A Product Integration type Method for solving Nonlinear Integral Equations in L

L Grammont, H Kaboul, M Ahues

To cite this version:
L Grammont, H Kaboul, M Ahues. A Product Integration type Method for solving Nonlinear Integral Equations in L. 2016. <hal-01269822>

HAL Id: hal-01269822
https://hal.archives-ouvertes.fr/hal-01269822
Submitted on 5 Feb 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A Product Integration type Method for solving Nonlinear Integral Equations in L^1

L. Grammonta,b, H. Kaboula,c, M. Ahuesa,d

aInstitut Camille Jordan, UMR 5208, CNRS-Université de Lyon
23 rue du Dr Paul Michelon, 42023 Saint-Étienne Cedex 2, France.
blaurence.grammont@univ-st-etienne.fr
chanane.kaboul@univ-st-etienne.fr
dmario.ahues@univ-st-etienne.fr

Abstract

This paper deals with nonlinear Fredholm integral equations of the second kind. We study the case of a weakly singular kernel and we set the problem in the space $L^1([a,b],\mathbb{C})$. As numerical method, we extend the product integration scheme from $C^0([a,b],\mathbb{C})$ to $L^1([a,b],\mathbb{C})$.

Keywords: Fredholm integral equation, product integration method, nonlinear equation.

1. Introduction

In this paper, we consider the fixed point problem

\[\text{Find } \varphi : \quad U(\varphi) = \varphi, \quad (1) \]

where U is of the form:

\[U(x) := K(x) - y \quad \text{for all } x \in \Omega. \quad (2) \]

The domain Ω of U is in $L^1([a,b],\mathbb{C})$ and $y \in L^1([a,b],\mathbb{C})$.

The operator K is of the following form:

\[K(x)(s) := \int_a^b H(s,t)L(s,t)N(x(t)) \, dt \quad \text{for all } x \in \Omega, \]

and $N : \mathbb{R} \rightarrow \mathbb{C}$ is twice Fréchet-differentiable and may be nonlinear.

This kind of equations are usually treated in the space of continuous functions $C^0([a,b],\mathbb{C})$. In [7], Atkinson gives a survey about the main numerical methods which can be applied to such integral equations of the second kind (projection method, iterated projection method, Galerkin’s method, Collocation method, Nyström method, discrete Galerkin method...) (see also[14]). The approximate solution φ_n of (1) is the solution of an approximate equation of the form :

\[\text{Find } \varphi_n \in L^1([a,b],\mathbb{C}) : \quad U_n(\varphi_n) = \varphi_n, \quad (3) \]

where

\[U_n(x) = K_n(x) - y_n, \]

K_n being an approximation of the operator K and y_n an approximation of y. For the classical projection method, $K_n = \pi_n K \pi_n$, where π_n is a projection onto a finite dimensional space, and $y_n = \pi_n y$. For the Kantorovich projection method, $K_n = \pi_n K$ and $y_n = y$. For the Iterated projection method, $K_n = K \pi_n$ and

Preprint submitted to Elsevier February 5, 2016
There exists a unique fixed point \(\psi \) of \(U \). Assume that \(\psi \) is an isolated fixed point of \(U \). Section 4 is devoted to the numerical implementation of the method and an illustration of our results. In Section 2, we recall the framework of the paper and the results needed to prove our main result. In Section 3, we present our main result. We prove the existence, the uniqueness and the convergence of our method between a product integration method and an iterated projection method for which the general theory is tackled. To prove the existence and the uniqueness of the approximate solution, we use a general result of Atkinson (see [6], Theorem 4 p 804) recalled in this paper too (see Theorem 2). Here, we assume that \(U_n(x) \) is of the form \(K_n(x) - y \) \((y_n = y)\).

Hypotheses:

(H1) \(\psi \) denotes a fixed point of \(U \). \(X \) is a complex Banach space, \(\Omega_r(\psi) \) is the open ball centered at \(\psi \) and with radius \(r > 0 \) of the space \(L^1([a, b], \mathbb{C}) \), \(U \) and \(U_n \), for \(n \geq 1 \), are completely continuous possibly nonlinear operators from \(\Omega_r(\psi) \) into \(X \).

(H2) \((U_n)_{n \geq 1}\) is a collectively compact sequence.

