J. D. Hayes, J. U. Flanagan, and I. R. Jowsey, Glutathione transferases, Annu. Rev. Pharmacol. Toxicol, vol.45, pp.51-88, 2005.

B. Mannervik, Five decades with glutathione and the GSTome, J. Biol. Chem, vol.287, pp.6072-6083, 2012.

A. J. Oakley, M. Lo-bello, M. Nuccetelli, A. P. Mazzetti, and M. W. Parker, The ligandin (non-substrate) binding site of human Pi class glutathione, 1999.

, J. Mol. Biol, vol.291, pp.913-926

B. Lederer and P. Böger, Binding and protection of porphyrins by glutathione S-transferases of Zea mays L, Biochim. Biophys. Acta, vol.1621, pp.226-233, 2003.

D. P. Dixon, A. Lapthorn, P. Madesis, E. A. Mudd, A. Day et al., Binding and glutathione conjugation of porphyrinogens by plant glutathione transferases, J. Biol. Chem, vol.283, pp.20268-20276, 2008.

J. Bilang, H. Macdonald, P. J. King, and A. Sturm, A soluble auxinbinding protein from Hyoscyamus muticus is a glutathione S-transferase, Plant Physiol, vol.102, pp.29-34, 1993.

S. Conn, C. Curtin, A. Bézier, C. Franco, and W. Zhang, Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins, J. Exp. Bot, vol.59, pp.3621-3634, 2008.

M. Morel, A. A. Ngadin, M. Droux, J. P. Jacquot, and E. Gelhaye, The fungal glutathione S-transferase system. Evidence of new classes in the wood-degrading basidiomycete Phanerochaete chrysosporium, Cell Mol. Life Sci, vol.66, pp.3711-3725, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02321274

A. Thuillier, A. A. Ngadin, C. Thion, P. Billard, J. P. Jacquot et al., Functional diversification of fungal glutathione transferases from the ure2p class, Int. J. Evol. Biol, p.938308, 2011.

S. Mcgoldrick, S. M. O'sullivan, and D. Sheehan, Glutathione transferase-like proteins encoded in genomes of yeasts and fungi. Insights into evolution of a multifunctional protein superfamily, FEMS Microbiol. Lett, vol.242, pp.1-12, 2005.

H. Y. Lian, Y. Jiang, H. Zhang, G. W. Jones, and S. Perrett, The yeast prion protein Ure2. Structure, function, and folding, Biochim. Biophys. Acta, vol.1764, pp.535-545, 2006.

A. Garcerá, L. Barreto, L. Piedrafita, J. Tamarit, and E. Herrero, Saccharomyces cerevisiae cells have three Omega class glutathione S-transferases acting as 1-Cys thiol transferases, Biochem. J, vol.398, pp.187-196, 2006.

J. H. Choi, W. Lou, and A. Vancura, A novel membrane-bound glutathione S-transferase functions in the stationary phase of the yeast Saccharomyces cerevisiae, J. Biol. Chem, vol.273, pp.29915-29922, 1998.

J. A. Fraser, M. A. Davis, and M. J. Hynes, A gene from Aspergillus nidulans with similarity to URE2 of Saccharomyces cerevisiae encodes a glutathione S-transferase which contributes to heavy metal and xenobiotic resistance, Appl. Environ. Microbiol, vol.68, pp.2802-2808, 2002.

C. Burns, R. Geraghty, C. Neville, A. Murphy, K. Kavanagh et al., Identification, cloning, and functional expression of three glutathione transferase genes from Aspergillus fumigatus, Fungal Genet. Biol, vol.42, pp.319-327, 2005.

E. Meux, P. Prosper, A. Ngadin, C. Didierjean, M. Morel et al., Glutathione transferases of Phanerochaete chrysosporium. S-Glutathionyl-p-hydroquinone reductase belongs to a new structural class, J. Biol. Chem, vol.286, pp.9162-9173, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01268193

E. Masai, A. Ichimura, Y. Sato, K. Miyauchi, Y. Katayama et al., Roles of the enantioselective glutathione S-transferases in cleavage of ?-aryl ether, J. Bacteriol, vol.185, pp.1768-1775, 2003.

S. Lee, A. K. Monnappa, and R. J. Mitchell, Biological activities of lignin hydrolysate-related compounds, BMB Rep, vol.45, pp.265-274, 2012.

C. Y. Lee, A. Sharma, J. E. Cheong, and J. L. Nelson, Synthesis and antioxidant properties of dendritic polyphenols, Bioorg. Med. Chem. Lett, vol.19, pp.6326-6330, 2009.

P. M. Schenk, S. Baumann, R. Mattes, and H. H. Steinbiss, Improved high level expression system for eukaryotic genes in Escherichia coli using T7 RNA polymerase and rare ArgtRNAs, BioTechniques, vol.19, 1995.

