Limit theorems for decomposable branching processes in a random environment
Vladimir Vatutin, Quansheng Liu

To cite this version:

HAL Id: hal-01267126
https://hal.archives-ouvertes.fr/hal-01267126
Submitted on 6 Feb 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
LIMIT THEOREMS FOR DECOMPOSABLE BRANCHING PROCESSES IN RANDOM ENVIRONMENT

VLADIMIR VATUTIN,∗ Steklov Mathematical Institute

QUANSHENG LIU,** Univ Bretagne - Sud

Abstract

We study the asymptotics of the survival probability for the critical and decomposable branching processes in random environment and prove Yaglom type limit theorems for these processes. It is shown that such processes possess some properties having no analogues for the decomposable branching processes in constant environment

Keywords: Decomposable branching processes; survival probability; random environment

2010 Mathematics Subject Classification: Primary 60J80

Secondary 60F17;60J85

1. Introduction

The multitype branching processes in random environment we consider here can be viewed as a discrete-time stochastic model for the sizes of a geographically structured population occupying islands labelled 0, 1, ..., N. One unit of time represents a generation of particles (individuals). Particles located on island 0 give birth under influence of a randomly changing environment. They may migrate to one of the islands 1, 2, ..., N immediately after birth, with probabilities again depending upon the current environmental state. Particles of island i ∈ {1, 2, ..., N − 1} either stay at the same island or migrate to the islands i + 1, 2, ..., N and their reproduction laws are not influenced by any changing environment. Finally, particles of island N do not migrate and evolve in a constant environment.

∗ Postal address: Steklov Mathematical Institute, Gubkin str. 8, 119991, Moscow, Russia
** Postal address: Univ Bretagne - Sud, UMR 6205, LMBA, F-56000 Vannes, France
The goal of this paper is to investigate the asymptotic behavior of the survival probability of the whole process and the distribution of the number of particles in the population given its survival or survival of particles of type 1.

Let \(m_{ij} \) be the mean number of type \(j \) particles produced by a type \(i \) particle at her death.

We formulate our main assumptions as

Hypothesis A0:

- particles of type 0 form (on their own) a critical branching process in a random environment;
- particles of any type \(i \in \{1, 2, ..., N\} \) form (on their own) a critical branching process in a constant environment, i.e., \(m_{ii} = 1 \);
- particles of any type \(i \) are able to produce descendants of all the next in order types (may be not as the direct descendants) but not any preceding ones. In particular, \(m_{ij} = 0 \) for \(1 \leq j < i \leq N \) and \(m_{i,i+1} > 0 \) for \(i = 1, ..., N-1 \).

Let \(X_n \) be the number of particles of type 0 and \(Z_n = (Z_{n1}, ..., Z_{nN}) \) be the vector of the numbers of particles type 1, 2, ..., \(N \), respectively, present at time \(n \). Throughout of this paper considering the \((N+1) \)-type branching process it is assumed (unless otherwise specified) that \(X_0 = 1 \) and \(Z_0 = (0, ..., 0) = 0 \).

We investigate asymptotics of the survival probability of this process as \(n \to \infty \) and the distribution of the number of particles in the process at moment \(n \) given \(Z_{n1} > 0 \) or \(Z_n \neq 0 \). Note that the asymptotic behavior of the survival probability for the case \(N = 1 \) has been investigated in [9] under stronger assumptions than those imposed in the present paper. The essential novelty of this paper are Yaglom-type limit theorems for the population vector \(Z_n \) (see Theorem 2 below).

The structure of the remaining part of this paper is as follows. In Section 2 we recall known facts for decomposable branching processes in constant environments and show some preliminary results. Section 3 deals with the \((N+1) \)-type decomposable branching processes in random environment. Here we study the asymptotic behavior of the survival probability and prove a Yaglom-type conditional limit theorem for the number of particles in the process given \(Z_{n1} > 0 \). In Section 4 we consider a 3-type decomposable branching process in random environment and, proving a Yaglom-type
conditional limit theorem under the condition \(Z_{n1} + Z_{n2} > 0 \), show the essential
difference of such processes with the decomposable processes evolving in constant
environment.

2. Multitype decomposable branching processes in a constant
environment

The aim of this section is to present a number of known results about the decom-
posable branching processes we are interesting in the case of a constant environment
and, therefore, we do not deal with particles of type 0.

