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Abstract

We analyse the splitting algorithm performance in the estimation of rare event probabilities and this
in a discrete multidimensional framework. For this we assume that each threshold is partitioned into
disjoint subsets and the probability for a particle to reach the next threshold will depend on the starting
subset. A straightforward estimator of the rare event probability is given by the proportion of simulated
particles for which the rare event occurs. The variance of this estimator we get is the sum of two
parts: one part resuming the variability due to each threshold and a second part resuming the variability
due to the thresholds number. This decomposition is analogous to that of the continuous case. The
optimal algorithm is then derived by cancelling the first term leading to optimal thresholds. Then we
compare this variance with that of the algorithm in which one of the threshold has been deleted. Finally,
we investigate the sensitivity of the variance of the estimator with respect to a shape deformation of
an optimal threshold. As an example, we consider a two-dimensional Ornstein-Uhlenbeck process with
conformal maps for shape deformation.

Keywords: splitting, rare event probability estimation, Monte Carlo, branching process, simulation,
variance reduction, first crossing time density, conformal maps

1. Introduction

The risk modelling approach consists in firstly formalizing the system considered and secondly
using mathematical or simulation tools to obtain some estimates (Aldous, 1989; Sadowsky, 1996).
Analytical and numerical approaches are useful, but may require many simplifying assumptions.
On the other hand, Monte Carlo simulation is a practical alternative when the analysis calls
for fewer simplifying assumptions. Nevertheless, obtaining accurate estimates of rare event
probabilities, say about 107? to 107'2, using traditional techniques require a huge amount of
computing time.

Many techniques for reducing the number of trials in Monte Carlo simulation have been pro-
posed, like importance sampling or trajectory splitting (L’Ecuyer et al. (2009)). In the splitting
technique, we suppose there exists some well identifiable intermediate states that are visited
much more often than the target states themselves and behave as gateways to reach the rare
event. Thus we consider a decreasing sequence of events B; leading to the rare event B:

B:=By+1 CByC...CBy. (1)

Then p := P(B) = P(B|Ba )P(Bay|Bar—1) - - . P(Ba|B1)P(B1) where on the right hand side, each
conditioning event is "not rare”. These conditional probabilities are in general not available
explicitly. Instead, we know how to make evolve the particles from level B; to the next level
Bi+1 (e.g. Markovian behaviour).
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The principle of the algorithm is at first to run simultaneously several particles starting from
the level B;; after a while, some of them have evolved ”badly”, the other have evolved ”well” i.e.
have succeeded in reaching the threshold B;; 1. Then "bad” particles are moved to the position
of the ”good” ones and so on until B is reached. In such a way, the more promising particles
are favoured. Examples of this class of algorithms can be found in Aldous and Vazirani (1994)
with the ”go with the winners” scheme, in Jerrum and Sinclair (1997) and Diaconis and Holmes
(1995) in approximate counting and in a more general setting in Doucet et al. (2001); Del Moral
(2004); Cérou and Guyader (2005); Del Moral and Garnier (2005); Morio et al. (2014) .

The difficulty comes from the complexity of the dynamics of the particles. A simpler analysis can
be done focusing only on the underlying Markov chain that represents the changes of thresholds.
In this technique, we make a Bernoulli trial to check whether or not the set event By has occurred.
In that case, we split this trial in R; Bernoulli subtrials and for each of them we check again
whether or not the event By has occurred. This procedure is repeated at each level, until B is
reached. If an event level is not reached, neither is B, then we stop the current retrial. Using N
independent replications of this procedure, we have then considered N Ry ... Ry trials, taking
into account for example, that if we have failed to reach a level B; at the i-th step, the R; ... R/
possible retrials have failed. Clearly the particles reproduce and evolve independently.

An unbiased estimator of p is given by the quantity

Np

DM41 = ————
NHi]\il Ri,

where Np is the total number of trajectories having reached the set B. Considering that this
algorithm is represented by N independent Galton-Watson branching processes, as done in
Lagnoux (2006), the variance of pas4+1 can then be derived and depends on the probability
transitions and on the mean numbers of particles successes at each level. Leading by the heuristic
presented in Villén-Altamirano and Villén-Altamirano (1991, 1997), an optimal algorithm is
derived by minimising the variance of the estimator for a given budget (or computational cost).
This cost is defined as the expected number of trials generated during the simulation, each trial
being weighted by a cost function.

The optimisation of the algorithm suggests to take all the transition probabilities equal to a
constant and the numbers of splitting equal to the inverse of this constant Lagnoux (2006).
Then we deduce the number of thresholds M and finally the number N of replication. In fact,
optimal values are chosen in such a way to balance between the increase of the variance when
the number splitting is small and the exponential growth in computational effort when too much
splitting are used.

In this paper, we continue the multidimensional approach studied in Glasserman et al. (1998) and
Garvels (2000) mainly in order to obtain a new expression of the variance of the estimator analo-
gous to that of the continuous case (L’Ecuyer et al. (2009)). Thus, we assume that each threshold
is partitioned into r disjoint subsets and the probability for a particle starting from a threshold
to reach the next threshold will depend on the starting subset. Unlike the unidimensional case,
the hardness to reach the next threshold differs according to the starting subset; in some sense
the threshold is no longer an iso-probability level. In this context, the variance of the estimator
Paa1 is the sum of two parts: one part resuming the variability due to each threshold and a
second part resuming the variability due to the thresholds number (see Proposition 3.1). For
the unidimensional case, only the second term remains. The optimal algorithm is then derived
by cancelling the first term of the variance leading to iso-probability levels and by optimising
the other parameters as in the unidimensional case.



Furthermore, by introducing new operators, we obtain an alternative expression of the variance
which is more tractable when we wish to compare the variance of the estimators in an algorithm
with M thresholds with the variance in an algorithm in which one of the threshold has been
deleted. More precisely, we study the need of an intermediate threshold and derive a procedure
to detect whether we shall keep it or not. In order to obtain a simple criteria, we assume the
optimal shape of the thresholds of the optimal algorithm. Finally, we investigate the sensitivity
of the variance of pys1 with respect to a shape deformation of the threshold relatively to the
optimal shape.

The remainder of this paper is divided into five sections. In Sections 2—4 we present, analyse
and optimise the splitting algorithm in the multidimensional case. Finally, Sections 5 and 6 deal
with the sensitivity analysis of the variance as previously presented. More details and all the
proofs are postponed in the appendices.

2. Multilevel Splitting Algorithm

2.1. Definition of the thresholds and related tools

In order to estimate the probability p that a particle starting from a point in some state space F
reaches the critical subset B C FE, we use the so-called splitting algorithm based on the nested
sequence Bi, ..., By defined in (1). Moreover, each frontier OBy of By is partitioned into r

disjoint subsets, denoted 831?), such that

0B, =|JoBy), k=1,.. M.
=1

We assume that each 0By has the same number of subsets; this assumption is not restrictive as
one can see in the sequel. In any case, one can obviously rewrite the problem under concern in
this particular setting.

