Agglomeration of durum wheat semolina: Thermodynamic approaches for hydration properties measurements
Driss Oulahna, Anne Hebrard, Bernard Cuq, Joel Abecassis, Jacques Fages

To cite this version:

HAL Id: hal-01267768
https://hal.archives-ouvertes.fr/hal-01267768
Submitted on 10 Jan 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Agglomeration of durum wheat semolina: Thermodynamic approaches for hydration properties measurements

Driss Oulahna, Anne Hebrard, Bernard Cuq, Joël Abecassis, Jacques Fages

Université de Toulouse, Ecole des Mines Albi, RAPSOSEE Centre, CNRS, 81013 Albi, France
INRA-Montpellier SupAgro, UMR 1208 IATE, 34060 Montpellier, France

Keywords: Diffusion, Durum wheat semolina, Hydration, Mixing calorimetry, Solid–water interactions, Thermodynamic properties

Abstract

In the manufacturing process of pasta or couscous, durum wheat semolina agglomeration comprises successive steps, in particular a wetting and hydration stage. In this step, interactions between water molecules and semolina grains contribute to the agglomeration properties. Hydration properties of semolina have been recognised to play an important role in agglomeration.

The hydration properties of semolina have been characterised using various methods which can be divided into 2 groups according to the water addition: liquid or vapour. Several parameters can be used to describe hydration properties and hydration mechanisms, such as: water sorption capacity, hydration kinetics, diffusion of water within the solid (swelling, dissolution, solid–water affinity and thermodynamic properties).

In this study, sorption isotherms and diffusion coefficients have been determined by gravimetric method in specific conditions. The immersion enthalpy of the semolina and its main sub components, starch and gluten have been measured by mixing micro calorimetry. Hydration thermodynamic properties, Gibbs free energy, enthalpy and entropy, were calculated from these experimental data. It was found that hydration by vapour or liquid water is an exothermic reaction.

The determined diffusion coefficient was used to estimate the stabilisation time of water within the solid. Being high at low relative humidity, the diffusion coefficient decreases during progressive saturation of solid sites. Sorption energy and solid–water affinity yield information about the type of interaction between water molecules and solid sites. The drop in the sorption energy during the increase in water content can be attributed to a decrease in solid–water interactions. The hydration energy of durum wheat semolina in vapour or liquid water was found to be low. This corresponds to the energy input needed to generate contact between water and grain surface and for mixture homogenisation.

1. Introduction

Agglomeration process, widely used in cereal industry, usually requires a liquid binder addition. Generally, solid–water interactions can be broken down into two simultaneous or successive steps (Fig. 1). From durum wheat semolina, the manufacturing process of pasta or couscous consist of different stages among which a wetting and hydration step, necessary for grain agglomeration under mixing conditions. During hydration, the solid–water interactions as described in Fig. 1, takes into account two types of solid reactivity with water: surface and internal reactivity mechanisms. In this paper, we present the hydration properties of durum wheat semolina by water linked to internal reactivity (see Fig. 2).

Solid hydration properties can be assessed by liquid or vapour water addition. For liquid water addition, two methods are currently used: solid immersion in excess water or liquid distribution in a capillary system (Baumann, 1966). For vapour water addition, two methods can be used: gas chromatography (Buckton, 1992; Gutierrez and Rubio, 1999) or static gravimetry; the latter being considered as the reference method (Levoguer and Booth, 1997). Depending on the analytical method, hydration properties can be described by various parameters such as:

- Water uptake at a given relative humidity or in liquid phase.
- Stabilisation time for reaching the equilibrium between relative humidity and water content.
- Water adsorption mechanisms.
- Solid–water affinity.
- Diffusion coefficient of water within the solid.
- Structural and physico-chemical modifications due to hydration as a function of temperature.
can be assessed by the GAB model (Dural and Hines, 1993); the
sired application. For example, the structural state of water sorbed
mated. Several models has been developed in relation with the de
isotherms trends, the type of solid liquid interactions can be esti-
ation stabilisation time have been measured. By modelling sorption
of the sorption process.

There exist also relationships between the thermodynamic func-
tions of gas solid adsorption and liquid solid immersion which
are of the utmost importance for the wetting and hydration steps
of many manufacturing processes. The knowledge of thermody-
namic functions could provide information on the affinity between
water and the cereal product including the binding forces, the
dynamic functions could provide information on the affinity between
water and the cereal product including the binding forces, the
namic functions are specific of the method employed. However, thermo-
dynamics properties of hydration, including Gibbs free
energy, enthalpy and entropy.

