Skip to Main content Skip to Navigation
Journal articles

OKPS: a reactive/cooperative multi-sensors data fusion approach designed for robust vehicle localization

Résumé : This paper presents the Optimized Kalman Particle Swarm (OKPS) filter. This filter results of two years of research and improves the Swarm Particle Filter (SPF). The OKPS has been designed to be both cooperative and reactive. It combines the advantages of the Particle Filter (PF) and the metaheuristic Particle Swarm Optimization (PSO) for ego-vehicles localization applications. In addition to a simple fusion between the swam optimization and the particular filtering (which leads to the Swarm Particle Filter), the OKPS uses some attributes of the Extended Kalman filter (EKF). The OKPS filter innovates by fitting its particles with a capacity of self-diagnose by means of the EKF covariance uncertainty matrix. The particles can therefore evolve by exchanging information to assess the optimized position of the ego-vehicle. The OKPS fuses data coming from embedded sensors (Low cost INS, GPS and Odometer) to perform a robust ego-vehicle positioning. The OKPS is compared to the EKF filter and to filters using particles (PF and SPF) on real data from our equipped vehicle.
Document type :
Journal articles
Complete list of metadatas

Cited literature [35 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01267171
Contributor : Ifsttar Cadic <>
Submitted on : Thursday, February 4, 2016 - 9:31:40 AM
Last modification on : Tuesday, December 8, 2020 - 10:20:49 AM
Long-term archiving on: : Saturday, November 12, 2016 - 7:52:56 AM

File

doc00023365.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Adda Redouane Ahmed Bacha, Dominique Gruyer, Alain Lambert. OKPS: a reactive/cooperative multi-sensors data fusion approach designed for robust vehicle localization. Positioning, 2016, 7 (1), pp.1-20. ⟨10.4236/pos.2016.71001⟩. ⟨hal-01267171⟩

Share

Metrics

Record views

282

Files downloads

434