The random dynamics of the particle is modelled by a stochastic process Y = (Y;;¢t > 0) and
for k=1,...,M + 1, we define 7 as the first time that the particle hits 0B. Hence p can be
written as p = P(mpr41 < o0). For the sake of simplicity, we assume naturally that Y evolves
continuously and all the intermediate thresholds are hit if the last one is. In fact, the dynamics
under concern is not directly the particle one but rather the one of the embedded Markov chain
observed at each time the particle hits a frontier dBj,. This embedded Markov chain will be

denoted (Xk)o<k<ar+1- Thus, Xy = 4 if the particle at time 74 lies in 8Bl(j) ie. Y, € 8B,(:).

Measures 7y and functions fr. We define for any k = 1,..., M, a measure 7 on the frontier
0By, by

V(1) =P(Xy, =i 73 < 00).
This measure acts on the functions f defined on 0By by Vi (f) = E[f(Xk) ; 7 < oo] in such a

way that v, (1) = P(7; < 00) is the probability that the particle hits the event By (1 stands for
the unit function).

For any k = 1,..., M, we denote My, (resp. Fi) the set of measures (resp. functions) defined
on 0By. In particular, the functions f; € F; defined by

fe(@) =P(ryp1 < oo | Xp=i; 1, <00), k=1,....M



play a special role, since
Vk(fk) :Z’Yk(i)fk(i):]% k=1,...,M. (2)
i=1

In fact, f(7) quantifies the hardness to reach the target set B starting from 8B,(:) while v (7) . (7)

traduces the hardness to reach B passing by 831(;) and starting from O. Furthermore, for
k= 2,...,M, we introduce the operators P; right acting on Fj as an operation Fr — Fr_1
according to

Pk(f)(l) = E[f(Xk) y T < 00 ‘ Xp1=1; Tp1 < OO]

and left acting on My_; as an operation My_; — My, according to (uPy)(f) = p(Prf)-

Each operator Py is not Markovian, since the probability to reach 0Bk is not equal one; hence
we define g1 € Fr_1 by

gr—1(1) = Pr(1)(i) = P(1p, < 00 | Xp—1 =1 ; 71 < 00), (3)

for k =2,..., M. Remark that there is no need to define gp; since it would correspond to fas.
We easily get the following transport relations for k = 2,..., M,

Y = V—1Pr,  fr—1 = Pr(fx). (4)

The notation is summarized in Figure 1.

fi

fr—1 = Pe(fx)
0Bp41 Vr+1
Py,
0By, — Yk = Ye-1P%
Pr_1 igk—1
OB._1 ’I V-1

Qe

Figure 1: This figure summarizes the notation previously introduced.



Normalized measures pui. Since 7, is not a probability measure, we define its normalized version
. on OBy that acts on the functions f € Fi in the following way

_ w(f)

(assuming that the thresholds have been chosen such that (1) # 0 for all k). We notice that

=E[f(X) | 7 < od],

i (gr) = w = B(rjs1 < 00 | 7 < 00) (5)
and
pie(fr) = %}()1) =P(rar41 < 00 | T < 00).

Equation (4) induces the following scheme for the dynamics of py

~ Yk-1(1)
L = ety

(1) por—1P% (6)

pp—1Py = ————
pk—1(gr—1)

that leads to 1
V() = pk(f)m (1) H 1p(9p),
p=1

which applied successively to the functions f and fiy1 yields to ug(fi) = pr+1(fretr1) ik (gr)-

Convention. We extend the previous definitions to £ = 0 and k = M + 1. Considering that the
particles are generated at the same point O, we define Fy as the set of constant functions and in
particular fy = p and go = y1(1). Analogously Mg will represent the set of the Dirac measures
at O up to a constant. Hence vo(f) = f (and po = 10). Obviously, 70(1) = P(mp < 00) = 1.

In the same way, Basy1 is reduced to a unique point, denoted e.g. by w. Then Fj 41 is reduced
to the constant functions, with fa;41 = 1 and M4 is the set of the Dirac measures at w up
to a constant, with yar11(f) = fp (such as yar1(fa41) = Ym1(1) = p) and paa(f) = f.
We set also Pi(f) = v1(f) and Py1(f) = f X fur-

2.2. Multilevel Splitting Algorithm

To estimate the rare event probability we proceed according to the following algorithm:

Initialization: We perform independently N particles from the same starting point O. A ran-
dom number Z; of particles reach the threshold By, where Z; has a binomial distribution
with parameters NV and 71 (1). These Z; particles are spread over the subsets 8350 accord-
ing to a multinomial random variable (r.v.) Mult(Z1, p1). Let Z; be the corresponding

random vector (Z11, ..., Z1,).

Step n (2 < n < M): Each of the Z,,_; particles in 9B, is duplicated R,,—1 times; so that a
total number R,,_1Z,_1 of particles is achieved. These new particles evolve accordingly
to the dynamics of the original process and the number Z,; of particles reaching BB,(LJ )
is still a random number. Consider now the random vector Z, = (Z,1,...,Zn:). The
Zyj particles in B7(1j ) come from different subsets 837(21;
following sum

then we decompose Z,; in the
r .

Znj =Y Y, (7)
i=1

5



where quj is the number of particles from 637(21 and having reached 8B7(1j ) whose total

number Y,! = > =1 erj is a binomial r.v. with parameters R, —1Z(,_1); and gn,l(i).

We gather the numbers quj in a r x r tabular where each line Y = (Y,...,Y}),
conditionally to the knowledge of the total number Y, is distributed as a multlnomlal r.v.
with parameters Y,! and @, (i,-) where

Pn(ia )

Onlis) = Gn—1(1)

=P(X,=|Xpn1=1; T < 00).

In a nutshell, the random vector Z, can be expressed as the sum Z, = > .._; Y of

Yo Y

the random vectors Y! and the total number of particles at the end of step n is Z,
Zz ,J n] 22:1 Y;

Final step: Each of the Zy; particles in 9Bj; is duplicated Rj; times to get a total number
Ry Zyy of particles. These new particles evolve accordingly to the dynamics of the original
process and the Zjs41 particles having reached 0Bjs4+1 come from different subsets OBJ(\Z);
then we decompose Zjs41 in the following sum

Zyr =Y Yirn (8)

where Y}, 41 represents the number of particles from 831(\2) and having reached 0Bps1.
Conditionally to the random vector Zyy, the r.v.s Yy, 1, i =1,...,r are independent and
distributed as a binomial r.v. with parameters Ry;Zy;; and far(i). The set By being
reduced to a point, the result of this final step is simply the total number Zy; 1 of particles

in BM+1.