Sorption isotherms and isosteric heat of sorption of cereal
based products are essential for the design, modelling and optimi-
sation of many processes such as drying, aeration and storage.
There exist also relationships between the thermodynamic func-
tions of gas solid adsorption and liquid solid immersion which
are of the utmost importance for the wetting and hydration steps
of many manufacturing processes. The knowledge of thermody-
namic functions could provide information on the affinity between
water and the cereal product including the binding forces, the
water molecules, their spatial arrangement, and the spontaneity
of the sorption process.

From sorption isotherms, water adsorption capacity and hydra-
tion stabilisation time have been measured. By modelling sorption
isotherms trends, the type of solid liquid interactions can be esti-
mated. Several models has been developed in relation with the de-
sired application. For example, the structural state of water sorbed
can be assessed by the GAB model (Dural and Hines, 1993); the
affinity of water vapour molecules from solid sites can be esti-
ated by the ENSIC Model (Favre et al., 1996). From sorption iso-
therms, apparent diffusion coefficient of water within the grain can
be calculated by resolution of the second Fick’s law (Levoguer,
1997). Finally, under temperature and hydration conditions, phys-
ico chemical and/or structural modifications of the solid can be
evaluated by the amplitude of the hysteresis: the difference be-
tween adsorption and desorption isotherms (Chung and Pfost,
1967; Bell and Labuza, 2000). Eventually, hydration proper-
ties can be modified as a function of temperature.

In this paper, sorption isotherms determination and other
experiments, complementary to those previously described (Hébr
ard et al., 2003) are presented.

These characterisations will be used to a more detailed descrip-
tion of semolina/water interactions mechanisms which, in turn,
can be used for a better control of the hydration step in agglomer-
ation process for making pasta or couscous.

2. Materials and methods

2.1. Raw material

Superior quality industrial semolina A (0 630 μm) has been
used both in its entirety and sub divided into three sieve fractions:
A1 (0 200 μm), A2 (200 400 μm) and A3 (400 630 μm). It has a
density of 1450 kg m⁻³ and a specific surface area of 0.05 m² g⁻¹,
no intragranular porosity could be detected. The physicochemical,
biochemical and structural properties of semolina and its sub frac-
tions are reported in Table 1. Two populations of starch granules
(which differ in shape and size) are bound by a gluten matrix.
Small spherical starch granules (<10 μm), are distinct from large
and oval ones, of size between 20 μm and 40 μm. Occasionally,
aleurone layer cells, about 40 μm in size, with an aleuor cell struc-
ture, were observed. The surface ratio of this component is low,
about 2% of surface area. This characterisation has been previously
described (Hébrard et al., 2001).
2.2. Hydration properties

Hydration properties have been determined by gravimetric methods using an experimental method described below and by using specific models to exploit sorption isotherms. Thermodynamic hydration properties have also been measured by mixing microcalorimetry.

2.2.1. Measurement of hydration properties by gravimetric method

Adsorption data were measured gravimetrically using an automated Dynamic Vapour Sorption system (DVS 1000 Surface Measurement Systems, UK). The sample, 28–37 mg previously dried, was uniformly spread in a small dry cup, then placed in the microbalance. After a pre-equilibration at ERH 0%, relative humidity varied by 5% increments between 0% and 95% under a nitrogen flow of 375 s cm\(^{-3}\) (standard cubic centimetres). The progression to the next stage occurred by a change in mass lower than 0.002%, with a minimum time of 10 min and a maximum of 360 min. The variation of mass of the sample as a function of was recorded at a given temperature.

2.2.2. Solid water affinity: application of the ENSIC model

ENSIC (Engaged Species Induced Clustering) model has been developed by considering sorption as an anisotropic mechanistic phenomenon from a simple mechanistic approach in which solvent molecules can be adsorbed on solid sites or on already adsorbed solvent molecules (Favre et al., 1996). According to the values of \(k_p \) and \(k_s \), vapour solvent molecules will be sorbed preferentially on solid sites if \(k_s < k_p \) or on adsorbed solvent molecules if \(k_s > k_p \). This theory can be applied to numerous polar or non-polar polymers.