If Hypothesis \(A0 \) is valid then the mean matrix of our process has the form

\[
M = (m_{ij}) = \begin{pmatrix}
1 & m_{12} & \ldots & \ldots & m_{1N} \\
0 & 1 & m_{23} & \ldots & m_{2N} \\
0 & 0 & 1 & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & m_{N-1,N} \\
0 & 0 & \ldots & 0 & 1
\end{pmatrix},
\]

(1)

where

\[m_{i,i+1} > 0, \; i = 1, 2, \ldots, N - 1. \]

(2)

Under conditions (1) and (2) one obtains a complete ordering \(1 \rightarrow 2 \rightarrow \ldots \rightarrow N \) of
types.

Observe that according to the classification given in [6] the process we consider is
strongly critical.

In the sequel we need some results from [5] and [6]. To this aim we introduce
additional notation.

1) For any vector \(s = (s_1, \ldots, s_p) \) (the dimension will usually be clear from the
context), and integer valued vector \(k = (k_1, \ldots, k_p) \) define

\[s^k = s_1^{k_1} \ldots s_p^{k_p}. \]

Further, let \(1 = (1, \ldots, 1) \) be a vector of units and let \(e_i \) be a vector whose \(i \)-th
component is equal to one while the remaining are zeros.
2) The first and second moments of the components of the population vector $Z_n = (Z_{n1}, ..., Z_{nN})$ will be denoted as

$$m_{il}(n) := E[Z_{nl}|Z_0 = e_l], m_{il} := m_{il}(1),$$

$$b_{ikl}(n) := E[Z_{nk}Z_{nl} - \delta_{kl}Z_{nl}|Z_0 = e_l], b_{ikl} := b_{ikl}(1).$$

To go further we introduce probability generating functions

$$h^{(i,N)}(s) := E\left[\prod_{k=i}^{N} s_{k}^{\eta_{ik}}\right], 0 \leq i \leq N,$$

where η_{ij} represents the number of daughters of type j of a mother of type $i \in \{1, 2, ..., N\}$. Let

$$H^{(i,N)}_n(s) := E\left[\prod_{k=i}^{N} s_{k}^{Z_{nk}}|Z_0 = e_i\right], 0 \leq i \leq N,$$

be the probability generating functions for the vector of the number of particles at moment n given the process is initiated at time 0 by a singly particle of type $i \in \{1, 2, ..., N\}$. Clearly, $H^{(i,N)}_1(s) = h^{(i,N)}(s)$. Denote

$$H_n(s) := \left(H^{(1,N)}_n(s), ..., H^{(N,N)}_n(s)\right),$$

$$Q_n(s) := \left(Q^{(1,N)}_n(s), ..., Q^{(N,N)}_n(s)\right) = \left(1 - H^{(1,N)}_n(s), ..., 1 - H^{(N,N)}_n(s)\right).$$

The following theorem is a simplified combination of the respective results from [5] and [6]:

Theorem 1. Let $\{Z_n, n = 0, 1, \ldots\}$ be a strongly critical multitype branching process satisfying (1) and (2). Then, as $n \to \infty$

$$m_{il}(n) \sim c_{il}n^{l-i}, i \leq l,$$

where c_{il} are positive constants known explicitly (see [6], Theorem 1);

2) if $b_{ikl} < \infty$, $i, k, l = 1, ..., N$ then

$$b_{ikl}(n) \sim c_{ikl}n^{k+l-2i+1},$$

where c_{ikl} are constants known explicitly (see [6], Theorem 1) and

$$Q^{(i,N)}_n(0) = 1 - H^{(i,N)}_n(0) = P(Z_n \neq 0|Z_0 = e_i) \sim c_i n^{-2(N-i)}, c_i > 0.$$
Let $H(s_1, \ldots, s_p) = H(s)$ be a multivariate probability generating function with

$$m_i := \frac{\partial H(s)}{\partial s_i} \bigg|_{s=1}, \quad b_{kl} := \frac{\partial^2 H(s)}{\partial s_k \partial s_l} \bigg|_{s=1} < \infty.$$

Lemma 1. (see formula (1), page 189, in [3]) For any $s = (s_1, \ldots, s_p) \in [0, 1]^p$ we have

$$\sum_{i=1}^p m_i (1-s_i) - \frac{1}{2} \sum_{k,l=1}^p b_{kl} (1-s_k) (1-s_l) \leq 1 - H(s) \leq \sum_{i=1}^p m_i (1-s_i).$$

From now on we agree to denote by C, C_0, C_1, \ldots positive constants which may be different in different formulas.

