S. C. Albrecht, M. C. Sobotta, D. Bausewein, I. Aller, R. Hell et al., Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes, J. Biomol. Screen, 2013.

K. Apel and H. Hirt, Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol, vol.55, pp.373-399, 2004.

E. Avezov, B. C. Cross, G. S. Kaminski-schierle, M. Winters, H. P. Harding et al., Lifetime imaging of a fluorescent protein sensor reveals surprising stability of ER thiol redox, J. Cell Biol, vol.201, pp.337-349, 2013.

L. Ball, G. P. Accotto, U. Bechtold, G. Creissen, D. Funck et al., Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis, Plant Cell, vol.16, pp.2448-2462, 2004.

J. Birk, M. Meyer, I. Aller, H. G. Hansen, A. Odermatt et al., Endoplasmic reticulum: reduced and oxidized glutathione revisited, J. Cell Sci, vol.126, pp.1604-1617, 2013.

T. Brach, S. Soyk, C. Müller, G. Hinz, R. Hell et al., Noninvasive topology analysis of membrane proteins in the secretory pathway, Plant J, vol.57, pp.534-541, 2009.

K. Brejc, T. K. Sixma, P. A. Kitts, S. R. Kain, R. Y. Tsien et al., Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein, Proc. Natl. Acad. Sci. U.S.A, vol.94, pp.2306-2311, 1997.

N. G. Cairns, M. Pasternak, A. Wachter, C. S. Cobbett, and A. J. Meyer, Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo, Plant Physiol, vol.141, pp.446-455, 2006.

M. B. Cannon, R. , and S. J. , Re-engineering redox-sensitive green fluorescent protein for improved response rate, Protein Sci, vol.15, pp.45-57, 2006.

C. Cobbett and P. Goldsbrough, Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis, Annu. Rev. Plant Biol, vol.53, pp.159-182, 2002.

C. T. Dooley, T. M. Dore, G. T. Hanson, W. C. Jackson, S. J. Remington et al., Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators, J. Biol. Chem, vol.279, pp.22284-22293, 2004.

M. A. Elsliger, R. M. Wachter, G. T. Hanson, K. Kallio, R. et al., Structural and spectral response of green fluorescent protein variants to changes in pH, Biochemistry, vol.38, pp.5296-5301, 1999.

T. Finkel, Signal transduction by reactive oxygen species, J. Cell Biol, vol.194, pp.7-15, 2011.

H. J. Forman, M. Maiorino, and F. Ursini, Signaling functions of reactive oxygen species, Biochemistry, vol.49, pp.835-842, 2010.

M. D. Fricker, M. May, A. J. Meyer, N. Sheard, and N. S. White, Measurement of glutathione levels in intact roots of Arabidopsis, J. Microsc, vol.198, pp.162-173, 2000.

M. Gutscher, A. Pauleau, L. Marty, T. Brach, G. Wabnitz et al., Real-time imaging of the intracellular glutathione redox potential, Nat. Methods, vol.5, pp.553-559, 2008.

G. T. Hanson, R. Aggeler, D. Oglesbee, M. Cannon, R. A. Capaldi et al., Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators, J. Biol. Chem, vol.279, pp.13044-13053, 2004.

R. Höfgen and Z. Willmitzer, Biochemical and genetic analysis of different patatin isoforms expressed in various organs of potato, 1990.

, Plant Sci, vol.66, pp.221-230

C. C. Hwang, A. J. Sinskey, and H. F. Lodish, Oxidized redox state of glutathione in the endoplasmic reticulum, Science, vol.257, pp.1496-1502, 1992.

G. Jung, J. Wiehler, and A. Zumbusch, The photophysics of green fluorescent protein: influence of the key amino acids at positions 65, 203, and 222, Biophys. J, vol.88, pp.1932-1947, 2005.

W. J. Lees and G. M. Whitesides, Equilibrium constants for thiol-disulfide interchange reactions: a coherent, corrected set, J. Org. Chem, vol.58, pp.642-647, 1993.

J. Lohman, R. , and S. , Development of a family of redox-sensitive green fluorescent protein indicators for use in relatively oxidizing subcellular environments, Biochemistry, vol.47, pp.8678-8688, 2008.

D. Magde, R. Wong, and P. Seybold, Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields, Photochem. Photobiol, vol.75, pp.327-334, 2002.