ENSIC Model:

\[
\varphi = \frac{k_p}{(k_s - k_p)} (e^{k_s x_{hs}} - 1).
\]

2.2.3. Diffusion coefficient

The diffusion coefficient at a given ERH (X%) can be evaluated after a 5% variation of ERH (from X% to X + 5%) in a single step using the same experimental protocol of the DVS\(^\circ\) previously described. The sample should be uniformly spread in the cup in the form of a thickness film; its thickness can be measured either by a calliper rule or from sample mass, density and the cup volume.

The Fick’s second law (Eq. (2)) can be used to calculate diffusion either in spherical particles (Becker, 1959) or in polymers film (Crank, 1976). For this application, the diffusion coefficient was calculated from Crank equation (Eq. (4)) since we do not determine the diffusion coefficient of a single semolina particle but of a group of grains comparable to a film. This film can be defined by its thickness \(\delta \) and its porosity, equivalent to the inter granular porosity of semolina (\(e_{\text{inter}} 0.2 \)). This diffusion coefficient corresponds to the sum of diffusion between semolina grains and within a grain.

The apparent diffusion coefficient of vapour water into semolina powder is obtained at a given relative humidity (X%) by plotting \(\ln(M_{eq} - M_i) \) as a function of time \(t \). The diffusion coefficient at a given relative humidity (X%) is calculated from the slope of the linear part of this curve.

Second Fick’s law:

\[
F = D_i \frac{\partial c}{\partial x} \tag{2}
\]

Diffusion in spherical particles:

\[
M_i \frac{6}{\pi^2} \sum_i m(i) \sum_{j=1}^\infty \frac{1}{n^2} \exp \left(-\frac{n^2 D_t}{(ai)^2} \right) \tag{3}
\]

Diffusion in a film of polymer:

\[
\ln(M_{eq} - M_i) = \ln \left(\frac{8M_{eq}}{\pi} \right) \frac{n^2 D_i}{e^2} t. \tag{4}
\]

Fig. 2. Schematic representation of vapour solvent molecules affinity for solid sites and for adsorbed solvent molecules « ENSIC model».

Table 1

<table>
<thead>
<tr>
<th>Physico-chemical and biochemical characterisation of durum wheat semolina and its sub-fractions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semolina ((\mu \text{m}))</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>Average diameter (d_{50}) (m)</td>
</tr>
<tr>
<td>Span: (\left[(d_{90} - d_{10})/d_{50} \right])</td>
</tr>
<tr>
<td>Composition (% db)</td>
</tr>
<tr>
<td>Starch</td>
</tr>
<tr>
<td>Damaged starch</td>
</tr>
<tr>
<td>Proteins</td>
</tr>
<tr>
<td>Insoluble proteins in SDS</td>
</tr>
<tr>
<td>Total pentosans</td>
</tr>
<tr>
<td>Soluble pentosans</td>
</tr>
<tr>
<td>Free lipids</td>
</tr>
<tr>
<td>Reducing carbohydrates</td>
</tr>
<tr>
<td>Ash</td>
</tr>
</tbody>
</table>

2.2.2. Solid water affinity: application of the ENSIC model

ENSIC (Engaged Species Induced Clustering) model has been developed by considering sorption as an anisotropic mechanistic phenomenon from a simple mechanistic approach in which solvent molecules can be adsorbed on solid sites or on already adsorbed solvent molecules (Favre et al., 1996). According to the values of \(k_p \) and \(k_s \), vapour solvent molecules will be sorbed preferentially on solid sites if \(k_s < k_p \) or on adsorbed solvent molecules if \(k_s > k_p \). This theory can be applied to numerous polar or non-polar polymers.

ENSIC Model:

\[
\varphi = \frac{k_p}{(k_s - k_p)} (e^{k_s x_{hs}} - 1).
\]
2.2.4. Thermodynamics sorption properties

From sorption isotherms at different temperatures (2 mini mum), thermodynamics sorption properties can be calculated. Gibbs free energy (\(\Delta G\)), enthalpy (\(\Delta H\)) and entropy (\(\Delta S\)) are the main thermodynamics functions which are linked by the Gibbs Helmoltz relation:

\[
\Delta G = \Delta H - T \Delta S.
\] (5)

Gibbs free energy (\(\Delta G\)) is the driving force at constant temperature and pressure. A change in free energy is generally coupled with enthalpy and entropy changes. The sign of \(\Delta G\) informs about the spontaneity of the reaction. If \(\Delta G < 0\), the reaction is spontaneous.