For $s = (s_1, \ldots, s_N)$ put

$$M_i(n; s) := \sum_{l=1}^N m_{il}(n) (1-s_l), \quad B_i(n; s) := \frac{1}{2} \sum_{k,l=1}^N b_{kl}(n) (1-s_k) (1-s_l). \quad (9)$$

Lemma 2. Let the conditions of Theorem 1 be valid. Then for any tuple t_1, \ldots, t_N of positive numbers and

$$1 - s_l = n^{-t_l}, \quad l = 1, 2, \ldots, N$$

there exists $C_+ < \infty$ such that, for all $n = 1, 2, \ldots$

$$Q_n^{(i,N)}(s) \leq C_+ \min \left\{ n^{-2^{-(N-i)}}, n^{-\min_i \leq t_i (t_i - t_{i+1})} \right\}.$$

If, in addition,

$$\min_{1 \leq i \leq N} (t_l - l + i) \geq 1 \quad (10)$$

then there exists a positive constant C_- such that, for all $n = 1, 2, \ldots$

$$C_- n^{-\min_i \leq t_i (t_i - t_{i+1})} \leq Q_n^{(i,N)}(s) \leq C_+ n^{-\min_i \leq t_i (t_i - t_{i+1})} \quad (11)$$

Proof. Take $\varepsilon \in (0, 1]$ and denote $s(\varepsilon) = (1 - \varepsilon n^{-t_1}, \ldots, 1 - \varepsilon n^{-t_N})$. By Lemma 1 and monotonicity of $Q_n^{(i,N)}(s(\varepsilon))$ in ε, we have

$$M_i(n; s(\varepsilon)) - B_i(n; s(\varepsilon)) \leq Q_n^{(i,N)}(s(\varepsilon)) \leq Q_n^{(i,N)}(s) \leq M_i(n; s) \quad (12)$$

In view of (6) - (7) there exist positive constants $C_j, j = 1, 2, 3, 4$ such that

$$\varepsilon C_1 \sum_{l=1}^N n^{l-i} \leq M_i(n; s(\varepsilon)) = \varepsilon \sum_{l=1}^N m_{il}(n) n^{-t_i} \leq M_i(n; s) \leq C_2 \sum_{l=1}^N n^{l-i} \leq C_3 n^{-\min_i \leq t_i (t_i - t_{i+1})} \quad (13)$$
If in view of (8) we have for \(Q \) components are zeros and ones, respectively; set

\[
0 \leq B_{l}(n; s(\varepsilon)) \leq \varepsilon^{2}C_{4}\sum_{k,l=i}^{N} \frac{n^{k-i+1+l-i}}{n^{t_{l}+t_{l}}}.
\]

If now \(\min_{k\leq l \leq N} (t_{k} - k + i - 1) \geq 0 \), then for sufficiently small but fixed \(\varepsilon > 0 \)

\[
0 \leq B_{l}(n; s(\varepsilon)) \leq \varepsilon^{2}C_{4}\sum_{k,l=i}^{N} \frac{1}{n^{t_{l}-(l-i)n_{k}-(k-i+1)}} \leq 2^{-1}\varepsilon C_{2}n^{-\min_{k\leq l \leq N}(t_{l}-l+i)}. \quad (14)
\]

The estimates (12)–(14), the inequality \(Q_{n}^{(i,N)}(s) \leq \min\{Q_{n}^{(i,N)}(0), M_{i}(n; s)\} \) and (8) give the desired result.

Write \(0^{(r)} = (0, 0, \ldots, 0) \) and \(1^{(r)} = (1, 1, \ldots, 1) \) for the \(r \)-dimensional vectors all whose components are zeros and ones, respectively; set \(s_{r} = (s_{r}, s_{r+1}, \ldots, s_{N}) \) and denote by \(I \{ A \} \) the indicator of the event \(A \).

The next lemma, in which we assume that \(Z_{0} = e_{1} \) gives an approximation for the function \(Q_{n}^{(1,N)}(0^{(r)}, s_{r+1}) \).