K. D'ambrosio, B. Kauffmann, N. Rouhier, E. Benedetti, J. P. Jacquot et al., Crystallization and preliminary x-ray studies of the glutaredoxin from poplar in complex with glutathione, Acta Crystallogr. D Biol. Crystallogr, vol.59, pp.1043-1045, 2003.

J. Couturier, C. S. Koh, M. Zaffagnini, A. M. Winger, J. M. Gualberto et al., Structure-function relationship of the chloroplastic glutaredoxin S12 with an atypical WCSYS active site, J. Biol. Chem, vol.284, pp.9299-9310, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02545616

J. Zhang, A. Shibata, M. Ito, S. Shuto, Y. Ito et al., Synthesis and characterization of a series of highly fluorogenic substrates for glutathione transferases, a general strategy, J. Am. Chem. Soc, vol.133, pp.14109-14119, 2011.

D. E. Kim, K. H. Kim, Y. J. Bae, J. H. Lee, Y. H. Jang et al., Purification and characterization of the recombinant arylsulfatase cloned from Pseudoalteromonas carrageenovora, Protein Expr. Purif, vol.39, pp.107-115, 2005.

C. S. Koh, N. Navrot, C. Didierjean, N. Rouhier, M. Hirasawa et al., An atypical catalytic mechanism involving three cysteines of thioredoxin, J. Biol. Chem, vol.283, pp.23062-23072, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02667186

W. Kabsch, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.125-132, 2010.

P. Evans, Scaling and assessment of data quality, Acta Crystallogr. D Biol. Crystallogr, vol.62, pp.72-82, 2006.

M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley et al., Overview of the CCP4 suite and current developments, Acta Crystallogr. D Biol. Crystallogr, vol.67, pp.235-242, 2011.

P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis et al., PHENIX. A comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.213-221, 2010.

T. Terwilliger, SOLVE and RESOLVE. Automated structure solution, density modification, and model building, J. Synchrotron Radiat, vol.11, pp.49-52, 2004.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.486-501, 2010.

V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino et al., MolProbity. All-atom structure validation for macromolecular crystallography, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.12-21, 2010.

E. Krissinel and K. Henrick, Inference of macromolecular assemblies from crystalline state, J. Mol. Biol, vol.372, pp.774-797, 2007.

L. Holm and P. Rosenström, Dali server. Conservation mapping in 3D, Nucleic Acids Res, vol.38, pp.545-549, 2010.

C. Gille, Structural interpretation of mutations and SNPs using STRAP-NT, Protein Sci, vol.15, pp.208-210, 2006.

C. Cole, J. D. Barber, and G. J. Barton, The Jpred 3 secondary structure prediction server, Nucleic Acids Res, vol.36, pp.197-201, 2008.

P. Gouet, X. Robert, C. , and E. , ESPript/ENDscript. Extracting and rendering sequence and 3D information from atomic structures of proteins, Nucleic Acids Res, vol.31, pp.3320-3323, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00314281

N. Allocati, E. Casalone, M. Masulli, I. Ceccarelli, E. Carletti et al., Functional analysis of the evolutionarily conserved proline 53 residue in Proteus mirabilis glutathione transferase B1-1, FEBS Lett, vol.445, pp.347-350, 1999.

R. Cocco, G. Stenberg, B. Dragani, D. Rossi-principe, D. Paludi et al., The folding and stability of human Alpha class glutathione transferase A1-1 depend on distinct roles of a conserved N-capping box and hydrophobic staple motif, J. Biol. Chem, vol.276, pp.32177-32183, 2001.

K. Skopelitou, P. Dhavala, A. C. Papageorgiou, and N. E. Labrou, A glutathione transferase from Agrobacterium tumefaciens reveals a novel class of bacterial GST superfamily, PLoS ONE, vol.7, p.34263, 2012.

P. Reinemer, L. Prade, P. Hof, T. Neuefeind, R. Huber et al., Threedimensional structure of glutathione S-transferase from Arabidopsis thaliana at 2.2 Å resolution. Structural characterization of herbicide-conjugating plant glutathione S-transferases and a novel active site architecture, J. Mol. Biol, vol.255, pp.289-309, 1996.

B. Xia, A. Vlamis-gardikas, A. Holmgren, P. E. Wright, and H. J. Dyson, Solution structure of Escherichia coli glutaredoxin-2 shows similarity to mammalian glutathione S-transferases, J. Mol. Biol, vol.310, pp.907-918, 2001.

C. Frova, Glutathione transferases in the genomics era. New insights and perspectives, Biomol. Eng, vol.23, pp.149-169, 2006.