The alteration of water binding mechanisms can be identified by a change in the slope of Gibbs free energy (\(\Delta G\)) plotted versus water content of the sample (EMC) as demonstrated by Lagoudaki et al. (1993).

Enthalpy (\(\Delta H\)) is the heat released by hydration at constant pressure (\(\Delta H_{\text{Qst}}\)). It informs about binding energy, intermolecular strength developed between the solvent (binder) and the adsorbed molecules. The nature, homogeneity and heterogeneity of adsorbent surface can be characterised by the plot of the “heat curve” representing the evolution of isosteric heat of sorption (\(\Delta H_{\text{Qst}}\)) versus binder ratio (Dural and Hines, 1993). Enthalpy change provides a measure of the energy variations occurring on mixing water molecules with sorbent during sorption process.

Entropy (\(\Delta S\)) defines the degree of order or randomness existing in the water sorbent system and helps interpretation of process such as dissolution, crystallisation, wetting and swelling (McMinn and Magee, 2003). Entropy is related to degrees of freedom of the adsorbent; it is a measurement of the disorder, the various microscopic and structural states. According to the second law of thermodynamics, the phenomena are reversible if the entropy variation equals zero. A decrease of entropy means an increase in the structural states of adsorbed molecules.

A relation between enthalpy and entropy, defined as an enthalpy/entropy compensation, was defined by Everett (1950) postulating that \(\Delta H\) and \(\Delta S\) are independent of temperature. An enthalpy/entropy compensation exists if the correlation degree between \(\Delta H\) and \(\Delta S\) is good and if \(T_s \neq T_{\text{lim}}\). The following equation by Leffler and Grunwald (1963) gives this correlation.

Leffler and Grunwald equation (1963):

\[
\Delta H = T_s \Delta S + x
\] (6)

\(T_s\) and \(x\) were calculated by linear regression from data enthalpy versus entropy.

With \(T_{\text{lim}}\) the harmonic mean of the temperatures defined as:

\[
T_{\text{lim}} = \frac{1}{\frac{1}{T_1} + \frac{1}{T_2}}.
\]

The sorption phenomenon is controlled by enthalpy if \(T_s > T_{\text{lim}}\) otherwise it is controlled by entropy. On a wide range of relative humidity, depending on the product, the enthalphy/entropy compensation can present both tendencies. Once enthalphy/entropy compensation is checked, this relation can be used for modelling the influence of temperature on sorption isotherms by a 2 param eter equation:

Aguerre et al. equation (1986):

\[
\ln \left(\frac{P}{P^0}\right) = \frac{\Delta H}{R} \left(\frac{1}{T} - \frac{1}{T_s}\right).
\] (7)

The enthalphy entropy compensation theory has been widely investigated for many different physical and chemical processes (Madamba et al., 1996), and has been checked for numerous products such as wood, rice, wheat and corn (Aguerre et al., 1986; Resio and Aguerre, 1999; Tolaba et al., 1997; Koumoutsakos and Avramidis, 1999; Gabas et al., 2000).

From sorption isotherms at different temperatures, the semi log plot of water activity (\(w/P(P^0)\)) versus (1/\(T\)) for a constant quantity of sorbed water at different temperatures correspond to a straight line with:

- The isosteric heat of sorption (\(\Delta H_{\text{Qst}}\)) determined from the slope (Clausius Clapeyron, 8 or Everett equations, 9).
- The entropy (\(\Delta S\)) obtained from the intercept at the origin (Everett equation, 9).
- The free energy (\(\Delta G\)) calculated from the Gibbs Helmoltz Eq. (5).

Clausius Clapeyron equation:

\[
\frac{\Delta H_{\text{Qst}}}{R} = \frac{\ln(P/P^0)}{\ln(1/T)}
\] (8)

Everett equation [1950, a]:

\[
\ln(P/P^0) = \ln(\text{Aw}) - \frac{\Delta H}{R T} + \frac{\Delta S}{R}
\] (9)

\[
\Delta G = R T \ln \left(\frac{P}{P^0}\right)
\] (9')

2.2.5. Thermodynamics hydration properties by mixing calorimetry

Mixing microcalorimetry technique can be used to measure the hydration energy under mixing conditions by immersion of a powder in a liquid. Temperature and exterior thermal exchanges are precisely controlled. A C80 D microcalorimeter (Setaram®) equipped with a membrane mixing cell composed of 2 parts separated by a metal membrane was used (Fig. 3). In this specific application, water was placed in the higher part of the cell and semolina in the lower part.