Lemma 3. If \(\min_{r+1 \leq l \leq N} (t_{l} - l + 1) > 2^{-(r-1)} \) and

\[
1 - s_{l} = n^{-t_{l}}, \quad l = r + 1, r + 2, \ldots, N,
\]

then, as \(n \to \infty \)

\[
Q_{n}^{(1,N)}(0^{(r)}, s_{r+1}) \sim P (Z_{n_{r}} > 0) \sim C_{r}n^{-2^{-(r-1)}}.
\]

Proof. In view of (8) we have for \(s_{r+1} \in [0,1]^{N-r} \):

\[
P (Z_{n_{r}} > 0) \leq P \left(\bigcup_{j=1}^{r} \{ Z_{n_{j}} > 0 \} \right) = Q_{n}^{(1,N)}(0^{(r)}, 1^{(N-r)})
\]

\[
\leq Q_{n}^{(1,N)}(0^{(r)}, s_{r+1}) = E \left[1 - s_{r+1}^{Z_{n_{r+1}}^{r+1}} \ldots s_{N}^{Z_{n_{N}}^{N}} I \{ r_{j=1}^{r} \{ Z_{n_{j}} = 0 \} \} \right]
\]

\[
\leq P \left(\bigcup_{j=1}^{r} \{ Z_{n_{j}} > 0 \} \right) + E \left[1 - s_{r+1}^{Z_{n_{r+1}}^{r+1}} \ldots s_{N}^{Z_{n_{N}}^{N}} \right]
\]

\[
\leq \sum_{j=1}^{r} P (Z_{n_{j}} > 0) + E \left[1 - s_{r+1}^{Z_{n_{r+1}}^{r+1}} \ldots s_{N}^{Z_{n_{N}}^{N}} \right]
\]

\[
= (1 + o(1)) P (Z_{n_{r}} > 0) + Q_{n}^{(1,N)} \left(1^{(r)}, s_{r+1} \right).
\]

Further, by the conditions of the lemma we deduce

\[
Q_{n}^{(1,N)} \left(1^{(r)}, s_{r+1} \right) \leq \sum_{l=r+1}^{N} m_{l}(n)t^{-t_{l}}
\]

\[
\leq C_{r}n^{-\min_{r+1 \leq l \leq N}(t_{l}-l+1)}2^{-(r-1)},
\]
where for two sequences \(a_n, b_n\) the relationship \(a_n \ll b_n\) means that \(\lim_{n \to \infty} a_n / b_n = 0\). Hence the statement of the lemma follows.

2.1. The case of two types

Here we consider the situation of two types and investigate the behavior of the function \(1 - H_n^{(1,2)}(s_1, s_2)\) as \(n \to \infty\) assuming that \(1 - s_i = n^{-t_i}, \quad i = 1, 2\).

Lemma 4. If the conditions of Theorem 1 are valid for \(N = 2\), then

\[
1 - H_n^{(1,2)}(s_1, s_2) \simeq \begin{cases}
n^{-1/2} & \text{if } t_1 \in (0, \infty), 0 < t_2 \leq 1; \\
n^{-t_2/2} & \text{if } t_1 \in (0, \infty), 1 < t_2 < 2; \\
n^{-1} & \text{if } 0 < t_1 < 1, t_2 \geq 2; \\
n^{-1 - \min(t_1-1,t_2-2)} & \text{if } t_1 \geq 1, t_2 \geq 2,
\end{cases}
\]

where for two sequences \(a_n, b_n\) we write \(a_n \simeq b_n\) if and only if

\[
0 < \liminf_{n \to \infty} a_n / b_n \leq \limsup_{n \to \infty} a_n / b_n < \infty.
\]

Proof. Observe that for any \(0 \leq s_1 \leq s'_1 \leq 1\)

\[
H_n^{(1,2)}(s'_1, s_2) - H_n^{(1,2)}(s_1, s_2) = \mathbb{E} \left[(s'_1 Z_{n1} - s_1^{Z_{n1}}) s_2^{Z_{n2}} \right]
\leq \mathbb{E} \left[1 - s_1^{Z_{n1}} \right] = 1 - H_n^{(1,1)}(s_1)
\leq \mathbb{P}(Z_{n1} > 0 | Z_0 = e_1) \leq C n^{-1}.
\]

Let now \(m = m(s_2)\) be specified by the inequalities

\[
Q_m^{(2,2)}(0) \leq 1 - s_2 = n^{-t_2} \leq Q_{m-1}^{(2,2)}(0).
\]

