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ABSTRACT: We look at the (failure) behavior of structurastems under the occurrence of seismic e
Detailed, long-running Finite Element Models (FEMsg typically adopted for the simulation of thetgyn
structural response. However, since a very largebaun of simulations (e.g., several thousands) usillysre-
quired for an accurate assessment of the systéunefdniehavior under different seismic conditioing tom-
putational burden associated to the approach mat bmes impractical. To address this issue, gernteo
(fast-running) Artificial Neural Network (ANN) regssion models, optimally trained to approximatertie
sponse of the original FEM. In particular, we enaera wrapper approach based on Genetic AlgorithA) (G
optimization to search for the optimal set of moitkguts (features) that maximize the ANN repres@ma
accuracy. The ANN is trained, validated and testgd respect to the optimal feature subset idesdifithen,
the results are compared with those produced bgrigenal FEM. We illustrate the approach on a cstsely
of seismic risk assessment involving the estimaoiotie fragility curves for a masonry structure.

1 INTRODUCTION be fully captured in the mathematical model. This i
due to the fact that (i) many of the events andsphy
The Fukushima nuclear accident has highlighted theal phenomena of interest are randamature (e.g.,
need for further research into nuclear safety aad r the earthquake) and (ii) the knowledge of the astaly
diation protection. For this purpose, in 2013 ety about the system and the phenomena involved is
project called SINAPS@ (Earthquake and Nucleatypically not exhaustive (e.g., the power levethe
Facilities: Ensuring Safety and Sustaining) hasmbeenuclear reactor). As a consequence, uncertainty is
launched in France. One of the key aspects of th@ways present in the values of the input pararseter
project is the quantitative assessment of theuf@l and variables of the mathematical model.
behavior of Nuclear Power Plants (NPPs) under the In this light, two issues need to be considered:
occurrence of a seismic event. With respect to thifirst, an accurate assessment of the system failure
objective, in this paper we preliminary study thebehavior typically requires a very large number
failure behavior of a structural system subject tde.g., several thousands) of FEM simulations under
seismic risk; in particular, we identify the stru@  many different scenarios and conditions to fully ex
fragility curves representing the conditional proba plore the wide range of uncertainties affecting the
bility of failure of a component for any given grali  system; second, FEMs are computationally expen-
motion level (EPRI 2003). sive and may require hours or even days to carry ou
In general, within this framework of analysis, thea single simulation. This makes the computational
actions, events and physical phenomena that maurden associated to the analysis at times impracti
cause damages to a nuclear (structural) system, acable.
described by complemathematical modelavhich In this context, fast-running regression models,
are then implemented inmmputercodesto simu- also called metamodels (such as Artificial Neural
late the behavior of the system of interest un@der v Networks (ANN), Local Gaussian Processes (LGP),
ious conditions (USNRC 2009, NASA 2010). In par-Quadratic Response Surfaces (QRS), etc.), can be
ticular, computer codes based on Finite Elemenbuilt by means of input-output data examples to ap-
Models (FEMSs) are typically adopted for the simula-proximate the response of the original long-running
tion of the system structural behavior and respons&EMs and used into the seismic analysis at their
an example is represented by Gefdyn code (Aubry glace. Since the metamodel response is obtained
al. 1986). quickly, the problem of high computational times is
In practice,not all the system characteristics can circumvented.



On the other hand, any algorithm involving theability of failure (i.e., of exceeding a level o&mi-
construction of a metamodel suffers when the diage) of a component/structure for any given ground
mensionality of the input parameter (i.e., featuremotion level,y (EPRI 2003). It is standard practice
space increases, because the set of input-outpat déo model the seismic capacity by a lognormal proba-
examples available becomes sparser with a powdility distribution with parametera andf, wherea

law relationship (Hemez & Atamturktur 2011). Thisis the median ground motion intensity measure (IM)
issue is unavoidable and limits the applicatiommy and g the logarithmic standard deviation (EPRI
algorithm belonging to the metamodel family to en-2003). Typically, these parameters are evaluated fo
gineering problems with a small number of input paeach structure and component for critical failure
rameters (say ten), unless some dimensionality renodes by the Fragility Analysis (EPRI 2003). Then,
duction strategy is adopted (e.g., principalthe fragility curve is defined as (EPRI 2003):
component analysis or feature selection). In addi-
tion, it has been shown experimentally that irrele-F(y)zq{lbg(lﬂ 1)
vant and noisy features unnecessarily increase the B \a
complexity of the problem and can degrade model- . . , .
ing performance (Na 1997, Emmanouilidis et alWhere®[] is the standard Gaussian cumulative dis-
1999, Buckner et al. 2002, Verikas & Bacauskiendfibution of the term in brackets. .
2002). Finally, reducing the number of features de- N this paper, we construct the fragility curve of
creases the cost and time of collecting unnecessa‘&e structure by estimating the parameterand j
data. through the following three main steps:

For these reasons, it is recommended to identify a (&) Structural system modeling; -
(possibly optimal) subset of the input model parame  (b) Structural system behavior simulation;
ters that are relevant and essential for the ateura (C) fragility curves estimation. .
quantification of the output of interest (Zio et al _ !N more details, in step (a) a mathematical model
2006). of the system |s_bu_|lt to quantify |ts_per_formarme
dicator. A quantitative model for seismic risk anal

In this work, we explore the representation capa*. ) ,
bilities of ANN metamodels to approximate the re-SIS may be viewed as composed of three main ele-
sponse of a detailed FEM and we embrace a wrappBIents: & Vectol = {yy, yz, ..., yu} containing all
approach based on Genetic Algorithm (GA) optimi-1€ uncertain input variables (e.g., the ground mo-
zation to search for the optimal set of model isput 0" IM); a computer code to simulate the behavior

(features) that maximize the ANN representation ac®! the system of interest; and an output veaor
curacy (Zio et al. 2008). {z1, 2, ...} describing the system response (e.g., the

As the focus of the paper is the performance oftructural top displacement). .
the ANN, we consider a simple structure for our !N Step (b) the mathematical model is implement-
analyses. The approach is applied to the quantificgd N @ computer code and used to simulate system
tion of the structural damages of a masonry strectu P€havior under different uncertain operational and
subject to a seismic event. In particular, we cormpu accidental conditions. For this reason, a verydarg
the maximal displacement and we estimate the coflumMber (e.g., several thousands) of simulations is

: " : ically needed.
responding fragility curve for a given damagetyPically .
threshold (Lopez-Caballero et al. 2011). Traditionally, computer codes based on Finite El-

The remainder of the paper is organized as folment Models (FEMs) are adopted for the simula-
lows. In Section 2, the steps necessary to buid tption of structural systems behavior and response.

fragility curves are illustrated: in Section 3,yns >nceé FEMs are computationally expensive (e.g.,

thetic description of ANN metamodels is provided;th€y may require hours or even days to carry out a
single simulation), the computational cost assediat

in Section 4, the GA-based wrapper approach fo ; L
feature selection is described; in Section 5, #mec (© the analysis may be prohibitive. .
study and the main results of the analysis are pre- On€ possibility to overcome this computational

sented: in Section 6, conclusions and future develSSU€ IS t0 resort to fast-running regression nsdel
opments are provided. (metamodels) instead of the detailed, long-running

FEMSs. In this work, we adopt Artificial Neural Net-
works (ANNSs) optimally trained to reproduce the

2 FRAGILITY CURVE ESTIMATION FOR THE  honlinear relation between a vectérof M inputs

ANALYSIS OF THE FAILURE BEHAVIOR (representing different characteristics of the reais
OF STRUCTURAL SYSTEMS event, like peak ground velocitpd\), Arias Intensi-
ty (larias), Spectral IntensityS]), etc.) and one out-

K Put, that is the maximal structural top displacetmen
0, 1.e.,Z =z =0 (see Section 3).
Finally, using the data generated at step (b)
above, in step (c) the fragility cur¥y) is obtained

Within the framework of Seismic Probabilistic Ris
Assessment (SPRA), a fragility curve, represents
in probabilistic terms the seismic capacity of aeo
ponent/structure. Actually, it is the conditionabb-

2



for a given damage threshad of interest by esti-
mating the parametessandg through the maximum
likelihood method (Saez et al. 2011).

3 ARTIFICIAL NEURAL NETWORKS

higher the number of parametewng (o be estimated.
In general, an ANN with too few hidden nodes does
not succeed in learning the training data set; vice
versa, an ANN with too many hidden nodes learns
the training data set very well, but it does noteha

generalization capability.