3. Algorithm analysis

3.1. A natural unbiased estimator of p

An estimator of the probability to hit dB,1 conditionally that 0B, has been hit is naturally
given by the ratio between the number of particles in 9B,+1 and R, times the number of
particles in 9B, from which we deduce a natural estimator of the probability of interest p

N M1 M1
— X Zn1 31 _ . 9
Par+1 = H RuZyn * RmZy  NRi...Ry ©)
Introducing the quantities ro = N and r,, = Ryrp—1, n =1,..., M, leads to Dyr+1 = Zpr+1/7m-

Then it is obvious to show that this estimator is unbiased. Indeed by conditioning, (8) yields

E[pM+1 72“—‘1 ZMz fM()



To derive the mean of Zy;, notice that E[Z;] = Nv1(j), j = 1,...,r. By a new conditioning,
we get that

E[Zy) = R1 > E[Z1|Pa(i, §) = NR1v2(j) = r172(4),
i=1
the last equality coming from (4). An induction principle allows us to establish that for n =
2,..., M,
E[Zn]] = Tn—l'Yn(j) (10)

that leads to E[pa4+1] = Z§:1 (G fau(G) =y (fmr) = p

3.2. The variance of the estimator

Proposition 3.1. The coefficient of variation is given by

Var(par41) _ i 1 ( 1 ) Var“’ﬂ f’“ +§ 1_”’“(9’“). (11)

p? = (1) \re-1 o —reve(1)  p(gr)

Introducing the operators ;11 defined, for f, g € Fiy1, byTiz1(f,9) = Piv1(f9)—Pit1(f) Pi+1(9),

we have
M

Var(B ) = 3~ (o (i) (12)
i=0

The variance is then split into two parts. The first sum outlines the variability due to the shape
of the thresholds 0By, (defined by the fi’s) whereas the second outlines the variability due to the
thresholds number M, replication numbers Ry and thresholds position (contained in the Py’s
and gg’s). Also we refer to Appendix A for more details on the operators I';11.

Comparison with other algorithms. Notice that for » = 1, the measures 43 and the functions fi
are constant. Since ,uk(gk) = Vk+1 / i, the expression of the variance becomes

~ M M
Var(péml) _ Z 1 — px(gr) _ Z:k <1 _ 1>

r
p o | kTk+1 =0 Ve+1 Yk

that corresponds to the expression established in Lagnoux-Renaudie (2008).

Furthermore, Formula (11) corresponds to equation (2.21) established in Garvels (2000) for an
algorithm with a single intermediate threshold. It also has been established in L’Ecuyer et al.
(2009); Cérou et al. (2011) in the general and continuous settings.

Finally, simple computation leads to the following expression

Var(Pari1) _ g~ 1 (1 _1>uﬁﬁ> <1 _1)
p? _;%(1) Th—1 Tk M%(fk;)+ pra o

that can be found in Glasserman et al. (1999).




8.8. The cost of the algorithm

The efficiency of the algorithm can be traduced in terms of the variance of the estimator that
must be the smallest possible under the condition that the cost (in terms of computer time for
example) remains finite. Our goal is then to derive the optimal parameters of the algorithm for
a fixed cost.
The total number of particles generated during the algorithm is the r.v. N+ R Z1+...+ Ry Zpy.
From (10), E[Z,] = mn—17n(1), the mean of the total number of particles generated by the
algorithm is
0

C](\/[)—i-l =179+ 7“1”)/1(1) + ...+ TM’)/M(l)
and can be considered as a natural cost.
Now we present a more realistic cost that takes into account the probability P (i, ) to reach
aB,(g ) from 8B](j). Actually, even if the algorithm presented here is based on the simulation of
multinomial r.v.s, the introduction of this new cost allows to consider the dynamics of a particle
between two successive thresholds through the functions gi. Thus we associate to each particle
from 8B,(€Z) a unitary cost cg (i) that depends on the starting threshold and the hardness g (i)
to succeed in reaching the next threshold. More precisely, we assume that

co =c(m(@)), i) =clgr(?), k=1,...,M,

where ¢ is a positive function, decreasing (the smaller the probability of success is the highest
the cost is) such that ¢(x) converges to a constant (in general small) when z tends to 1.

Proposition 3.2. The mean cost is given by

M r M
Crrsr = Neo+ Y Y mli)en(d) =D rnm(cn)- (13)
n=1  i=1 n=0

The approach presented here leads to a relatively simple formula for the total mean cost, similar
to the one used in Lagnoux-Renaudie (2008). The multidimensionality of the model is taken
into account through the function c,.

4. Algorithm optimisation

Before proceeding to the optimisation of the algorithm, we start recalling the general setting.

4.1. General setting

In many applications, the rare event probability p can be viewed as an overflow probability.
More precisely, let h be a real-valued measurable function defined on E and L > 0 be a given
threshold. Then p is rewritten as p = P(h(Y;) > L) where the process Y has been defined
in the Introduction. As a consequence, we can naturally use the function h to determine the
intermediate thresholds and apply the splitting methodology to the real-valued process Z defined
by Z; == h(Yy), for all ¢ > 0 (for simplicity Zy > 0). For the sake of simplicity we assume that
Z evolves continuously and all the intermediate thresholds are hit if the last one is.

However remark that the intermediate thresholds Ly, ..., Lyry1 for Z define splitting surfaces
0Bi, ..., 0Bpy4q for Y by 0B, = {y € E | h(y) = L }. Defining the levels 0By, in such a way
is not well adapted and is far to be optimal. Indeed, this methodology is geometrical and only



based on a level set without taking into account the probabilistic aspects. More precisely, it
seems natural to incorporate information of the hardness to reach the target set from any point
of the dBy,. This information is precisely given by the function f; introduced previously. So,
assuming the possibility to define a function f, named importance function, on the whole space
E by

f(x) =P(rapr41 < oo | starting from x),

we rather define 0By, as the set of the points © € E such that f(z) = Lj for some Lj € [0,1].
In some sense, we use iso-probability density levels as intermediate thresholds. Of course, the
difficulty here is to determine the function f, the thresholds number M and the values of L.
Nevertheless, there exists methods that allow to get estimators of f using a reverse time analysis
as proposed in Garvels (2000).

To illustrate the importance of a good choice of the intermediate thresholds, let us consider the
following example represented in Figure 2.

Example 4.1. With M =1 and a threshold 0B; partitioned in two subsets such that

y1(1) = 1072, ¥(2) = 0.5,
f1(1) =10"1 f1(2) =107,

we obtain p=1.5-1073 and v1(1) = 0.51.