In view of

\[
Q_m^{(2,2)}(0) = 1 - H_m^{(2,2)}(0) = \mathbb{P}(Z_{m2} > 0 | Z_0 = e_2) \sim \frac{2}{m \text{Var} \eta_{22}},
\]

it follows that \(m \sim 2n^{t_2} / \text{Var} \eta_{22}\). Using this fact, estimate (15) and the branching property

\[
H_n^{(1,2)} \left(H_m^{(1,2)}(s), H_m^{(2,2)}(s_2) \right) = H_{n+m}^{(1,2)}(s),
\]

we conclude by (8) that

\[
1 - H_n^{(1,2)}(s_1, s_2) \geq 1 - H_n^{(1,2)}(s_1, H_m^{(2,2)}(0))
= 1 - H_m^{(1,2)}(H_m^{(1,2)}(0), H_m^{(2,2)}(0)) + O(n^{-1})
= Q_{n+m}^{(1,2)}(0) + O(n^{-1}) = (1 + o(1)) c_1 (n + m)^{-1/2} + O(n^{-1}).
\]
Clearly, the result remains valid when \geq is replaced by \leq with m replaced by $m-1$. Therefore, $1 - H_{n}^{(1,2)}(s_1, s_2) \asymp n^{-1/2}$ if $t_2 \in (0, 1)$, and $1 - H_{n}^{(1,2)}(s_1, s_2) \asymp n^{-t_2/2}$ if $t_2 \in (1, 2)$. This proves the first two relationships of the lemma.

Consider now the case $t_2 \geq 2$. In view of (6)

$$1 - H_{n}^{(1,1)}(s_1) = 1 - H_{n}^{(1,2)}(s_1, 1) \leq 1 - H_{n}^{(1,2)}(s_1, s_2) \leq 1 - H_{n}^{(1,1)}(s_1) + n^{-t_2} E[Z_{n2}|Z_0 = e_1]$$

$$= 1 - H_{n}^{(1,1)}(s_1) + (1 + o(1)) c_{12} n^{1-t_2}.$$

Recalling that $1 - s_1 = n^{-t_1}$ and selecting $m = m(s_1)$ similar to (16) we get

$$1 - H_{n}^{(1,1)}(s_1) \sim 1 - H_{n+m}^{(1,1)}(0) \asymp \frac{1}{n^{t_1} + n}.$$ \hspace{1cm} (17)

Hence, if $t_1 < 1$ then $1 - H_{n}^{(1,2)}(s_1, s_2) \asymp n^{-1}$ as claimed.

The statement for $t_1 \geq 1, t_2 \geq 2$ follows from (11).

3. Decomposable branching processes in random environment

The model of branching processes in random environment which we are dealing with is a combination of the processes introduced by Smith and Wilkinson [8] and the ordinary decomposable multitype Galton-Watson processes. To give a formal description of the model denote by \mathcal{M} the space of probability measures on \mathbb{N}_0^{N+1}, where $\mathbb{N}_0 := \{0, 1, 2, \ldots\}$ and let ε be a random variable with values in \mathcal{M}. An infinite sequence $\mathcal{E} = (\varepsilon_1, \varepsilon_2, \ldots)$ of i.i.d. copies of ε is said to form a random environment.

We associate with ε and $\varepsilon_n, n = 1, 2, \ldots$ random vectors (ξ_0, \ldots, ξ_N) and $(\xi^{(n)}_0, \ldots, \xi^{(n)}_N)$ such that for $\mathbf{k} \in \mathbb{N}_0^{N+1}$

$$P((\xi_0, \ldots, \xi_N) = \mathbf{k}|\varepsilon) = \varepsilon(\{\mathbf{k}\}), \quad P\left((\xi^{(n)}_0, \ldots, \xi^{(n)}_N) = \mathbf{k}|\varepsilon_n\right) = \varepsilon_n(\{\mathbf{k}\}).$$

We now specify a branching process $(X_n, Z_n) = (X_n, Z_{n1}, \ldots, Z_{nN})$ in random environment \mathcal{E} with types $0, 1, \ldots, N$ as follows.

1) $(X_0, Z_0) = (1, 0)$.