L. Marty, W. Siala, M. Schwarzländer, M. D. Fricker, M. Wirtz et al., The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.9109-9114, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00685706

S. C. Maughan, M. Pasternak, N. Cairns, G. Kiddle, T. Brach et al., Plant homologs of the Plasmodium falciparum chloroquineresistance transporter, PfCRT, are required for glutathione homeostasis and stress responses, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.2331-2336, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02666686

P. Merksamer, A. Trusina, and F. Papa, Real-time redox measurements during endoplasmic reticulum stress reveal interlinked protein folding functions, Cell, vol.135, pp.933-947, 2008.

A. Meyer, D. , and T. , Fluorescent protein-based redox probes, Antioxid. Redox Signal, vol.13, pp.621-650, 2010.

A. J. Meyer, T. Brach, L. Marty, S. Kreye, N. Rouhier et al., , 2007.

, Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer, Plant J, vol.52, pp.973-986

A. J. Meyer and R. Hell, Glutathione homeostasis and redox-regulation by sulfhydryl groups, Photosynth. Res, vol.86, pp.435-457, 2005.

L. Michelet, M. Zaffagnini, C. Marchand, V. Collin, P. Decottignies et al., Glutathionylation of chloroplast thioredoxin f is a redox signaling mechanism in plants, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.16478-16483, 2005.

G. Noctor, A. Mhamdi, S. Chaouch, Y. Han, J. Neukermans et al., Glutathione in plants: an integrated overview, Plant Cell Environ, vol.35, pp.454-484, 2011.

G. Palm, A. Zdanov, G. Gaitanaris, R. Stauber, G. Pavlakis et al., The structural basis for spectral variations in green fluorescent protein, Nat. Struct. Biol, vol.4, pp.361-365, 1997.

V. Parisy, B. Poinssot, L. Owsianowski, A. Buchala, J. Glazebrook et al., Identification of PAD2 as a ?-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis, Plant J, vol.49, pp.159-172, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02666083

G. H. Patterson, S. M. Knobel, W. D. Sharif, S. R. Kain, and D. W. Piston, Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy, Biophys. J, vol.73, pp.2782-2790, 1997.

S. Rosenwasser, I. Rot, A. J. Meyer, L. Feldman, K. Jiang et al., A fluorometer-based method for monitoring oxidation of redoxsensitive GFP (roGFP) during development and extended dark stress, Physiol. Plant, vol.138, pp.493-502, 2010.

M. Samalova, A. J. Meyer, S. J. Gurr, and M. D. Fricker, Robust antioxidant defences in the rice blast fungus Magnaporthe oryzae confer tolerance to the host oxidative burst, New Phytol, 2013.

K. Schlaeppi, N. Bodenhausen, A. Buchala, F. Mauch, and P. Reymond, The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis, Plant J, vol.55, pp.774-786, 2008.

M. Schwarzländer, M. Fricker, C. Müller, L. Marty, T. Brach et al., Confocal imaging of glutathione redox potential in living plant cells, J. Microsc, vol.231, pp.299-316, 2008.

Z. Shaked, R. Szajewski, and G. Whitesides, Rates of thiol-disulfide interchange reactions involving proteins and kinetic measurements of thiol pK a values, Biochemistry, vol.19, pp.4156-4166, 1980.

N. Shaner, P. Steinbach, and R. Tsien, A guide to choosing fluorescent proteins, Nat. Methods, vol.2, pp.905-909, 2005.

C. R. Somerville and W. L. Ogren, Isolation of photorespiration mutants in Arabidopsis, Methods in Chloroplast Molecular Biology, pp.129-138, 1982.

S. Topell, J. Hennecke, and R. Glockshuber, Circularly permuted variants of the green fluorescent protein, FEBS Lett, vol.457, pp.1044-1047, 1999.

M. A. Torres, J. D. Jones, and J. L. Dangl, Reactive oxygen species signaling in response to pathogens, Plant Physiol, vol.141, pp.373-378, 2006.

T. Vernoux, R. C. Wilson, K. A. Seeley, J. P. Reichheld, S. Muroy et al., The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development, Plant Cell, vol.12, pp.97-110, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00165942

S. Wierer, S. Peter, K. Elgass, H. Mack, S. Bieker et al., Determination of the in vivo redox potential by one-wavelength spectromicroscopy of roGFP, Anal. Bioanal. Chem, vol.403, pp.737-744, 2012.

M. Zaffagnini, M. Bedhomme, C. Marchand, J. Couturier, X. Gao et al., Glutaredoxin s12: unique properties for redox signaling, Antioxid. Redox Signal, vol.16, pp.17-32, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268394

, Conflict of Interest Statement: The authors declare that the research was con