Let us simulate particles starting from O. We expect that 51% of them reach the threshold 0B,
with 50% in 8B§2) and only 1% in 8B§1). Nevertheless among those in 0By, the particles in the
subset 839) have 100 times more likely to reach the target set than those in 8352). So, using
this design of OBy leads to simulate almost 50% of particles pointlessly. We see that using a

function fi = p/a, with a €]0,1[, implies that v(1) = a and all the particles in OBy then have
the same probability to reach the target set.

Rare event B
y=1L

Most likely path
to hit B -~

"Natural”
intermediate
threshold

y=1L/z

F -7 Optimal intermediate

threshold Most likely path to hit

the intermediate threshold

Figure 2: The crucial choice of the importance function on an example.

The construction of the importance function when the target probability has a large deviation
characterization is handled in Dean and Dupuis (2009). This context is also considered in Sad-
owsky (1996) and Remark 4.2. Nevertheless, it seems difficult to translate the results obtained
into the framework of this paper.



4.2. Optimisation

It is important to keep in mind Equation (11) and the fact that the variance of the pps41 can
be split in two parts: a first one resuming the variability due to the shape of the thresholds and
a second one resuming the variability due to the thresholds number, replication numbers and
thresholds position.

Furthermore, the splitting algorithm’s parameters are: the initial number N of particles, the
replication numbers Ry, ..., Ry, the number M of intermediate thresholds and their character-
istics (through the Py’s and the g’s).

Proposition 4.1. The parameters of the algorithm optimised by minimisation of the variance
of the estimator for a fized cost are the following:

(i) the functions fi so that they do not depend on the starting point in OBy;

(ii) the optimal values of the parameters N, M, {Rp}2L, and {Pk},]y;;l obtained in Lagnoua-
Renaudie (2008) for the unidimensional case (i.e. v =1). More precisely, N is related to
Cr41 and all the Ry’s are equal to a same value, say R which depends on N and Chryq.
Furthermore, in order to satisfy the tradeoff between a premature death of the algorithm
(R Pry1 < 1) and a prohibitive cost (RiPr+1 > 1), we need the condition RyPyiq = 1.
Then M is fized by the relation RpY/(M+1) = 1.

As expected, the optimal choice consists in taking the thresholds 0By in such a way that f is
constant. This is consistent with the observations of Section 4.1. Nevertheless, the difficulty
lies in the evaluation of the importance function f and so in the design of the thresholds. We
will see in Section 6 the impact of a non optimal choice on the variance and on the cost of the
algorithm.

If for some k, the function fi is constant, given that v;(fix) = p, we get the following identity
fr = p/7(1). Moreover, it comes from the definition of pj and Equations (A.2) and (5) that

Cr(fr) = gr—1(1 - gk_1)p2/’y,%(1) and
p* k-1 (ge—1(1 — gp—1))
V(1) pr—1(gr—1) '

Besides by (4), the function fx_; can be expressed as fr—1 = gr—1p/7k(1). Moreover, if fi_o is
also constant, then Py_1(gx—1) = 7 (1)/7k—2(1), and after calculus

Ye—2 (Dh—1(fre—1)) = p* [ L mer(GE) I ] )

Yr—1 (Te(fr)) =

Ye-1(1) pj_q(gk—1)  Ye—2(1)

Finally, if all the functions fi are constant, then the functions g are also constant: gp =
Yi+1(1)/7%(1) and as for the functions I'g1q(frs1):

B pQ 1 B 1
Liy1(fir1) = (@) [%H(l) %(1)] '

Remark 4.2. These results justify the choices done in the algorithm proposed in Miretskiy et al.
(2009). The authors assume that

" s ]
Jim logpp = —7(s) Vs ¢ A

where py represents the probability to reach the target event A starting from s, B the rarity
parameter and v is a decreasing function. The algorithm consists in taking:

10



the replication numbers (except the last one) all equal to R;

the number of thresholds np equals to | By(s)/log(R)|;

the frontier l, of the intermediate threshold Ly, equals to

{xED / ’y(s)—’y(:z)zglogR} k=0.. .np;

the last replication number equals to R’ = LeBV(S)*"B log RJ.

In other words, the authors equal all the replication numbers (excepted eventually the last one),
take the number of thresholds equal to the optimal one in Lagnouz-Renaudie (2008). Finally they
fiz all the thresholds in such a way that the decreasing rate y(s) is uniform over the thresholds
and the probability to reach the target set A starting from the k-th threshold depends on k but
not on the starting point of the frontier lj.

5. Sensitivity analysis: deletion of a threshold

Now, we study the sensitivity of Var(pasy+1) with respect to the number of thresholds. We
assume that the thresholds have the optimal shape: the functions f; are constant. It amounts
to work in the unidimensional setting. Optimally, the thresholds are such that all the transition
probabilities are equal, but p being unknown this value cannot be computed. Moreover, in
practice, the freedom of the choice of the thresholds can be limited by physical constraints.
Then we study the need of an intermediate threshold and derive a procedure to detect whether
we shall keep it or not.

5.1. Iterative expressions of variance and cost

The goal of this section is to compare the variance and the cost of the estimator obtained with
M thresholds with the ones obtained in the same setting but deleting the k-th threshold (thus
in a simulation with (M — 1) thresholds). In that we view, we reallocate the replication numbers
as following:

o for any j =1,...,k — 2, R; stays unchanged;
e Ry 1 is replaced by \p_1Ri_1Rg;
e and for any j =k,..., M — 1, R; is modified in \;R;1.

For instance, we can decide to keep all the R;’s unchanged so the replication numbers are
Ry,...,R;_1, Rigy1..., Ry, or to report the replication number of the k-th threshold on the
k — 1-th’s, the replication numbers being Ry, ..., Rx—1 Rk, Riy1,-.-, Ry

Proposition 5.1. The variance of the estimator pyrr1 with M thresholds is the sum of the

variance of the estimator ﬁ(]v_[k) obtained by running the algorithm with the k-th threshold deleted
(thus with (M — 1) intermediate thresholds) and the contribution of the k-th threshold:

Var (P 1) = Var (55,7 + r:l (1 _ Aklle) oot (Tr(fe))
Mo 1
+) - <1 “ A > ¥i (Lit1(fi+1))
=k J-1
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where Ay = H?:k—l Aj.

Similarly, the cost Cpry1 given in (13) is the sum of the cost C'](V;k), computed with M — 1
intermediate thresholds, and the contribution of the k-th threshold:

M

Cris1 = OS5+ rmt P (1) — Rilk—1vim1 (@) + raye(cn) + > rle) (L= Aja),
j=kt1

where ¢;_1 stands for the cost of a particle going from the (k — 1)-th threshold to the k-th in an
algorithm with (M — 1) levels.