2) Given $\mathcal{E} = (e_1, e_2, \ldots)$ and $(X_{n-1}, Z_{n-1}), n \geq 1$

$$X_n = \sum_{k=1}^{X_{n-1}} \xi^{(n-1)}_{k0}, \quad Z_{nj} = \sum_{k=1}^{X_{n-1}} \xi^{(n-1)}_{kj} + \sum_{i=1}^{j} \sum_{k=1}^{Z_{(n-1)i}} \eta^{(n-1)}_{kij}, \quad j = 1, \ldots, N.$$
Decomposable branching processes in random environment

where the tuples \((\xi_{k0}^{(n-1)}, \xi_{k1}^{(n-1)}, \ldots, \xi_{kN}^{(n-1)}) \), \(k = 1, 2, \ldots, X_{n-1} \) are i.i.d. random vectors with distribution \(e_{n-1} \) i.e., given \(e_{n-1} \) distributed as \((\xi_{0}^{(n-1)}, \xi_{1}^{(n-1)}, \ldots, \xi_{N}^{(n-1)}) \), and the tuples \((\eta_{kii}^{(n-1)}, \eta_{ki,i+1}^{(n-1)}, \ldots, \eta_{kiiN}^{(n-1)}) \) are independent random vectors distributed as \((\eta_{ii}, \eta_{i,i+1}, \ldots, \eta_{iN}) \) for \(i = 1, 2, \ldots, N \), i.e., in accordance with the respective probability generating function \(h^{(i,N)}(s) \) in (4).

Informally, \(\xi_{kj}^{(n-1)} \) is the number of type \(j \) children produced by the \(k \)-th particle of type 0 of generation \(n-1 \), while \(\eta_{kij}^{(n-1)} \) is the number of type \(j \) children produced by the \(k \)-th particle of type \(i \) of generation \(n-1 \).

We denote by \(\mathbb{P} \) and \(\mathbb{E} \) the corresponding probability measure and expectation on the underlying probability space to distinguish them from the probability measure and expectation in constant environment specified by the symbols \(\mathbb{P} \) and \(\mathbb{E} \).

Thus, in our model particles of type 0 belonging to the \((n-1)\)-th generation give birth in total to \(X_{n} \) particles of their own type and to the tuple \(Y_{n} = (Y_{n1}, \ldots, Y_{nN}) \) of daughter particles of types 1, 2, \ldots, \(N \), where

\[
Y_{nj} = \sum_{k=1}^{X_{n-1}} \xi_{kj}^{(n-1)}.
\]

In particular, \(Y_{1} = (Y_{11}, \ldots, Y_{1N}) = \left(\xi_{0}^{(0)}, \ldots, \xi_{N}^{(0)}\right) = Z_{1} \).

Finally, each particle of type \(i \) for \(i = 1, 2, \ldots, N \) generates its own (decomposable, if \(i < N \)) process with \(N - i + 1 \) types evolving in a constant environment.

Let \(\mu_{1} = \mathbb{E}[\xi_{0} | e] \), \(\mu_{2} = \mathbb{E}[\xi_{0}(\xi_{0} - 1) | e] \), and

\[
\theta_{i} = \mathbb{E}[\xi_{i} | e], \quad i = 1, 2, \ldots, N, \quad \Theta_{1} := \sum_{i=1}^{N} \theta_{i}.
\]

Our assumptions on the characteristics of the process we consider are formulated as

Hypothesis A:

- The initial state of the process is \((X_{0}, Z_{0}) = (1, 0) \);
- particles of type 0 form (on their own) a critical branching process in a random environment, such that

\[
\mathbb{E}\log\mu_{1} = 0, \mathbb{E}\log^{2}\mu_{1} \in (0, \infty);
\]

- particles of type 0 produce particles of type 1 with a positive probability and

\[
\mathbb{P}(\theta_{1} > 0) = 1;
\]
• particles of each type form (on their own) critical branching processes which are independent of the environment, i.e. \(m_{ii} = \mathbb{E}\eta_{ii} = 1, \forall i = 1, 2, \ldots, N; \)

• particles of type \(i = 1, 2, \ldots, N - 1 \) produce particles of type \(i + 1 \) with a positive probability, i.e., \(m_{i,i+1} = \mathbb{E}\eta_{i,i+1} > 0, \forall i = 1, 2, \ldots, N - 1; \)

• The second moments of the offspring numbers are finite

\[
\mathbb{E}\eta_{ij}^2 < \infty, 1 \leq i \leq j \leq N \text{ with } b_i = \frac{1}{2} \text{Var } \eta_{ii} \in (0, \infty).
\]

The following theorem is the main result of the paper:

Theorem 2. If Hypothesis A is valid and

\[
\mathbb{E}[\mu_1^{-1}] < \infty, \mathbb{E}[\mu_2\mu_1^{-2}(1 + \max(0, \log \mu_1))] < \infty, \tag{20}
\]

then there exists a positive constant \(K_0 \) such that

\[
P(Z_n \neq 0|X_0 = 1, Z_0 = 0) \sim \frac{2^{N-1}K_0}{\log n} \tag{21}
\]

and for any positive \(t_1, t_2, \ldots, t_N \)

\[
\lim_{n \to \infty} P \left(\frac{\log Z_{n1}}{\log n} \leq t_i, i = 1, \ldots, N \mid Z_{n1} > 0 \right) = G(t_1, \ldots, t_N)
\]

\[
= 1 - \frac{1}{1 + \max(0, \min_{1 \leq l \leq N}(t_l - l))}. \tag{22}
\]

The proof of the theorem is divided into several stages.