Approximately, 100 mg of semolina, exactly weighed, were mixed with 1000 mg of distilled water at a specific temperature. Immersion enthalpy (\(\Delta H_{\text{imm}}\)) of semolina A and its sub fractions in water were measured at 25 °C. The effects of hydration temperature and wetting liquid were investigated on immersion enthalpy of semolina A. Duplicate measurements were made to estimate the errors in the experimental method.

3. Results: hydration properties

The uptake and the kinetics of water vapour sorption of semolina A and its sub fractions were previously determined at 25 °C, 35 °C and 45 °C (Hellard et al., 2003). Alteration due to hydration of semolina A was estimated by making several cycles of adsorption/desorption. Physico chemical and structural properties had not been modified by hydration at any of the three tested temperatures. In addition, these authors did not identify any significant effect of particle size on the water adsorption kinetics of durum wheat semolina.
adsorbed solvent molecules rather than to the solid sites (ks/C176) to sorption isotherms. For semolina A and its sub fractions, at 25 °C, vapour solvent molecules are attached preferentially to the adsorbed solvent molecules rather than to the solid sites (ks ≈ 6 kp; ks/kp ≈ 0.13–0.14) as shown in Table 2.

3.1. Affinity of water vapour for solid sites (gravimetry)

Affinity coefficients between vapour molecules and solid sites (kp) and between vapour solvent molecules and adsorbed solvent molecules (ks) have been estimated by application of ENSIC model to sorption isotherms. For semolina A and its sub fractions, at 25 °C, vapour solvent molecules are attached preferentially to the adsorbed solvent molecules rather than to the solid sites (ks ≈ 6 kp; ks/kp ≈ 0.13–0.14) as shown in Table 2.

3.2. Diffusion coefficient at 25 °C (gravimetry)

Apparent diffusion coefficient of water vapour in a thin film of semolina (2.685 mm) was calculated from Crank (Eq. (4)). This diffusion coefficient is the sum of diffusion between semolina grains and diffusion within a grain. For the evolution of the apparent diffusion coefficient versus relative humidity (Fig. 4), 3 steps can be identified with the increase of relative humidity:

- For ERH < 30%, the diffusion coefficient decreases.
- For 30% < ERH < 70%, the diffusion coefficient increases.
- For ERH > 70%, the diffusion coefficient decreases.

The relative humidity describing these 3 stages correspond to the different types of liquid solid interactions identified from the evolution of water vapour adsorbed versus relative humidity and to the 3 phases described for the time required to reach the mass stabilisation at a given relative humidity (Hébrard et al., 2003).

At ERH 95%, the diffusion coefficient of water in a thin film of semolina is about 1.2 × 10⁻¹⁰ m² s⁻¹. This value is in good agreement with several other published work on durum wheat semolina. Kang and Delwiche (1999) studied the water uptake kinetics of durum wheat samples at 22 °C and found a diffusion coefficient of 0.73 × 10⁻¹⁰ m² s⁻¹ by numerical modelling of the moisture diffusion using a finite element model. Kratzer (2007) proposed a method to estimate a diffusion coefficient of water in durum endosperm by using numerical simulation based on a diffusion model. The diffusion coefficients were found 0.43 × 10⁻¹⁰ m² s⁻¹ and 1.0 × 10⁻¹⁰ m² s⁻¹, with an overall mean of 0.76 × 10⁻¹⁰ m² s⁻¹. This is, however, a significant difference with the diffusion coefficient of water in bread wheat flour determined by Roman Gutierrez (2002): 4.1 × 10⁻⁹ m² s⁻¹. This difference between diffusion coefficient of water within semolina and bread wheat flour can be attributed either to the nature of the product or to the experimental protocol (thickness and cup used). In addition, this coefficient was determined from sorption isotherms by considering diffusion in spherical particles.

3.3. Thermodynamic hydration properties

Thermodynamics hydration properties have been determined by sorption isotherms and by mixing calorimetry (ΔH_isosteric).