The free parameters of the new algorithm with M — 1 intermediate thresholds are {Aj,l}j]\i &
that can be chosen by keeping the cost constant: it is sufficient to take

(ck—1) + Revi(ck)
Riyi—1(¢k—1)

Apq = Lt and Aj =1, j=k+1,...,M. (14)

With these values, the variance Var (py;11) becomes

Var (777) + (1 ) e ) + o (1= £ ) o (T ().

Th—1 A1 Ry, k

5.2. Is the k-th threshold useful?

Now, the goal is to study the need for an intermediate threshold and derive a procedure to
detect whether we shall keep it or not. More precisely, the k-th threshold will be deleted if the
variance of ;T){]V;k) is lower than the one of pysy1, i.e. if the contribution of the k-th threshold is

positive. In order to get a tractable procedure, we will assume the following;:

(A1) All the thresholds have the optimal shape. Then we are lead to a unidimensional algorithm
(r = 1), so the measures 7; and the functions f;, g; are constant;

(A2) The cost ¢x_1 between 0By and 0By in the algorithm without the k-th threshold is
given by ¢x_1 = cx_1 + cx. Notice that each ¢; = ¢(gx) is constant by (Al).

With these assumptions, we get

a

Aiz
k—1 Rk:

—&—gk,l(l—ak) and Aj:1,j=]€,...,M—1,

where ay = cx_1/(ck—1 + ¢x). Now, plugging these values into the variance, we get

2
N (—k) p Q(gk—l)

Var = Var + ’
(Pm+1) (P ) TEYk+19k—1 [0k + Rigr—1(1 — ag)]

Q(a:) = —xZRk(Rkﬁ - 1)(1 - CLk) +x [Rk(Rk,B - 1)(1 - ak) - ak(Rk - 1)] + (Rk - 1)Bak

and g is defined by

B = gr_1gx = % € [0, ge_1]- (15)

12



Notice that 5 = P(754+1 < 00 | 7k—1 < 00) quantifies the hardness for a particle to go from 0Bj_1
to 0By.1 and so 8 does not depend on the deleted k-th threshold.

The sign of @) in the corrective term is the opposite of the one of the following polynomial

arp(Rg — 1)

— 22 (1_ — i =
R@)=a®—(-ajp—af  with a=pm SmEgy

at x = gx_1 €]0,1[. Tts discriminant is A = (1 — a)? + 4a8.

In practice, we start by realising a pre-run in order to estimate the unknown parameters ~y;_1
and v and thus gr_1 and 8. Then the procedure is the following.

1.

If R =1: Q(gk-1) = ap(Rr — 1) (B — gk—1) < 0 and it is recommended to preserve the
k-th threshold.

. If RB > 1: A is strictly positive and R has two roots of opposite signs, z,, <0 < ZL‘ZF <1:

(a) when 0 < g1 < a:;, the polynomial () is positive and it is recommended to delete
the k-th threshold;

(b) when :13,1r < gp—1 < 1, the polynomial () is negative and it is recommended to preserve
the k-th threshold.

. If R < 1 and A < 0: the polynomials R and () are positive and it is recommended to

delete the k-th threshold.

. If R <1 and A > 0: the polynomial R has two roots z, < x;:

(a) when 0 < gp—1 < ., the polynomials R and @ are positive and it is recommended
to delete the k-th threshold;

(b) if x,; < 1, when x, < gr—1 < 1, the polynomials R and @ are negative and it is
recommended to preserve the k-th threshold.

Now we focus on the simplified cost because analytical values may be obtained.

Proposition 5.2. Considering the simplified cost, there is no interest to introduce a new thresh-
old when > 1/9. When < 1/9, the optimal positioning minimising the variance for a fized
cost is given by gr—1 = (1 —38)/2. In that case, the optimal replication number is

. 2(1-5p8) 2(1-p)
R =95 (H 1—55)

that decreases from 2(1 4 /2) for B =0 to 3 for 3 =1/9.

6. Sensitivity analysis: perturbation of a threshold

In this section, we assume all the thresholds 0B; optimal (i.e. f; constant) except 0By. Thus

= gk, Pr(gr) = pa(gr) r—1(gk-1),
Yi+1(1)
and the variance is given by
R M
Var(par+1) _ 1 < 1 > Varuk fk +Z 1 — pi(gi)
p? w(@) \ i1 7% —rivi(1) pilgs)

13



With a pre-run of the algorithm, we estimate the values of g (i) for i = 1,...,r and thus p(gx)-

Now we want to twist 0By in order to get closer to the optimal shape and to obtain a new function
fr constant. Consequently, with this new threshold, all the functions f; become constant and
thus also the new function gi, as explained in Section 4.2. Introducing the new threshold 8§k
implies that vg, Py, Prt+1, g and gr—1 are changed accordingly and we will use a” symbol to
denote the new terms.

Furthermore, in order to guaranty a slight perturbation of threshold k, we assume naturally that
Bry1 C By C Bg_1,

which implies that vy,41(1) < A%(1) < v,—1(1). We also introduce two operators Fj and Ejiq
defined by _ ~
Py = PyEy, Pry1 = Epr1Pp4a,

and such that ﬁkﬁk.i_l = Py Pyi1. §o defined, Ej (respectively Fji1) is an operator acting on
Fi (resp. Fi) valued in Fj (resp. Fi). We have
k-1 = Pp(1) = Py(Exl) and G = Phs1(1) = Eppr(g)-

Let us remark that gy_; and g; are constant and linked by the identity 8 = gr_1gr. If we
choose Ej11(4,j) = d;/a; with a; = K g (i) for some constant K, then Ej1(gx) = 1/K so that
gr = 1/K. Moreover, since g = Yx+1(1)/9k(1), we get

_ ()
Yer1(1)

(16)

Furthermore, taking Fj(i,7) = Kgr(j)di; leads to EyEy11 = Id (and we recover ﬁkﬁk.i_l =
Py Py11). Finally,

1 Ppya(i,j)

) and  Py(i, j) = Kgi(5)Pi(i, 5).

Py (iyj) =

As a consequence, if Kgi(i) > 1, IBkH(i,j) < Pyy1(1,7) for any j and ﬁk(l,i) < Py(l,4) for any
[. Tt remains to determine the optimal value of K that will be done by keeping the total cost of
the algorithm constant which translates in

Ch—1Vk—1(1) + R Ky (gr) = Ye—1(ck—1) + Rrve(cr),

leading to

Cl

U (o) | 1 ~ }
= + Me—1(Ck—1) — Ck—1] ¢ -
{Mkz(gk) Ry - (ck) |
Notice that fixing the value of K amounts to defining the value of 7%(1) by equation (16).
Remark that if the cost function c¢ is constant and equal to 1, then the optimal value of K
reduces to K = 1/pug(gr)-

14



Numerical application. We illustrate a way to modify the shape of a threshold in order to ob-
tain an iso-probability level. Here we consider the two-dimensional Ornstein-Uhlenbeck process
defined by

dXt: —AXtdt+Uth, t>0
X():JIERQ

where A = diag(A1, A2) with A\; > A2 > 0, 0 > 0 and W is a two dimensional standard Brownian
motion.