Let

\[
T = \min\{n \geq 0 : X_n = 0\}.
\]

According to [7, Theorem 1], if conditions (19) and (20) are valid then for a positive constant \(c \)

\[
P(X_n > 0) = P(T > n) \sim \frac{c}{\sqrt{n}}, n \to \infty. \tag{23}
\]

Set \(S_n := \sum_{k=0}^{n-1} X_k \) and \(A_n = \max_{0 \leq k \leq n-1} X_k \), so that \(S_T \) and \(A_T \) give the total number ever born of type 0 particles and the maximal generation size of type 0 particles.

Lemma 5. *(see [1]) If conditions (19) and (20) are valid then there exists a constant \(K_0 \in (0, \infty) \) such that

\[
P(S_T > x) \sim P(A_T > x) \sim \frac{K_0}{\log x}, x \to \infty. \tag{24}
\]
Decomposable branching processes in random environment

In fact, the representation (24) has been proved in [1] under conditions (20) and (19) only for the case when the probability generating functions \(f_n(s, 1^{(N)}) \) are linear-fractional with probability 1. However, this restriction is easily removed using the results established later on for the general case in [7] and [2].

Let now \(\| Y_n \| = Y_{n1} + ... + Y_{nN} \), \(\zeta_k(n) = \xi_{k1}(n-1) + ... + \xi_{kN}(n-1) \) and

\[
L_{nj} = \sum_{l=1}^{n} Y_{lj} = \sum_{l=1}^{n} \sum_{k=1}^{X_{l-1}} \zeta_{kj}^{(l-1)}, \quad B_{nj} = \max_{1 \leq l \leq n} Y_{lj},
\]

\[
L_n = \sum_{l=1}^{n} \| Y_l \| = \sum_{l=1}^{n} \sum_{k=1}^{X_{l-1}} \zeta_{k}^{(l-1)}, \quad B_n = \max_{1 \leq l \leq n} \| Y_l \|.
\]

In particular, \(L_T \) gives the total number of daughter particles of types 1, ..., \(N \) produced by type 0 particles during the evolution of the process.

Lemma 6. If conditions (19) and (20) are valid and \(P(\Theta_1 > 0) = 1 \) then

\[
P(B_T > x) \sim P(L_T > x) \sim K_0 \log x, \quad x \to \infty.
\]

(25)

If conditions (20), (19) are valid and \(P(\theta_j > 0) = 1 \) for some \(j \in \{1, ..., N\} \) then

\[
P(B_{Tj} > x) \sim P(L_{Tj} > x) \sim K_0 \log x, \quad x \to \infty.
\]

(26)

Proof. For any \(\varepsilon \in (0, 1) \) we have

\[
P(A_T > x) \leq P(B_T > x^{1-\varepsilon}) + P(A_T > x; B_T \leq x^{1-\varepsilon}).
\]

Let \(T_x = \min\{k : X_k > x\} \). Then

\[
P(A_T > x; B_T \leq x^{1-\varepsilon}) \leq \sum_{l=1}^{\infty} P(T_x = l; \| Y_{l+1} \| \leq x^{1-\varepsilon})
\]

\[
= \sum_{l=1}^{\infty} P(T_x = l; \sum_{k=1}^{X_l} \zeta_k^{(l)} \leq x^{1-\varepsilon})
\]

\[
\leq P(A_T > x) P\left(\sum_{k=1}^{[x]} \zeta_k^{(0)} \leq x^{1-\varepsilon}\right).
\]