3.3.1. Thermodynamics sorption properties

Thermodynamics sorption properties of semolina A have been calculated from sorption isotherms at 25 °C, 35 °C and 45 °C. Temperature do not alter water uptake whereas the stabilisation time is reduced. On the other hand, physicochemical and structural properties of the solid are not irreversibly altered under hydration and temperature (25 °C and 45 °C) effects (Hébrard et al., 2003).

For each water content of the grain, water activity is determined at 25 °C, 35 °C and 45 °C (Table 3) and the linear relation: ln(Aw) = f(1/T) can be plotted (Fig. 5). The isosteric heat and the enthalpy of sorption (Qst, ΔH) are obtained from the slope of the straight line (Qst/R). The entropy of sorption is calculated from the intercept at the origin (ΔS/R). Gibbs free energy (ΔG) is obtained from Gibbs Helmoltz Eq. (5).

The variation of enthalpy of sorption and entropy versus water content presents the same trend (Figs. 6 and 7). In absolute value, both the enthalpy and entropy of sorption are high at low water content and reach a minimum with the increase of water content. As for ΔH, this trend is supported by the fact that as moisture content increases, the attraction forces of water molecules by semolina decrease. The ΔS values also showed a strong dependence on moisture content. This entropy decrease during sorption could be attributed to a better arrangement of the sorbed water molecules, particularly at low moisture contents.

3.3.2. Hydration of semolina is an exothermic phenomenon (ΔH < 0)

These curves give information about the solid liquid interactions, entropy representing the disorder (Dural and Hines, 1993). First adsorption occurs on the most active sites, the interaction energy is the highest. During the formation of the first layer (water content < 7% db), isosteric heat and enthalpy decrease to a minimum resulting in the progressive saturation of the solid sites. Binding energy between water and solid sites and structural state of water molecules decrease. Thus, for multilayer adsorption, for a water content > 7% db, the isosteric heat of sorption is minimal and correspond to the water condensation heat (ΔH ≈ Lv 2480 J mol⁻¹); then structural state of water molecules is minimal.

![Fig. 4. Variation of the apparent diffusion coefficient at 25 °C in a semolina film of small thickness (2.685 mm).](image)
As explained in Section 2.2.4 an entropy / enthalpy compensation can be established (Fig. 8) as the correlation degree between ΔH and ΔS is good (R^2 0.995) and $T_D < T_{imm}$. On the other hand, since $T_D < T_{imm}$ (T_D 244 K and T_{imm} 303 K) on the wide range of relative humidity, the sorption is rather controlled by entropy (structural state of water molecules) than enthalpy (binding energy between water and sorption sites).

Eventually, from the evolution of Gibbs free energy as a function of (1/relative humidity), 2 discontinuous points can be identified: they represent water binding mechanism modifications. The first point (5% db) is close to the monolayer value obtained by Lagoudaki et al. (1993) showed for spaghetti. The second point (water content ≈ 15% db) characterises the alteration of water binding state from water closely tied to free water. The effects have been observed at the 4 temperatures studied: 15 °C, 20 °C, 35 °C and 45 °C.

These characterisations of thermodynamics hydration properties of semolina by water give more detailed information about sorption mechanisms and about thermodynamics of mono and multi layers formation.

3.4. Thermodynamics hydration properties by mixing calorimetry

Immersion enthalpy (ΔH_{imm}) of semolina A and its sub fractions in water have been determined by mixing calorimetry at 25 °C. The influence of immersion temperature and liquid of hydration (perfect wetting liquid: hexane). Immersion enthalpy of starch and gluten are different. Starch, having better wetting properties than gluten (Roman Guttierrez, 2002), presents a higher immersion enthalpy. From these comparisons, it seems that immersion enthalpy is not only correlated to wetting energy, it should also been considered energy for:

- Bringing into contact water molecules and solid surface;
- Diffusion of water within the grain;
- Homogenisation of the mixture.

$$\Delta H_{imm} \text{ starch } (17 \text{ J g}^{-1} \text{ db}) < \Delta H_{imm} \text{ gluten } (2 \text{ J g}^{-1} \text{ db})$$

Wetting contact angle (θ): starch/water ($\theta = 38^\circ$) > gluten/water ($\theta = 85^\circ$) (Roman Guttierrez, 2002).

In conclusion, hydration of semolina grains under mixing conditions is an exothermic reaction:

- Independent on the immersion temperature in the range 25–40 °C and on the surface energy of the hydration liquid, if the liquid wets the solid.
- Depending on biochemical composition: important differences between starch and gluten have been observed. However, biochemical differences in function of semolina grain size are not sufficient to affect hydration energy.