(H3) \((U_n)_{n \geq 1}\) is pointwise convergent to \(U \) on \(\Omega_r(\psi) \).

(H4) There exists \(r_\psi > 0 \), such that \(U \) and \(U_n \), for \(n \geq 1 \), are twice Fréchet differentiable on \(\Omega_{r_\psi}(\psi) \subset \Omega_r(\psi) \), and there exists a least upper bound \(M(\psi, r) \) such that

\[
\max_{x \in \Omega_r(\psi)} \{ ||U''(x)||, ||U''_n(x)|| \} \leq M(\psi, r).
\]

Theorem 1. Assume that (H1) to (H4) are satisfied and that \(1 \) is not an eigenvalue of \(U'(\psi) \). Then \(\psi \) is an isolated fixed point of \(U \). Moreover, there is \(\epsilon \) in \(]0, r_\psi[\) and \(n_\epsilon > 0 \) such that, for all \(n \geq n_\epsilon \), \(U_n \) has a unique fixed point \(\psi_n \) in \(\Omega_{\epsilon}(\psi) \). Also, there is a constant \(\gamma > 0 \) such that

\[
||\psi - \psi_n|| \leq \gamma ||U(\psi) - U_n(\psi)|| \quad \text{for} \ n \geq n_\epsilon.
\]

Proof: See Theorem 4 in [6].

To prove that the assumptions (H1) and (H2) are satisfied in our case, we use the Kolmogorov-Riesz-Fréchet theorem, recalled here below.
Theorem 2. (Kolmogorov-Riesz-Fréchet) Let F be a bounded set in $L^p(\mathbb{R}^q, \mathbb{C})$, $1 \leq p \leq +\infty$. If
\[
\lim_{\|h\| \to 0} \|\tau_h f - f\|_p = 0
\]
uniformly in $f \in F$, where
\[
\tau_h f(\cdot) := f(\cdot + h),
\]
then the closure of $F|_\Omega$ is compact in $L^p(\Omega, \mathbb{C})$ for any measurable set $\Omega \in \mathbb{R}^p$ with finite measure.

In our error estimation analysis, we need to define the following quantities:

The oscillation of a function x in $L^1([a, b], \mathbb{C})$, relatively to a parameter h, is defined by
\[
w_1(x, h) := \sup_{|u| \in [0, |h|]} \int_a^b |\tilde{x}(v + u) - \tilde{x}(v)| dv,
\] (5)
where
\[
\tilde{x}(t) := \begin{cases} x(t) & \text{for } t \in [a, b], \\ 0 & \text{for } t \notin [a, b]. \end{cases}
\]

The modulus of continuity of a continuous function on $[a, b] \times [a, b]$, relatively to a parameter h, is defined by
\[
w_2(f, h) := \sup_{u, v \in [a, b]^2, |u - v| \leq |h|} |f(u) - f(v)|.
\] (6)

Lemma 1. For all x in $L^1([a, b], \mathbb{C})$,
\[
\lim_{h \to 0} w_1(x, h) = 0.
\]

For all f in $C^0([a, b]^2, \mathbb{C})$,
\[
\lim_{h \to 0} w_2(f, h) = 0.
\]

Proof: See [1].

3. Product integration in L^1

Let π_n be the projection defined with a uniform grid as follows:
\[
\forall i = 0, \ldots, n, \quad t_{n,i} := a + ih_n,
\]
\[
h_n := \frac{b - a}{n}.
\]

For $i = 1, \ldots, n$,
\[
\forall x \in L^1([a, b], \mathbb{C}), \pi_n(x)(t) := \frac{1}{h_n} \int_{t_{n,i-1}}^{t_{n,i}} x(v) dv = c_{n,i}, \ t \in [t_{n,i-1}, t_{n,i}].
\]

It is obvious that $\|\pi_n h\| \leq \|h\|$ and $\|\pi_n\| = 1$. We also have
\[
\pi_n \xrightarrow{p} I,
\]
where \xrightarrow{p} denotes the pointwise convergence and I the identity operator. In fact, (see [1]),
\[
\|\pi_n(x) - x\| \leq 2w_1(x, h_n)
\] (7)

3
To approximate problem (1), we define the operator

\[K_n(x)(s) := \int_a^b H(s, t) [L(s, t)]_n N(\pi_n(x)(t)) \, dt, \]

where, \(\forall s \in [a, b], \forall i = 1, \ldots, n: \)

\[[L(s, t)]_n := \frac{1}{h_n} ((t_{n,i} - t)L(s, t_{n,i-1}) + (t - t_{n,i-1})L(s, t_{n,i})) \]

for \(t \in [t_{n,i-1}, t_{n,i}] \).