I. Sinning, G. J. Kleywegt, S. W. Cowan, P. Reinemer, H. W. Dirr et al., Structure determination and refinement of human Alpha class glutathione transferase A1-1 and a comparison with the Mu and Pi class enzymes, J. Mol. Biol, vol.232, pp.192-212, 1993.

J. Rossjohn, W. J. Mckinstry, A. J. Oakley, D. Verger, J. Flanagan et al., Human Theta class glutathione transferase. The crystal structure reveals a sulfatebinding pocket within a buried active site, Structure, vol.6, pp.309-322, 1998.

P. G. Board, M. Coggan, G. Chelvanayagam, S. Easteal, L. S. Jermiin et al., ) Identification, characterization, and crystal structure of the Omega class glutathione transferases, J. Biol. Chem, vol.275, pp.24798-24806, 2000.

B. Agianian, P. A. Tucker, A. Schouten, K. Leonard, B. Bullard et al., Structure of a Drosophila Sigma class glutathione S-transferase reveals a novel active site topography suited for lipid peroxidation products, J. Mol. Biol, vol.326, pp.151-165, 2003.

H. Dirr, P. Reinemer, and R. Huber, X-ray crystal structures of cytosolic glutathione S-transferases. Implications for protein architecture, substrate recognition, and catalytic function, Eur. J. Biochem, vol.220, pp.645-661, 1994.

V. Menchise, C. Corbier, C. Didierjean, J. P. Jacquot, E. Benedetti et al., Crystal structure of the W35A mutant thioredoxin h from Chlamydomonas reinhardtii. The substitution of the conserved active site Trp leads to modifications in the environment of the two catalytic cysteines, Biopolymers, vol.56, pp.1-7, 2000.

C. H. Lillig, C. Berndt, and A. Holmgren, Glutaredoxin systems, Biochim. Biophys. Acta, vol.1780, pp.1304-1317, 2008.

G. Polekhina, P. G. Board, A. C. Blackburn, and M. W. Parker, Crystal structure of maleylacetoacetate isomerase/glutathione transferase Zeta reveals the molecular basis for its remarkable catalytic promiscuity, Biochemistry, vol.40, pp.1567-1576, 2001.

M. G. Jeppesen, P. Ortiz, W. Shepard, T. G. Kinzy, J. Nyborg et al., The crystal structure of the glutathione S-transferaselike domain of elongation factor 1B? from Saccharomyces cerevisiae, J. Biol. Chem, vol.278, pp.47190-47198, 2003.

E. Masai, Y. Katayama, S. Kubota, S. Kawai, M. Yamasaki et al., A bacterial enzyme degrading the model lignin compound ?-etherase is a member of the glutathione S-transferase superfamily, FEBS Lett, vol.323, pp.135-140, 1993.

E. Schonbrunn, S. Eschenburg, K. Luger, W. Kabsch, A. et al., Structural basis for the interaction of the fluorescence probe 8-anilino-1-naphthalene sulfonate (ANS) with the antibiotic target MurA, Proc. Natl. Acad. Sci. U.S.A, vol.97, pp.6345-6349, 2000.

Z. R. Zhang, M. Bai, X. Y. Wang, J. M. Zhou, and S. Perrett, Restoration" of glutathione transferase activity by single-site mutation of the yeast prion protein Ure2, J. Mol. Biol, vol.384, pp.641-651, 2008.

M. Shimizu, Y. Kobayashi, H. Tanaka, and H. Wariishi, Transportation mechanism for vanillin uptake through fungal plasma membrane, Appl. Microbiol. Biotechnol, vol.68, pp.673-679, 2005.

M. Shimizu, N. Yuda, T. Nakamura, H. Tanaka, and H. Wariishi, Metabolic regulation at the tricarboxylic acid and glyoxylate cycles of the lignin-degrading basidiomycete Phanerochaete chrysosporium against exogenous addition of vanillin, Proteomics, vol.5, pp.3919-3931, 2005.

T. Nakamura, H. Ichinose, and H. Wariishi, Flavin-containing monooxygenases from Phanerochaete chrysosporium responsible for fungal metabolism of phenolic compounds, Biodegradation, vol.23, pp.343-350, 2012.

K. A. Marrs, M. R. Alfenito, A. M. Lloyd, and V. Walbot, A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2, Nature, vol.375, pp.397-400, 1995.

S. Kitamura, N. Shikazono, and A. Tanaka, TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis, Plant J, vol.37, pp.104-114, 2004.

E. Meux, S. Mathiot, C. Didierjean, and M. Morel,

E. Gelhaye, P. Gérardin, L. Harvengt, J. Jacquot, T. Lamant et al., Reveals a Novel Structural and Functional Class with Ligandin Properties Glutathione Transferase Phanerochaete chrysosporium Characterization of a, vol.287, pp.39001-39011, 2012.

, J. Biol. Chem

, Access the most updated version of this article at doi: Alerts