Hydration energy seems only to be influenced by energy for bringing into contact water molecules and solid surface and for homogenisation of the mixture; diffusion of water within the grain seems to be poor energy consuming.

4. Discussion

For semolina, a product complex due to its physico chemical properties, biochemical composition and surface properties, (Hébrard et al., 2001, 2003), we tried to explain water uptake mechanisms by hydration properties determined from sorption isotherms and from thermodynamic hydration properties under mixing conditions. Hydration by vapour or liquid water is an exothermic reaction (ΔH_{imm} and $\Delta H < 0$). Sorption isotherms show that several additional layers of water are adsorbed successively. The multilayer formation can be described by water diffusion with in the grain and by solid liquid interaction energy more than water uptake and hydration kinetics. For ERH < 20%, during the formation of the monolayer (for a water content about 0.06 kg water/kg db) the stabilisation time, short at very low ERH (10%), increases while the diffusion coefficient of liquid within the solid decreases. First, adsorption takes place on the more active sites of the solid giving rise to the highest interaction energy. With the increase of
ERH, solvent/solid interaction energy and structural state of water molecules (entropy), high at low ERH, decrease to a minimum.

For 20% < ERH < 70%, during the formation of additional layers on the resultant monolayer, the diffusion coefficient increases which explains the increase of water content with a constant stabilisation time. The energy for solvent/solid interactions and structural state of water molecules are minima and remain constant during multilayer formation. Hydration enthalpy is equivalent to water condensation heat.

For ERH > 70%, solvent/solid interaction energy and structural state of water molecules are minimal, explaining why the water sorbed is weakly linked and quite mobile and stabilisation time is long.

From the evolution of Gibbs free energy (ΔG) versus water content, the modification of water vapour binding mechanisms from solid sites (monolayer formation) to sorbed water molecules (multilayer formation) has been identified. The linear relation between entropy and enthalpy for 0 < ERH < 95% shows that sorption of water vapour is rather controlled by structural state of water molecules (entropy) than by the binding energy between water and solid sites (enthalpy).

Sorption energy changes in relation with the solid water content can be interpreted by affinity coefficient of water vapour molecules for solid sites (k_s) and for water adsorbed molecules (k_a). The higher the affinity, the lower the sorption energy required. Since $k_s << k_a$, the affinity of water vapour molecules for solid sites is weaker than for water adsorbed molecules. Thus, at low ERH, for monolayer formation, binding energy of water molecules to solid sites is weaker than for multilayer formation; this also explains the decrease in binding energy progressively with monolayer saturation. Once the monolayer is formed, sorption energy is minimal and remains constant.

Sorption enthalpy is equivalent to water condensation heat when the monolayer is formed and immersion enthalpy for semolina A (±20%).

For starch and gluten, the main components of semolina, the affinity of water vapour molecules for solid sites is weaker than for water adsorbed molecules. For these components, the main components of sorption energy changes are related to the structural state of water molecules (entropy) than by the binding energy between water and solid sites (enthalpy).
semolina, the determination of their thermodynamic sorption properties would be useful for the interpretation of the values of immersion energy.

5. Conclusion

In this study, the hydration properties of semolina have been characterised: sorption isotherms and diffusion coefficients have been determined by gravimetric method.

The immersion enthalpy of the semolina and its main sub com ponents, starch and gluten have been measured by mixing micro calorimetry. Hydration thermodynamic functions, Gibbs free energy, enthalpy and entropy, were calculated and it was found that hydration is an exothermic reaction.

The enthalpy - entropy compensation theory could be successfully applied to water adsorption behaviour of semolina. The moisture adsorption of semolina, appeared to be an entropy controlled process.

The diffusion coefficient determination led to evaluate the sta bilisation time of water within the solid. Being high at low relative humidity, the diffusion coefficient decreases during progressive saturation of solid sites.

The hydration energy needed to generate contact between water and grain surface and for mixture homogenisation, was found to be low.

These characterisations of interactions between water and sem olinha allow a better understanding of the mechanisms of water uptake by semolina during the wetting and hydration step in cous cuscous or pasta manufacturing process. Following this study, it would be interesting to characterise agglomeration properties un der hydration and mixing conditions.

Acknowledgements

The authors would like to thank Ferico S.A for providing the semolina and for financial support.

References