Consequently, the approximate operator \(U_n \) will be defined by

\[U_n(x) := K_n(x) - y. \] (8)

Notations:

\(\| \cdot \| \) denotes the norm of the underlying vector space, whatever it may be. As usual \(K' \) denotes the first order Fréchet-derivative of \(K \), and \(K'' \) its second order Fréchet-derivative.

Let us define the following operator \(A_0 \):

\[A_0(x) : s \mapsto \int_a^b |H(s, t)||N(x(t))| \, dt, \]

provided that the integral exists.

We make the following assumptions on \(L, H \) and \(N \):

(P1) \(L \in C^0([a, b]^2, \mathbb{C}) \) and

\[c_L := \max_{s, t \in [a, b]} |L(s, t)|. \]

(P2) There exists \(r > 0 \) such that, \(\Omega_r(\varphi) \subset \Omega \), and there exist \(m_0 > 0, M_0 > 0, M_1 > 0, M_2 > 0, C_1 > 0, C_2 > 0, M > 0 \) and \(C > 0 \) such that:

(P2.1) \(\forall x \in \Omega_r(\varphi), A_0(x) \in L^1 \) and \(\forall n \in \mathbb{N}, A_0(\pi_n \varphi) \in L^1 \) and

\[\sup_{x \in \Omega_r(\varphi)} \| A_0(x) \| \leq M_0, \]

\[\sup_{x \in \Omega_r(\varphi)} \| A_0(\pi_n(x)) \| \leq m_0. \]

(P2.2) \(K \) is twice Fréchet-differentiable and

\[\sup_{x \in \Omega_r(\varphi)} \| K'(x) \| \leq M_1, \]

\[\sup_{x \in \Omega_r(\varphi)} \| K''(x) \| \leq M_2. \]

(P2.3) For \(n \) large enough,

\[\sup_{n \in \mathbb{N}} \| K'_n(\varphi) \| \leq C_1, \]

\[\sup_{x \in \Omega_r(\varphi)} \| K''_n(x) \| \leq C_2. \]
Proof: \(\forall x \in \Omega_r(\varphi) \), from the second order Taylor expansion with integral remainder we get
\[
\|U(x)\| \leq \|K(x)\| + \|y\| \leq \|K(\varphi)\| + \|K'(\varphi)(x - \varphi)\| + \frac{1}{2} \sup_{a \in \Omega_r(\varphi)} \|K''(u)\| \|x - \varphi\|^2 + \|y\|,
\]
so that
\[
\|U(x)\| \leq \|K(\varphi)\| + rM_1 + \frac{1}{2}r^2M_2 + \|y\|. \tag{9}
\]
This proves that \(U \) is defined from \(\Omega_r(\varphi) \) into \(L^1([a,b], \mathbb{C}) \).

Let \(B \) be a subset of \(\Omega_r(\varphi) \) and define \(W := \tilde{U}(B) \), where
\[
\tilde{U}(x)(s) := \begin{cases} U(x)(s) & \text{for } s \in [a,b], \\ 0 & \text{for } s \notin [a,b]. \end{cases}
\]
From (9), \(W \) is bounded in \(L^1(\mathbb{R}, \mathbb{C}) \). Let us prove that
\[
\lim_{h \to 0} \|\tau_h f - f\| = 0 \quad \text{uniformly in } f \in W.
\]
\[
\|\tau_h \tilde{U}(x) - \tilde{U}(x)\| \leq cL \int_a^b \int_a^b |\tilde{H}(s + h, t) - \tilde{H}(s, t)||N(x(t))| \, dt \, ds
\]
\[
+ \int_a^b \int_a^b |L(s + h, t) - L(s, t)||\tilde{H}(s, t)||N(x(t))| \, ds \, dt
\]
\[
\leq cLw_H(h)C + 2w_2(L, h)||A_0(x)||
\]
\[
\leq cLw_H(h)C + 2w_2(L, h)M_0.
\]
Hence
\[
\lim_{h \to 0} \sup_{x \in \Omega_r(\varphi)} \|\tau_h \tilde{U}(x) - \tilde{U}(x)\| = 0.
\]
By the Kolmogorov-Fréchet-Riesz theorem, \(U(B) = W|_{[a,b]} \) has a compact closure, thus \(U \) is compact. As \(K \) is continuous, \(U \) is continuous.
Proposition 2. The sequence \((U_n)_{n \geq 1}\) satisfies \(U_n \xrightarrow{p} U\) on \(\Omega_r(\varphi)\).

