A. Alfonsi, High order discretization schemes for the CIR process: Application to affine term structure and Heston models, Mathematics of Computation, vol.79, issue.269, pp.209-237, 2010.
DOI : 10.1090/S0025-5718-09-02252-2

URL : https://hal.archives-ouvertes.fr/hal-00143723

V. Bally and E. Clément, Integration by parts formula and applications to equations with jumps. Probab. Theory Related Fields, pp.613-657, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00431632

V. Bally and C. Rey, Approximation of Markov semigroup in total variation disctance, 2015.

V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function. Probab. Theory Related Fields, pp.43-60, 1996.
URL : https://hal.archives-ouvertes.fr/inria-00074427

V. Bally and D. Talay, The Law of the Euler Scheme for Stochastic Differential Equations: II. Convergence Rate of the Density, Monte Carlo Methods and Applications, vol.2, issue.2, pp.93-128, 1996.
DOI : 10.1515/mcma.1996.2.2.93

URL : https://hal.archives-ouvertes.fr/inria-00074016

M. Bossy, E. Gobet, and D. Talay, A symmetrized Euler scheme for an efficient approximation of reflected diffusions, J. Appl. Probab, vol.41, issue.3, pp.877-889, 2004.

E. Gobet, Weak approximation of killed diffusion using Euler schemes. Stochastic Process, Appl, vol.87, issue.2, pp.167-197, 2000.

E. Gobet and S. Menozzi, Stopped diffusion processes: boundary corrections and overshoot. Stochastic Process, Appl, vol.120, issue.2, pp.130-162, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00157975

J. Guyon, Euler scheme and tempered distributions, Stochastic Processes and their Applications, vol.116, issue.6, pp.877-904, 2006.
DOI : 10.1016/j.spa.2005.11.011

J. Jacod, T. G. Kurtz, S. Méléard, and P. Protter, The approximate Euler method for L??vy driven stochastic differential equations, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.41, issue.3, pp.523-558, 2005.
DOI : 10.1016/j.anihpb.2004.01.007

B. Jourdain and A. Kohatsu-higa, A Review of Recent Results on Approximation of Solutions of Stochastic Differential Equations, volume 65 of Progress in Probability, 2011.

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Applications of Mathematics, vol.23, 1992.

A. Kohatsu-higa and P. Tankov, Jump-adapted discretization schemes for Lévy-driven SDEs. Stochastic Process, Appl, vol.120, issue.11, pp.2258-2285, 2010.

V. Konakov and S. Menozzi, Weak Error for Stable Driven Stochastic Differential Equations: Expansion??of??the??Densities, Journal of Theoretical Probability, vol.8, issue.4, pp.454-478, 2011.
DOI : 10.1007/s10959-010-0291-x

V. Konakov, S. Menozzi, and S. Molchanov, Explicit parametrix and local limit theorems for some degenerate diffusion processes, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.46, issue.4, pp.908-923, 2010.
DOI : 10.1214/09-AIHP207

URL : https://hal.archives-ouvertes.fr/hal-00256588

S. Kusuoka, Approximation of expectation of diffusion processes based on Lie algebra and Malliavin calculus, In Advances in mathematical economics. Adv. Math. Econ, vol.6, issue.6, pp.69-83, 2004.
DOI : 10.1007/978-4-431-68450-3_4

S. Kusuoka, Gaussian K-scheme: justification for KLNV method, Adv. Math. Econ, vol.17, issue.17, pp.71-120, 2013.
DOI : 10.1007/978-4-431-54324-4_3

T. Lyons and N. Victoir, Cubature on Wiener space, Stochastic analysis with applications to mathematical finance, pp.169-198, 2004.
DOI : 10.1098/rspa.2003.1239

G. N. Milstein, Weak approximation of solutions of systems of stochastic differential equations, Numerical Integration of Stochastic Differential Equations, volume 313 of Mathematics and Its Applications, pp.101-134, 1995.
DOI : 10.1007/978-94-015-8455-5_4

S. Ninomiya and N. Victoir, Weak Approximation of Stochastic Differential Equations and Application to Derivative Pricing, Applied Mathematical Finance, vol.29, issue.2, pp.107-121, 2008.
DOI : 10.1016/0020-7225(65)90045-5

P. Protter and D. Talay, The Euler scheme for L??vy driven stochastic differential equations, The Annals of Probability, vol.25, issue.1, pp.393-423, 1997.
DOI : 10.1214/aop/1024404293

D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal, Appl, vol.8, issue.4, pp.483-509, 1990.
URL : https://hal.archives-ouvertes.fr/inria-00075490