Typically, the entire set of input-output data is d

In extreme synthesis, ANNs are computing devicesided into three subsets:

inspired by the function of the nerve cells in the-
brain (Bishop 1995). They are composed of many
parallel computing units (called neurons or nodes)
arranged in different layers and interconnected by
weighed connections (called synapses). Each of
these computing units performs a few simple opera-
tions and communicates the results to its neighbour
ing units. From a mathematical viewpoint, ANNs
consist of a set of nonlinear (e.g., sigmoidal)ivas
functions with adaptable parametevsthat are ad-
justed by a process of training (on many different
input/output data examples), i.e., an iterativecpss

of regression error minimization (Rumelhart et al.
1986). ANNs have been demonstrated to be univer-
sal approximants of continuous nonlinear functions
(under mild mathematical conditions) (Cybenko
1989), i.e., in principle, an ANN model with a -
properly selected architecture can be a consistent
timator of any continuous nonlinear function. Fur-
ther details about ANN regression models are not
reported here for brevity; the interested readey ma
refer to the cited references and the copiousaliter
ture in the field. The particular type of ANN codsi
ered in this paper is the classical feed-forwardNAN
composed of three layers (input, hidden and output,
see Figure 1) and trained by the error back-
propagation algorithm.
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Figure 1. Scheme of a three-layered feed-forwartfiéial
Neural Network.

a training (input/output) data set, adopted toduil
the network, i.e., to calibrate the adjustable pa-
rameters\{) of the regression model, for best fit-
ting the FEM data;

a validation (input/output) data set (made of pat-
terns different from those of the training set),
used to monitor the accuracy of the ANN model
during the training procedure. In practice, the val
idation error is computed on the validation set at
different iterative stages of the training proce-
dure: at the beginning of training, this value de-
creases as does the error computed on the training
set; later in the training, if the ANN regression
model starts overfitting the data, the error calcu-
lated on the validation set starts increasing and
training process must be stopped (Bishop, 1995);
a test (input/output) data set, not used during
ANN training and validation, needed to evaluate
the network generalization capability in the pres-
ence of new data.

GENETIC ALGORITHM-BASED WRAPPER
FEATURE SELECTION FOR EFFICIENT
ARTIFICIAL NEURAL NETWORK
TRAINING AND CONSTRUCTION

Any algorithm involving the construction of a met-
amodel suffers when the dimensionality of the input
parameter (i.e., feature) space increases, betlagise
set of input-output data examples available becomes
sparser with a power law relationship (Hemez &
Atamturktur 2011). This issue is unavoidable and
limits the application of any algorithm belonging t
the metamodel family to engineering problems with
a small number of input parameters, unless some
dimensionality reduction strategy is adopted (e.g.,
principal component analysis or feature selection).
In addition, it has been shown experimentally that
relevant and noisy features unnecessarily increase
the complexity of the problem and can degrade
modeling performance (Na 1997, Emmanouilidis et
al. 1999, Buckner et al. 2002, Verikas &
Bacauskiene 2002). Finally, reducing the number of

The number of nodes in the input layer equals th@atures decreases the cost and time of collecting

number of input variable¥ which significantly af-

unnecessary data. For these reasons, the optimal

fect the output; the number of nodes in the outpuigentification of a subset of features out of thi

layer is determined by the number of quantifesf
interest to the problem; and the number of nodes i
the hidden layer in general is kept as low as ptessi
since the higher the number of hidden nodes th

originally available ih < M) may increase the inter-
Polation capabilities of the metamodel (Zio et al.

2006).
e



The problem of feature selection is here formulatb CASE STUDY
ed as an optimization problem. In this work, we se-
lect the important features within a wrapper ap\We consider the non-linear soil behavior on the
proach where the feature selector behaves as saismic response of a two-story masonry structures
wrapper around the specific training algorithm usedounded on a rigid shallow foundation.
to construct the regression model. In this pager, t In Section 5.1, the description of the specific-sys
feature selector is represented by a Genetic Algdem studied is given; in Section 5.2, the result$so
rithm (GA) and the metamodel is an Artificial Neu- evaluation are provided, together with some ciitica
ral Network (ANN) trained by error-back propaga-considerations.
tion.