Proof: For all \(x \in \Omega_r(\varphi)\),

\[
\|U_n(x) - U(x)\| \leq \int_a^b \left| \int_a^b ([L(s,t)]_n - L(s,t))H(s,t)N(\pi_n(x)(t))\right| dt|ds \\
+ \int_a^b \left| \int_a^b H(s,t)L(s,t)(N(\pi_n(x)(t)) - N(x(t)))\right| dt|ds
\]

\[
\leq 2w_2(L, h_n)\|A_0(\pi_n(x))\| + \|K(\pi_n(x)) - K(x)\|
\leq 2w_2(L, h_n)\|m_0 + \|K'(x)\|\|\pi_n(x) - x\|
\]

\[
+ \frac{1}{2}\|\pi_n(x) - x\|^2 \sup_{v \in \Omega_r(\varphi)} K''(v)
\]

\[
\leq 2w_2(L, h_n)\|m_0 + M_1\|\|\pi_n(x) - x\| + \frac{1}{2}M_2\|\pi_n(x) - x\|^2.
\]

Hence

\[
\|U_n(x) - U(x)\| \leq 2w_2(L, h_n)\|m_0 + M_1\|\|\pi_n(x) - x\| + \frac{1}{2}M_2\|\pi_n(x) - x\|^2. \quad (10)
\]

As \(\pi_n \xrightarrow{p} I\), \((U_n)_{n \geq 1}\) is pointwise convergent to \(U\).

Proposition 3. If the properties (P1) and (P2) are verified, then \(U_n\) is a continuous compact operator from \(\Omega_r(\varphi)\) into \(L^1([a, b], \mathbb{C})\), and \((U_n)_{n \geq 1}\) is a collectively compact sequence.

Proof: \(U_n\) is continuous on \(\Omega_r(\varphi)\) because \(K_n\) is Fréchet-differentiable.

Let us prove that \((U_n)_{n \geq 1}\) is collectively compact. This is equivalent to prove that

\[
F := \bigcup_{n \geq 1} U_n(B)
\]

is relatively compact for all bounded subset \(B\) of \(\Omega_r(\varphi)\). We define the subset \(E\) by

\[
E := \bigcup_{n \geq 1} \tilde{U}_n(B),
\]

where

\[
\tilde{U}_n(x)(s) := \begin{cases}
U_n(x)(s) & \text{for } s \in [a, b], \\
0 & \text{for } s \notin [a, b].
\end{cases}
\]

Then

\[
\|\tilde{U}_n(x)\| \leq \|K_n(x) - K_n(\varphi)\| + \|K_n(\varphi)\| + \|y\|
\leq \|K_n'(\varphi)(x - \varphi) + \int_0^1 (1-t)K_n''(\varphi + t(x-\varphi))(x-\varphi, x-\varphi) dt\| + \|K_n(\varphi)\| + \|y\|
\leq \|K_n'(\varphi)(x - \varphi)\| + \frac{1}{2} \sup_{v \in \Omega_r(\varphi)} K_n''(v)||x - \varphi||^2 + \|K_n(\varphi)\| + \|y\|
\leq r\|K_n'(\varphi)\| + \frac{r^2}{2}C_2 + \|K_n(\varphi)\| + \|y\|
\leq rC_1 + \frac{r^2}{2}C_2 + c_Lm_0 + \|y\|,
\]

6
hence E is uniformly bounded.