We start the algorithm generating independently N = 300 particles from = = (0.05,0) and
consider the 0.5 radius circle as first intermediate threshold 0B;. In the sequel, we take M = 2,
By = D(0,1) and B = Byr41 = Bs = D(0,1.5). The parameters of the stochastic process are
A1 =1,22 =0.2,0 = 0.5 and its simulation is done via an Euler Scheme with a step of 0.01 (we
use the software Mathematica Wolfram Research (2015)). Then we estimate the density of the
occupancy measure of the process on this threshold!, with respect to the Lebesgue measure on
0B;. As expected, this density (represented in Figure 3 left) is far from uniform.

Figure 3: The density of the occupancy measure at the first intermediate threshold and its estimation based on the von Mises kernel (black
line). On the left, the threshold is the centered 0.5 radius circle and the number of particles having reached this circle is 166 over N = 300, so
a probability estimated to 0.55. On the right, the threshold is the conformal image of the circle and the probability to reach it is estimated
by 177/300 ~ 0.59.

We previously noted that the efficiency of the splitting algorithm will be enhanced when the
occupancy measures of the process on the intermediate thresholds are uniform. In our case,
since A\ is greater than Ao, we guess that the suited thresholds are ellipses. This intuition
is confirmed by the left picture in Figure 3 and consistent with Theorem (1.3) in Antonini

(1991) that establishes that, for any given z € R?, (Z;)>0 = ( V2 Xt) admits the ellipse
Z o+/logt >0

E={y = (y1,v2) € R% \y? + Xoy3 < 2} while ¢ goes to infinity.

The goal is then to deform the first threshold, using a conformal map, ¢ : By — €2, in order to
obtain a uniform occupancy distribution. Notice that the conformal maps are very convenient
as planar transformations since they allow only local rotations and scales avoiding disturbing
distortions. Moreover, for common domains, 923 = ¢1(0B1). We follow the procedure described
in Weber and Gotsman (2010) to construct the conformal map (see Appendix C for more details).
Once the conformal map, denoted 1, is found , we perform independently a second set of N
particles from the same starting point # and stop them as soon as they reach D(0,0.01) or 94 2.

!Since we work with continuous processes, the particles evolve until they reach dB; or the small disk D(0,0.01)
instead of the origin.
2In any rigor, since the conformal map ¢; and the new threshold 9Q; are strongly related to the first set of
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Then we continue following the algorithm below:

Step 2 1. Each of the particles in 9€2; is duplicated Ry = 2 times and evolve independently
from 09 until D(0,0.01) or 9By is reached. We determine the density of the occu-
pancy measure of the process on 0Bs. Then we find a conformal map @9 : By — )9
such that p9(0B3) = 09 and the image of the occupancy measure on 0Bj is the
uniform measure on 9€)y. The density of the occupancy measure at the second inter-
mediate threshold and its estimation based on the von Mises kernel (black line) are
represented in Figure 4 left while one can see the second intermediate threshold 0Bs
and its conformal deformation 022 in Figure 4.
2. We perform independently a second set of particles from their same starting point at
091 with the same size and stop them as soon as D(0,0.01) or 9 is reached.

Final step Each of the particles in 02y is duplicated Re = 3 times and evolve independently
from 0y until D(0,0.01) or 9Bj3 is reached.

L L L L n L L L
-1.0 -05 00 as 1.0 -06 -04 -02 00 02 04 08

Figure 4: Using a replication factor R; = 2 for the particles having reached the first deformed threshold, we make evolving these particles
until they reach the next threshold or the inner 0.01 radius circle. The empirical densities of the occupancy measure of the unit circle (left)
and of the deformed threshold (right) and their respective estimations based on the von Mises kernel (black line) are represented. The number
of particles having reached the circle (resp. the deformed threshold) is 248 (resp. 312) over N = 354, so a probability estimated by 0.70
(resp. 0.88). As mentioned before, we generate a new set of particles from the first deformed threshold instead of keeping the particles used
to determine the conformal map. Thus in any rigor, we do not recover precisely the image measure; which explains the relative gap from the
uniform distribution.

7. Conclusion

In this paper, we continue the multidimensional approach studied in (Glasserman et al. (1998);
Garvels (2000)) in order to obtain a new expression of the variance of the estimator analogous
to that of the continuous case L'Ecuyer et al. (2009). Then we derive the optimal parameters
of the splitting algorithm. Furthermore, by introducing new operators, we obtain alternative
expressions of the variance which are more tractable when we compare the variance of the
estimators in an algorithm with M thresholds and in an algorithm in which one of the threshold
has been deleted. More precisely, we derive a procedure to detect whether we shall keep it or
not. Finally, we investigate the sensitivity of the variance of the estimator with respect to a
deviation of the threshold shape from the optimal one. We illustrate our theoretical results
considering the planar Ornstein-Uhlenbeck process for which we propose a procedure based on
conformal maps to twist the thresholds in order to get closer to the optimal shapes.

particles, we should have kept their trajectories in memory and continue the algorithm with them.

16



Appendix A. The operator I';, and its iterates

The variance of the estimator of the target probability involves operators 'y, and their iterates
defined in the following way. For k = 1,..., M + 1, we introduce I'y acting on Fp X Fi and
valued in Fy_1 by, for f, g € Fp,

Tw(f,9) = Pe(f9) — Pi(f) Pr(g)- (A.1)

To lighten notation, we denote I'y(f) for I'y(f, f). With the previous notation, one has
Li(f,9) =n(f9) —n(f)nlg) and  Tayi(f,9) = fg x fut1(1 = far1) = fg.

Firstly, we straightforwardly check that Iy is bilinear and symmetric. Secondly, writing I'y(f)(7)
as a conditional variance, we get

DW(N) = Pelf)6) = PH) = B ([FX0) o) — B (f(Xi) L))

where E€ is the expectation conditionally to the set {X;_1 =14; 7,1 < oo}, we get I'r(f) > 0.
Moreover, by (3), I'x(f,1) = (1 = ge-1)Pe(f), Tk(1) = gr—1(1 — ge—1) and by (4),

Ty(fx) = Pe(f2) — f7_1. (A.2)

Now let us iterate the construction of I'y. In that view, we introduce the multiplicative operator
Tr ](CO) defined by

F]E;O)(fvg):fga fagefkv

such that T'x(f,g) = Pk(F,(CO)(f, 9)) — F,(CD_)I(Pk(f), Pi(g)). This suggests to define for any k, the

)

iterated operators F,in in the following way:

T (f9) = Poon (TE0(1,0)) = DL (B, Pilg)), k21,0<n<k=1 (A3

with the convention Pi(f) = 71(f) precised above. The operator F,(gn) valued in Fj_,, acts on
.Fk X fk.