The feature subsets are compared using as crite -'1 c tudv d it
on the performance achieved by the ANN, i.e., the" ase study description
Root Mean Square Error (RMSE) on the test dat&igure 3 shows the masonry building analyzed in
set; obviously, the objective of the GA searchass t this work. The total height of the building is45m,
find the feature subset for which the accuracyhef t the width is 50 mand the thickness isT6 m. With
ANN is maximized, i.e., the RMSE is minimized. these characteristics the fundamental period of the
The inclusion or not of a feature in the subsetlman structure Tstr) is equal to A9 s. This structure is
encoded in terms of a binary variable which takesnodelled using three different kinds of elements,
value 1 or O, respectively. Fbt features, the size of beam-columns and diagonal struts describing the
the binary vector search spaceI§ thus an exhaus- structural behavior and strengthless solid elements
tive search is impractical unleskis small. represent the masonry mass. The frame’s structural

Let us define the total number bf-dimensional elements are modelled by plastic hinge beam-
training and validation (input-output) data as e column elements. The behavior of this structure is
A, the binary vector of dimensid¥l as the transfor- simulated on the basis of non-linear dynamic Finite
mation vectorV, and the number of 1's i as the Element (FE) analysis. Further details about the ma
numberm of selected featuresn(< M). The GA cre- sonry characteristics and the Finite Element Model
ates a population of competing transformation vec(FEM) are not reported here for brevity sake, the i

torsV, i =1, 2, ..., which are evaluated by the fol-terested reader is referred to (Lopez-Caballeral.et
lowing steps (see Figure 2): 2011).
(a) The vectowV; is applied to each pattern of the
setA to obtain a subsd that represents the Loaded beam elements
total number ofn-dimensional data. ~

(b) The seB of reduced features is the new input
to the ANN. The network is trained, validat-
ed and tested. The RMSE on the test data set
is computed.

The procedure is repeated until the minimum val-
ue of the RMSE on the test data set is found by the
GA.

Notice that the GA searches also for the optimal
number of hidden neuroni, since it influences the
performance of the ANN (see Section 3).

AN

Strut elements Beam elements

Figure 3. Building scheme.

FEATURE SELECTOR

, , In order to define appropriate ground motions to
Genetic Algorithm

Original population of Transformed the non-linear dynamical analysis, a selectionGf 1
patterns chlomosomes patterns recorded accelerograms from the Pacific Earthquake
vl Engineering Research Center (PEER) database have
B=V.(A) been used as inputs to the model. The events range
A h between 5.2 and 7.6 in magnitude and the recordings
hmﬁl?ﬁlﬁfh fr have site-to-source distances from 15 to 50 km and
Dim (4) = M Dim (B) = m dense-to-firm conditions (i.e., 360 m/sV&zo < 800
m/s, whereVszois the average shear wave velocity in
Optimization criteria: min(RMSE _test) the upper 30 m)

(minimization of the Root Mean Squared Error on (he (esl)

The information carried by each single earth-
Figure 2. Structure of the Genetic Algorithm andtifAaial guake signal has been synthetized by the 13 IM pa-
Neural Network based feature selection. rameters reported in Table 1. These areMh@M =

13) model inputs considered)(




RMSE evaluated on the test turns out to be equal to
Table 1. IM earthquake parameters (model inp¥ts: y;, V», 0.101.

e Y= 19- Table 3 shows the RMSE of the training, valida-
Vi arias Arias intensity tion and test data sets by performing-#ld cross-
y. PSA(T,) spectral acceleration at the first-mode period Vvalidation of the ANN considering tha = 6 inputs
of the structure selected by the wrapper approach.
Y3 Tnm mean period
Ya  Gmax maximal outcropping acceleration Table 2. RMSE of the cross validation of the ANNsiolering
ys Tp predominant period M = 13 inputs.
Vs  Dsgs significant duration
V7 lims root-mean-square intensity RMSE
Vs Tua period of equivalent harmonic wave Inputs Y1, Y2, -o0y Y13
Yo  pgVv peak ground velocity Training 0.12¢
Yio ID Cosenza and Manfredi dimensionless index Validation 0.15¢
yi1 Sl spectral intensity Tes 0.15¢
yi2 PSV spectral velocity at the first-mode period of
the structure Table 3. RMSE of the cross validation of the ANMsidlering
yiz Sd spectral displacement at the first-mode period m = 6 inputs selected by the wrapper approach.
of the structure RMSE
Inputs » Y2 Y3 Y5, Yo,
In the following, we refer to the model inputs by Trﬂmmc Y2 zflyzsg Yo
their numbers (i.e.y1, V2, Y3 ...) instead of their Validatior 0.141
name [arias, PSA(Ey), Tm, ...) for brevity. Tes 0.14;

Notice that the GA-searching scheme explored
5.2 Results here screens unimportant features on the basiseof o
In order to train, validate and test the ANN, tif&81 single objective function that is the minimizatioh
data are partitioned as follows: 70% to the trajnin the RMSE on the test data set. Thus, this single ob
set (i.e., 118 data), 15% to the validation set,(R5 jective optimization does not guarantee that the
data) and 15% to the test set (i.e., 25 data). ddtia number of features selected is the minimum possi-
partition is kept for all the following analyses. ble.