For all $x \in \Omega_r(\varphi)$,

$$
\| \tau_h \tilde{U}_n(x) - \tilde{U}_n(x) \| = \int_a^b \int_a^b [\tilde{H}(s + h, t)[\tilde{L}(s + h, t)]_n - \tilde{H}(s, t)[\tilde{L}(s, t)]_n] N(\pi_n(x)(t)) dt | ds \\
\leq c_L \int_a^b \int_a^b |\tilde{H}(s + h, t) - \tilde{H}(s, t)| dt | ds \\
+ \int_a^b \int_a^b [|\tilde{L}(s + h, t)]_n - [\tilde{L}(s, t)]_n |\tilde{H}(s, t)| N(\pi_n(x)(t))| dt | ds \\
\leq c_L Mw_H(h) + 2w_2(L, h)m_0.
$$

Thus, by the Kolmogorov-Fréchet-Riesz theorem, $F := E|_{[a,b]}$ has a compact closure, and $(U_n)_{n \geq 1}$ is collectively compact.

Theorem 3. Assume that 1 is not an eigenvalue of $U'(\varphi)$, and that (P1) and (P2) are verified. Then φ is an isolated fixed point of U. Moreover there are $\epsilon \in [0, r]$ and $n_{\epsilon} > 0$ such that, for every $n \geq n_{\epsilon}, U_n$ has a unique fixed point φ_n in $\Omega_\epsilon(\varphi)$. Also, there is a constant $\gamma > 0$ such that, for $n \geq n_{\epsilon}$,

$$
\| \varphi - \varphi_n \| \leq \gamma(2w_2(L, h_n)m_0 + 2M_1 w_1(\varphi, h_n) + 2M_2 w_1^2(\varphi, h_n))
$$

(11)

Proof: By Proposition 1, Proposition 2, and Proposition 3, conditions (H1) to (H4) in Theorem 1 are satisfied. The estimation is obtained by (4), (10) and (7).

4. Implementation and numerical evidence

The approximate solution is the exact solution of the equation

$$
K_n(\varphi_n) - y = \varphi_n,
$$

(12)

where

$$
K_n(\varphi_n)(s) := \sum_{j=1}^{n} w_{n,j}(s) N(c_{n,j}),
$$

$$
w_{n,j}(s) := \int_{t_{n,j-1}}^{t_{n,j}} H(s, t)[L(s, t)]_n dt,
$$

$$
c_{n,j} := \frac{1}{h_n} \int_{t_{n,j-1}}^{t_{n,j}} \varphi_n(s) ds.
$$

For $i = 1, \ldots, n$, integrating (12) over $[t_{n,i-1}, t_{n,i}]$ and dividing by h_n, we obtain the following nonlinear system

$$
\sum_{j=1}^{n} \frac{1}{h_n} \int_{t_{n,i-1}}^{t_{n,i}} w_{n,j}(s) ds N(c_{n,j}) - \frac{1}{h_n} \int_{t_{n,i-1}}^{t_{n,i}} \varphi_n(s) ds = \frac{1}{h_n} \int_{t_{n,i-1}}^{t_{n,i}} y(s) ds
$$

for $i = 1, \ldots, n$.

7
Set

\[Y_n(i) := \frac{1}{h_n} \int_{t_{n,i-1}}^{t_{n,i}} y(s)ds, \]
\[A_n(i,j) := \frac{1}{h_n} \int_{t_{n,i-1}}^{t_{n,i}} w_{n,j}(s)ds, \]
\[C_n := \begin{bmatrix} c_{n,1} & \cdots & c_{n,n} \end{bmatrix}. \]

We can rewrite the nonlinear system in the matrix form

\[A_n N(C_n) - C_n = Y_n, \] (13)

where

\[N(C_n) := \begin{bmatrix} N(c_{n,1}) \\ \vdots \\ N(c_{n,n}) \end{bmatrix}. \]

Let \(F_n : \mathbb{C}^{n\times 1} \to \mathbb{C}^{n\times 1} \) be the operator defined by

\[F_n(X) := A_n N(X) - X - Y_n, \quad X \in \mathbb{C}^{n\times 1}. \]

Newton’s method will be applied to solve numerically the nonlinear problem

\[F_n(C_n) = 0. \]

Tables 1, 2 and 3 show the convergence of Newton’s sequence for \(n = 10 \) and \(n = 100 \). The assumptions of Theorem 3 are satisfied since \(N, N' \) and \(N'' \) are bounded.