We use the same simplified notation F,gn) (f) to refer to I’gﬁb)( f, ). We introduce P, ,, defined by

P,, = Id, n=0,...,M, (A.4)
P,y = Ppy1...P, 0<p<n—-1, n=1,...,M.

By induction on n, we easily get

n

n n i
r0) =3 (1) 1 P [ (a0 (A5)
i=0
Since Pr—ik(fx) = fr—i and fo = p, it comes in the particular case of f = fy,

N =30 (n> (=) P (£3)

=0
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Since for f € Fy, F,(Cn)(f) € Fk—_n, We can compute ’yk,n(Flg")(f)). From (A.5) and the fact that
Vi Pl k=i = Yh—i, we get

n

a0 = 3 () (Dt

=0

with vo(f) = f. Fgﬂ)(fk) being a constant function in Fy equals ”yo(F,(f)(fk)) and then the
previous identity leads to

k
r0 = 3 () 0t

i=0
The classical inversion formula which states the equivalence between the two following identities

k

uk—i—l)f'(’;)w and o= 307

j=0 =0
yields that
W)= (j>F§”(fj)
j=0

which means that v (fZ) can be written as the sum of terms involving the operators I'y, and
their iterates. We get in particular the following identity

k .
Y Tt (for1)) = W1 (FRan) =D = ('j) T (f41). (A.6)
=0

Actually this identity comes from a more general relation: first we make a change of parametriza-
tion in (A.3) to get the following relation (valid for any function f € Fyi,),

Pt (TS (0) = (D) + T2 (Pen(£).

By a descendant induction on p, one gets for any f € Fr+1 and 0 < p < k:

Mk =D\ a1
Py (Tes1(f)) = Z <j _i) Fﬁﬂl ?) (Pj1k+1(f)) -
Jj=p

If f = fis1, since Pji1 g1 (frg1) = fi+1, we get

J=p

k .
Pop Cea(fen)) = 3 (’j - jj) LU= (f0). (A7)

It suffices to set p = 0 to recover equation (A.6) since Pyi(9) = v1Pik(9) = Y(g) for any
function g € Fj. The use of (A.2) allows us to rewrite (A.7) in the following way

k .
Pp,k+1(fl§+1) - Pp,k(fl?) = Z (k - p) Fgﬂl_p)(fjﬂ)

J=p S
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and by a summation on k from 0 to p, for all 0 < p < k, we get
k
Pyir1(fiter) — Z Z (m p) ]J++11 P fja) = > <k pj; 1) Fg-ﬂlip)(fjﬂ).

m=p j=p Jj=p

When p = 0, one gets
k
() = =3 (3 ) ),
§=0

which would have been also derived directly by a telescopic sum of (A.6). The action of the
measure 7y, (p < k) on (A.7) leads to

k1 B -
Ve (Ch1(fos1)) = jzp—:i—l (j fp ? 1) Tp (FSJ )(fj)) :

This formula could be exploited to split the expression (12) of the variance Var(pas41) in two
parts:

> l%’ (Tita(fi+1)) +n(Dis1,ar)

r
i=0 "

where D11 jr is a quantity which depends only on the thresholds greater than .

Appendix B. Proofs

Proof of Proposition 3.1 By the previous notation, Equations (9) and (8), the variance of
the estimator can be written as

Var(par+1) = = Var(ZM+1 Z Cov (YM+1, YM+1)
M

To compute the covariances in the right hand side of the previous equation, we use the classical
formula

Cov(Y, Z) = Cov(E[Y|F],E[Z|F]) + E[Cov(Y, Z| F)] (B.1)
where Y and Z are two r.v.s and F a o-algebra and Cov(Y, Z|F) = E[Y Z|F] — E[Y|F|E[Z|F].

In our case, conditioning with respect to the o-algebra generated by Zj leads to, for any (3, j),

Cov(Yirar, Yir 1) = R far () far () Cov(Zari, Zaag) + Raa far (6)(1 — far(0)E[Znri]0i;.

The last term in the right hand side cancels for i # j since conditionally to Zj; the r vari-
ables Y]\% 41> ¢ =1,...,r are mutually independent. Finally, introducing the covariance matrix
Yn(i,4) = Cov(Zyi, Zyj) and using (10), we derive the following expression

Var(Za41) = Ryl full3,, + ravar (fur (1= far),

where || - ||s,, is the norm associated to the scalar product (,)s,, defined by

EM Zf EM Z 2 J);
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where f and g are two functions defined on {1,...,7}.

To compute the scalar product (f,g)s,,, we derive by induction the matrix ¥, and more
generally the matrices ¥,,. The initial term ¥; is given by (B.1) and can be rewritten as

(i) = {—N71(i)71(j)7 i £ ]
7 Ny (i) (1 =m(), i=3"

and one gets (f, )z, = N (v1(fg) =71 (f)71(9)). By Equation (7), we get 3, (1, k) = >, ; Cov(Y;}, YV,)})
and conditioning by Z,_1, we have for ¢ = j to consider the two terms of the right hand side

of (B.1); while for i # j, the last term cancels by conditional independence. The moment
generating function of the random vector Y7, conditionally to Z(,,_1); is given by

., Rpn—1Z(n 1y
o(t1, .. tr) = | (1 — gn-1(i)) + Z Py (i, )€l
j=1

By derivation of ¢ (or using the multinomial distribution), we get directly that on one hand
E[Yéllzn—l] = Rn—lpn(ia Z)Z(n—l)z
and on the other hand

Rnflpn(@ l)(l - Pn(ia l))Z(n—l)i k=1

Cov (Y, YorlZn—1) = . .
—Rp—1 Py (i, 1) Po (i, k) Z 1) k#1.
By Equation (10) and E[Z(,_1);] = rn—27n-1(i), we have

R2 (P.(i,1)220-1(4,1) + rn_1Yn—1(3) Pu (3, 1) (1 — P, (i, 1)) k=1
Ri_1pn<i7 l)Pn(Z, k>2n—1(i7 Z) - Tn—an—l(i)Pn(iv Z)Pn(i7 k) k 7é !