As a first analysis, the ANN has been trained, val- Looking at the correlation among the= 6 fea-
idated and tested considering all teinputs. The tures selected, it can be noticed that inguand in-
number of nodes in the hidden layer has been chos@hit y11 are strongly correlated (i.e., correlation coef-
equal to 61f = 6) since (i) the number of parametersficient equal to 0.97). This may suggest that ohe o
that have to be estimated in this case is 91 that the two can be unnecessary and therefore neglected.
lower than the total number of training data (118),Table 4 shows the comparison between the RMSE
and (i) the network thereby obtained provides thevalues by performing k-fold cross-validation of the
lowest Root Mean Square Error (RMSE) on the valANN consideringn = 5 inputs, that are inpug, y»,
idation data set. Y3 ¥s, Yo (first column) and inputgs, yo, ¥a, ¥s, Y11

Table 2 shows the RMSE on the training, valida{second column). It can be noticed that the RMSE
tion and test data sets by performing-fold cross on the test removing the inpys is 0.140 that is
validation (Arlot & Celisse 2010)f the ANN con- lower than the RMSE on the test removing the input
sideringM = 13 inputs. The-fold cross validation Y11 (RMSE = 0.162). This value is also lower than
consists in partitioning ik folds the data set obtain- the RMSE on the test considering the= 6 features
ing by joining the training and validation datasset selected by the wrapper approach (see Table 3).
and consideringk-1 folds for the training and the  Thus, since the ANN provides a better perfor-
remaining one for validation. The process is repeatnance considering the inpws, y», Y3, ys andyi,
edk times: at each repetition the performance of thave consider them as the optimal feature subset for
ANN is calculated. Finally, thé results from the the following analyses.
folds are averaged to produce a single RMSE esti-
mation. Table 4. RMSE of the cross validation of the ANNsiolering

Then, the procedure of Section 4 has been appli€lf MPULYL Y Yar ¥s: Yo (first column) andys, ¥z, e Ys, Yia
! Second column).

to optimally reduce the number of features. The in- RMSE RMSE
puts selected amn = 6 and they correspond to the |npute V1, Yor Var Vs, Vo V1, Yor Var Vs, Vi
iINputsys, Yo, Y3, Y5, Yo andyis (i.e., larias, PSA(Ey), Traininc 0.13¢ 0.13¢
Tm, Tp, pgv and S|, respectively). The number of Validatior 0.14¢ 0.15(
hidden nodes identified by the algorithm is 5. The Tes 0.16: 0.14(




Figure 4 shows the linear regression between the Finally, the network and the FEM outputs (i.e.,
network outputsiann (On the vertical axis) and the the displacemend) of the test data set have been
FEM outputSirew, i.€., the targets (on the horizontal plotted in Figure 5, left, with respect to the miode
axis), with respect to the training (Figure 4 agliv  input 1 {1 = laras). A damage threshold of 0.68*(
dation (Figure 4 b), test (Figure 4 c) and therenti = 0.63) has been considered to build the correspond
data set (Figure 4 d), considering the optimaluiesat ing fragility curves illustrated in Figure 5, right
subset previously identified. For a perfect fig tha- It can be noticed that the fragility curves areyver
ta should fall along a 1:1 line, where the networksimilar: the parameteks andf of the fragility curve
outputs are equal to the targets. In this casdijttie  estimated by the ANN are 1.0223 and 1.1749, re-
good for all data sets, since the correlation ¢oeff spectively; they are close to the ones obtainethey
cients,R, are all higher than 0.94. FEM (o = 0.9593 angg = 1.1593).

5ANN

5ANN

Training: R = 0.95568

+0.071

18H
16+

5ANN

5ANN

Validation: R = 0.94403

ANN =

JANN

Data

J
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0 I I I
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Figure 4. Linear regression between the networpwsatfun, on the vertical axis) and the FEM outpuigs(;, on the horizontal

axis).
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