4

6 K(R)γ∆t.

Therefore, if c0 > 0 is chosen sufficiently small such that K(R)γc0 6 δ, we have

(7.5)
∥∥S∆t

ε vεj
∥∥
ρj+1,ℓ−4

6 R+ δ,

and (7.4), (7.5) and Proposition 4.1 ensure that for all j ∈ {0, · · · , n− 2},
∥∥∥
(
S∆t
ε

)n−1−j Z∆t
ε vεj −

(
S∆t
ε

)n−1−j S∆t
ε vεj

∥∥∥
ρn,ℓ−4

6 K(R+δ)
∥∥Z∆t

ε vεj − S∆t
ε vεj

∥∥
ρj+1,ℓ−4

.
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Moreover, the last estimate also holds for j = n−1 if K is replaced by 1. According
to (7.3)j and Theorem 6.4, we deduce that for all j ∈ {0, · · · , n− 1},
(7.6)∥∥∥
(
S∆t
ε

)n−1−j Z∆t
ε vεj −

(
S∆t
ε

)n−1−j S∆t
ε vεj

∥∥∥
ρn,ℓ−4

6 max(1,K(R+ δ))C(R/2)∆t2.

Piling up the last inequality for j ∈ {0, · · · , n− 1}, we conclude

‖vεn − vε(tn)‖ρn,ℓ−4 6

n−1∑

j=0

∥∥∥
(
S∆t
ε

)n−1−j Z∆t
ε vεj −

(
S∆t
ε

)n−1−j S∆t
ε vεj

∥∥∥
ρn,ℓ−4

6 nmax(1,K(R+ δ))C(R/2)∆t2

6 max(1,K(R+ δ))C(R/2)T∆t,

which proves (7.2)n with γ = max(1,K(R+ δ))C(R/2)T . Then, (7.2)n yields

(7.7) ‖vεn‖ρn,ℓ−4 6 ‖vεn − vε(tn)‖ρn,ℓ−4 + ‖vε(tn)‖ρn,ℓ−4 6 γ∆t+R.

Note that it does not prove (7.1)n yet, because the choice of δ = γc0 may be
incompatible with the previous constraint K(R)γc0 6 δ. However, (7.3)n follows
from (7.7) and Corollary 5.2, once we have noticed that the proof of (7.7) also works
if vεn = Z∆t

ε vεn−1 is replaced by Zt
εv

ε
n−1 (and tn by tn−1 + t), for any 0 6 t 6 ∆t,

so that

Zt
ε

(
Z∆t

ε

)n−1
v0 − St+(n−1)∆t

ε v0

= Zt
εv

ε
n−1 − St

εv
ε
n−1 +

n−2∑

j=0

[
St
ε

(
S∆t
ε

)n−2−j Z∆t
ε vεj − St

ε

(
S∆t
ε

)n−2−j S∆t
ε vεj

]
.

Then, (7.1)n follows from (7.3)n, and any positive value for δ is admissible.
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Congr., Soc. Math. France, Paris, 2004, pp. 99–123.

[10] D. Chiron and F. Rousset, Geometric optics and boundary layers for nonlinear Schrödinger

equations, Comm. Math. Phys., 288 (2009), pp. 503–546.



SPLITTING FOR NLS IN THE SEMI-CLASSICAL LIMIT 21

[11] S. Descombes and M. Thalhammer, An exact local error representation of exponential

operator splitting methods for evolutionary problems and applications to linear Schrödinger

equations in the semi-classical regime, BIT, 50 (2010), pp. 729–749.
[12] , The Lie–Trotter splitting for nonlinear evolutionary problems with critical parame-

ters. A compact local error representation and application to nonlinear Schrödinger equations

in the semi-classical regime, IMA J. Numer. Anal., 33 (2013), pp. 722–745.
[13] P. Gérard, Remarques sur l’analyse semi-classique de l’équation de Schrödinger non
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