Convergence in total variation distance for a third order scheme for one dimensional diffusion process

Abstract : In this paper, we study a third weak order scheme for diffusion processes which has been introduced by Alfonsi [1]. This scheme is built using cubature methods and is well defined under an abstract commutativity condition on the coefficients of the underlying diffusion process. Moreover, it has been proved in [1], that the third weak order convergence takes place for smooth test functions. First, we provide a necessary and sufficient explicit condition for the scheme to be well defined when we consider the one dimensional case. In a second step, we use a result from [3] and prove that, under an ellipticity condition, this convergence also takes place for the total variation distance with order 3. We also give an estimate of the density function of the diffusion process and its derivatives.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01271516
Contributeur : Clément Rey <>
Soumis le : mercredi 17 février 2016 - 14:16:02
Dernière modification le : jeudi 27 avril 2017 - 09:46:24
Document(s) archivé(s) le : mercredi 18 mai 2016 - 13:12:28

Fichier

Note_NV3_27_11_2015.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01271516, version 1

Collections

INSMI | UPMC | USPC | PMA

Citation

Clément Rey. Convergence in total variation distance for a third order scheme for one dimensional diffusion process. 2016. <hal-01271516>

Partager

Métriques

Consultations de
la notice

214

Téléchargements du document

82