COV( Tfl? 71 ):{

and for i # j, Cov(Y?, Y7, = R2_ . P,(i,1)Py(i, k)Xn-1(i,7), that leads to the expression of

nl’ “nk
Yn(l, k) after a summation on i and j. Now
(f.9)s, = > F(k)g()En(l, k)

(NRy...Rn_1)yn(5).k)l
=R} > f(B)Pu(i, k)g(1) Pa(d, k) Sn-1(i,5) + A

i,7,k,l
= R3171<Pn(f)7 Pn(g)>2n—1 + A

where

A=r, Z ’Yn—l(i)f(l)g(l)Pn(iv l) —Tn-1 Z ’Yn—l(i)f(k)g(l)Pn(i7 Z)Pn(la k)
il

3,0,k
= T'n—l")/n—l[Pn(fg> - Pn(f)Pn<g)] = Tn—l’}/n—l(rn(fa g))

We are lead to the following induction relation

<f’ g>2n = R12171<Pn(f)7 Pn(g)>2n—1 + rn—lfyn—l(rn(fv g))
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that, applied to the function f,, yields ||ful% = Ri _(llfn-1l%, | + rac1¥n-1(Tn(fn)), from
which we deduce

T

YarlZacsr) _ L1, (12) — o2(0)] +

2
Ty N

1

e Ca i) + — el Far (L= far)]
TM—(i+1) M

i

T

1

_1 E
==

i

() = 200] + 3 i (Caga (i) + TLvM[fMO )

i=1

With the convention and Equation (2), we get
. M
Var(pai1) _ 3 L i (Tip1(fivn))
p? (1) ()
Proceeding with the classical notation, valid for any probability u,

Eu(f) = p(f),  Varu(f) = p(f?) — w*(f),

and using relation (5), yar+1(1) = p and vp(1) = 1, one gets the desired result. [ |

(B.2)

Proof of Proposition 3.2 The cost of the first step of the algorithm (particles issued from 0) is
Nco = 1970(co) and the one of the n-th step (particles issued from 0B, _1) forn=2,... . M +1
is

Z Ry 1Z(n—1yicn—1(7).

=1

Finally, Formula (10) leads to a mean total cost given by (13) since by convention ~o(cp) = co.®

Proof of Proposition 4.1 The variance of the estimator is given by

~ M M
Var(pM+1) _ Z 1 < 1 B 1> Varuk (fk) i Z 1-— /,Lk;(gk)
p? (1) \re—1r i) ER(fK) & ke (1)
The minimisation consists in a first step to cancel the terms (independent of the others)
Var#k (fk)
EZ (fr)

which leads to take the functions f; constant on By i.e. to require that the success probability

from 8B,(:) does not depend on i. Then we are lead to the unidimensional setting and we fix
r = 1. 7 and g; are now real numbers between 0 and 1:

e =(1) =P(1p < 00) and  gx = P(741 < 00|71 < 00). (B.3)

In a second step, we minimise the other term of the variance for a fixed cost. The variance and
the cost can be rewritten in the following way

Var(par+1) 1 — pr(gr) 4 C N
7_5753&1 —ET’YC— CO"‘ET'YC-

n=0 n=1
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From (B.3), we are lead to the optimisation problem with » = 1 of Lagnoux-Renaudie (2008). ®

5(=F)

Proof Proposition 5.1 To compute the variance of the estimator p Azk in the new setting, i.e.
without the k-th threshold, we use formula (B.2). In particular, the (k — 1)-th first terms are
unchanged, while as we need to transport the function fryi from 0Byi1 on 0Bj_1, the k-th
term becomes

1

Ak—1Tk

1

Vo1 (Tk(fre1)) = N

Ve (Crg1 (frr1)) + Yo—1(Tr(fr))

where fk(fk+1) = Pk,l,kJrl(f,fH) — [Pk,l,kﬂ(fkﬂ)]z. Finally, the last terms are not modified
except the replication numbers.

Defining A, = H?:k—l Aj, the variance Var (ﬁ(]\/—[k)) of the new estimator can be expressed as

B
[\

—; (Dj+1(fj+1)) +

1
’I”j Ak_lrk

<
Il
=)

M
Ye—1 (Te(fr)) + Z %’Yy‘ (Tjr1(fj+1))
=k =175

which leads to the result.
In our context, all the ¢;’s are equal to 1, so the value of A;_; given by (14) becomes
1 () 1

Apot = — g1
-t Rk+'7k—1(1) Rk+gk1

The variance is now given by

Var (pp+1) = Var (@k)) + mlpjk(l)(l — k1) + 7%15;(1)5(3,@), (B.4)
where S(Ry) = R%c(l —gK) — % whose minimum is achieved at
2
Ry = <11_—gfk1> <1—|— g::_ﬁﬂ> and  S(Ry) = —(gr—1 — B) [ gkll_fﬂ_ll .

The corrective term in formula (B.4) of the variance rewrites, up to a positive multiplicative
coefficient, as

4971 (1= B) — (gk—1 — BY(L + gr—1)*.

The sign of the previous expression is the same of the polynomial R(z) = 22 — z(1 —38) + 3 at
T =gr_1. S0

e when 8 > 1/9, R(gx_1) is strictly positive;
e when 3 =1/9, R(gx_1) = (gx—1 — 1/3)? is positive and cancels at 1/3;

e when 3 < 1/9, R(gr_1) is minimum at gj_, = (1-38)/2 and R(g;_;) = $(1-B)(98-1) <
0. This minimum decreases with 5 from 0 (for 5 =1/9) to —1/4 (for 8 = 0).

The result now becomes obvious. [ ]
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Appendix C. Finding the conformal map of Section 6

The goal is to determine a conformal map ¢ from a disk B to a domain 2 := ¢(B) such that the
image of the occupancy measure p,m on 9B is the uniform measure on 992 and p(0B) = 9.
First, we restrict B to the unit disk. Since, for any Borel set E € 052,

(-1 def B _ Mo )
pm(E) = m(e  (E) S [ 1, 0mh@d = [ 1p@hte ) o S

and we want @.m(E) = |asz|faQ 1g(w)dw, the conformal map ¢ has to satisfy |¢/(§)| =
h(§)|0Q2], V&€ OB.

Taking |¢'(€)| = k(&) induces |02 = 1. Since ¢ is a conformal map, ¢’ is holomorphic on B and
not null and log |¢'| = log h is thus harmonic on B. Then we follow the procedure described in
Weber and Gotsman (2010).

1. Since we work on the unit disk, we solve the Dirichlet problem and find its harmonic
conjugate function concomitantly using the Schwarz integral formula (Remmert, 1991,
Chap VII, §2) that allows one to recover a holomorphic function, up to an imaginary
constant, from the boundary values of its real part:

21 ; ei9+zd0 )
¢(z):/0 log h(e!®) S5 2~ +ig(0), |#| < 1.

2. Now we consider e? which is holomorphic on B. Since B is a simply connected set and
taking the Cauchy integral, there exists a holomorphic function ® on B such that

d(z) = / e?@dw,
[0,2]

where [0, 2] is the segment that links 0 and z. Since e never cancels, ® is a conformal
map. Thus we define ¢ = ®.

In the case of a disk B of radius I, we take |¢/(§)| = h(§)2nl instead of |¢'(€)] = h(§) to get a
boundary of length 27l = |0Q|.
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