G. Varoquaux, A. Gramfort, F. Pedregosa, V. Michel, and B. Thirion, Multi-subject Dictionary Learning to Segment an Atlas of Brain Spontaneous Activity, IPMI, vol.22, p.562, 2011.
DOI : 10.1007/978-3-642-22092-0_46

URL : https://hal.archives-ouvertes.fr/inria-00588898

K. Kreutz-delgado, J. F. Murray, D. Bhaskar, and . Rao, Dictionary Learning Algorithms for Sparse Representation, Neural Computation, vol.15, issue.2, p.349, 2003.
DOI : 10.1162/089976601300014385

D. C. Van-essen, K. Ugurbil, and E. Auerbach, The Human Connectome Project: A data acquisition perspective, NeuroImage, vol.62, issue.4, p.2222, 2012.
DOI : 10.1016/j.neuroimage.2012.02.018

S. M. Smith, G. Hyvärinen, K. L. Varoquaux, C. F. Miller, and . Beckmann, Group-PCA for very large fMRI datasets, NeuroImage, vol.101, p.738, 2014.
DOI : 10.1016/j.neuroimage.2014.07.051

. Vd-calhoun, . Adali, J. Gd-pearlson, and . Pekar, A method for making group inferences from functional mri data using independent component analysis, Hum. Brain Mapp, 2001.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Online learning for matrix factorization and sparse coding, The Journal of Machine Learning Research, vol.11, pp.19-60, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00408716

N. Halko, P. G. Martinsson, and J. A. Tropp, Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions, SIAM Review, vol.53, issue.2, 2011.
DOI : 10.1137/090771806

J. Himberg, A. Hyvärinen, and F. Esposito, Validating the independent components of neuroimaging time series via clustering and visualization, NeuroImage, vol.22, issue.3, p.1214, 2004.
DOI : 10.1016/j.neuroimage.2004.03.027

S. M. Smith, P. T. Fox, and K. L. Miller, Correspondence of the brain's functional architecture during activation and rest, Proc. Nat. Acad. Sci, p.13040, 2009.
DOI : 10.1073/pnas.0905267106