Example 1

For all \(s, t \in [0, 1] \), and \(u \in \mathbb{R} \),

\[L(s, t) := 1, \]
\[H(s, t) := -\log(|s - t|), \]
\[N(u) := \sin(\pi u) \text{ or } \sin(2\pi u). \]

We chose

\[\varphi(s) := 1, \quad s \in [0, 1], \]

\[y(s) := -1, \quad s \in [a, b]. \]

Example 2

For all \(s, t \in [0, 1] \), and \(u \in \mathbb{R} \),

\[L(s, t) := 1, \]
\[H(s, t) := -\log(|s - t|), \]
\[N(u) := \sin(\pi u), \]
\[\varphi(s) := \begin{cases} 1 & \text{for } s \in [0, 0.5], \\ 2 & \text{for } s \in [0.5, 1], \end{cases} \]
\[y(s) := \begin{cases} -1 & \text{for } s \in [0, 0.5], \\ -2 & \text{for } s \in [0.5, 1]. \end{cases} \]
Table 1: Relative errors for $N(u) = \sin(\pi u)$ in Example 1

<table>
<thead>
<tr>
<th>k</th>
<th>$\frac{|C^{(k)}_1 - C_1|}{|C_1|}$</th>
<th>$\frac{|C^{(k)}100 - C{100}|}{|C_{100}|}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.5e-01</td>
<td>3.5e-01</td>
</tr>
<tr>
<td>2</td>
<td>1.9e-01</td>
<td>1.9e-01</td>
</tr>
<tr>
<td>3</td>
<td>2.3e-02</td>
<td>2.3e-02</td>
</tr>
<tr>
<td>4</td>
<td>4.9e-05</td>
<td>5.1e-05</td>
</tr>
<tr>
<td>5</td>
<td>8.2e-13</td>
<td>9.4e-13</td>
</tr>
<tr>
<td>6</td>
<td>2.9e-16</td>
<td>1.3e-15</td>
</tr>
</tbody>
</table>

Table 2: Relative errors for $N(u) = \sin(2\pi u)$ in Example 1

<table>
<thead>
<tr>
<th>k</th>
<th>$\frac{|C^{(k)}10 - C{10}|}{|C_{10}|}$</th>
<th>$\frac{|C^{(k)}100 - C{100}|}{|C_{100}|}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.5e-01</td>
<td>1.4e-02</td>
</tr>
<tr>
<td>11</td>
<td>1.5e-01</td>
<td>6.9e-03</td>
</tr>
<tr>
<td>12</td>
<td>1.4e-01</td>
<td>2.3e-03</td>
</tr>
<tr>
<td>13</td>
<td>1.5e-01</td>
<td>1.5e-04</td>
</tr>
<tr>
<td>14</td>
<td>1.5e-01</td>
<td>4.2e-08</td>
</tr>
<tr>
<td>15</td>
<td>1.5e-01</td>
<td>1.6e-13</td>
</tr>
<tr>
<td>16</td>
<td>1.5e-01</td>
<td>7.3e-14</td>
</tr>
</tbody>
</table>

Table 3: Relative errors of the Newton iterates in Example 2

<table>
<thead>
<tr>
<th>k</th>
<th>$\frac{|C^{(k)}10 - C{10}|}{|C_{10}|}$</th>
<th>$\frac{|C^{(k)}100 - C{100}|}{|C_{100}|}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.7e-02</td>
<td>5.6e-02</td>
</tr>
<tr>
<td>2</td>
<td>3.7e-02</td>
<td>2.1e-02</td>
</tr>
<tr>
<td>3</td>
<td>1.9e-02</td>
<td>1.6e-03</td>
</tr>
<tr>
<td>4</td>
<td>1.6e-03</td>
<td>5.5e-07</td>
</tr>
<tr>
<td>5</td>
<td>6.8e-07</td>
<td>1.9e-15</td>
</tr>
</tbody>
</table>
The accuracy of the approximation is limited by n (see Table 2 for $n = 10$), especially when $N(u) := \sin(2\pi u)$. In order to overcome this difficulty, we are working on an approach which consists in linearizing the nonlinear equation by a Newton-type method in infinite dimension, and then applying the product integration method to the linear equations issued from the Newton’s method. We expect that the accuracy will not be n-sensitive.

Acknowledgements

The first and the third authors were partially supported by an Indo-French Centre for Applied Mathematics (IFCAM) project.

[1] M. Ahues, L. Grammont and H. Kaboul, An extension of the product integration method to L^1 with application to astrophysics, HAL Id : hal-01232086, version 1