Since \(P(\Theta_1 > 0) = 1 \) and \(\Theta_1 = E\left[\zeta_k^{(0)}|\xi\right], k = 1, 2, ... \), the law of large numbers gives

\[
\lim_{x \to \infty} P\left(\frac{1}{x\Theta_1} \sum_{k=1}^{[x]} \zeta_k^{(0)} \leq \frac{1}{x\Theta_1} |\xi| \right) = 0 \quad P \text{- a.s.}
\]
Thus
\[
\lim_{x \to \infty} \sup \mathbb{P} \left(\sum_{k=1}^{\lfloor x \rfloor} \zeta_k^{(0)} \leq x^{1-\varepsilon} \right) \leq \mathbb{E} \left[\lim_{x \to \infty} \sup \mathbb{P} \left(\sum_{k=1}^{\lfloor x \rfloor} \zeta_k^{(0)} \leq x^{1-\varepsilon} \mid \frac{\varepsilon}{k} \right) \right] = 0.
\]
As a result, for any \(\delta > 0 \) and all \(x \geq x_0(\delta) \) we get
\[
(1 - \delta) \mathbb{P} (A_T > x) \leq \mathbb{P} (B_T > x^{1-\varepsilon}). \tag{27}
\]
To deduce for \(\mathbb{P} (B_T > x) \) an estimate from above we write
\[
\mathbb{P} (B_T > x) \leq \mathbb{P} (A_T > x^{1-\varepsilon}) + \mathbb{P} (B_T > x; A_T \leq x^{1-\varepsilon}). \tag{28}
\]
Further, letting \(\hat{T}_x = \min \{ k : \|Y_k\| > x \} \) we have
\[
\mathbb{P} (B_T > x; A_T \leq x^{1-\varepsilon}) \leq \mathbb{P} \left(T > x^{\varepsilon/2} \right) + \sum_{1 \leq l \leq x^{\varepsilon/2}} \mathbb{P} \left(\hat{T}_x = l; A_T \leq x^{1-\varepsilon} \right).
\]
By Markov inequality we see that
\[
\sum_{1 \leq l \leq x^{\varepsilon/2}} \mathbb{P} \left(\hat{T}_x = l; A_T \leq x^{1-\varepsilon} \right) \leq \sum_{1 \leq l \leq x^{\varepsilon/2}} \mathbb{P} (X_{l-1} \leq x^{1-\varepsilon}; \|Y_l\| > x)
\]
\[
\leq x^{\varepsilon/2} \mathbb{P} \left(\sum_{k=1}^{x^{1-\varepsilon}} \zeta_k^{(0)} > x \right) \leq x^{-\varepsilon/2} \mathbb{E} [\|Y_1\|].
\]
Hence, recalling (23) we obtain \(\mathbb{P} (B_T > x; A_T \leq x^{1-\varepsilon}) = O \left(x^{-\varepsilon/4} \right) \) implying in view of (28)
\[
\mathbb{P} (B_T > x) \leq \mathbb{P} (A_T > x^{1-\varepsilon}) + O \left(x^{-\varepsilon/4} \right). \tag{29}
\]
Combining (27) and (29) and letting first \(x \to \infty \) and then \(\varepsilon \to 0 \) justify by Lemma 5 the equivalence
\[
\mathbb{P} (B_T > x) \sim \mathbb{P} (A_T > x) \sim \frac{K_0}{\log x}.
\]
Finally,
\[
\mathbb{P} (B_T > x) \leq \mathbb{P} (L_T > x) \leq \mathbb{P} (T_B T > x) \leq \mathbb{P} (B_T > x^{1-\varepsilon}) + \mathbb{P} (T > x^{\varepsilon}),
\]
and applying (23) and Lemma 5 proves the first equivalence in (25).

To check (26) one should use similar arguments.
Corollary 1. If conditions (19) and (20) are valid and $\mathbb{P}(\theta_1 > 0) = 1$, then, as $n \to \infty$

$$F(n) := \mathbb{E}\left[1 - \exp\left\{-\sum_{i=1}^{N} L_{iT} Q_{n}^{(i,N)}(0)\right\}\right] \sim \frac{2^{N-1} K_0}{\log n}.$$

Proof. Clearly,

$$L_{iT} Q_{n}^{(1,N)}(0) \leq \sum_{i=1}^{N} L_{iT} Q_{n}^{(i,N)}(0) \leq L_T \sum_{i=1}^{N} Q_{n}^{(i,N)}(0)$$

and, by (8)

$$\sum_{i=1}^{N} Q_{n}^{(i,N)}(0) \sim Q_{n}^{(1,N)}(0) \sim c_1 n^{-1/2(N-1)}.$$

To finish the proof of the corollary it is remain to observe that

$$\mathbb{E}\left[1 - e^{-\lambda L_T}\right] \sim \frac{K_0}{\log(1/\lambda)}, \quad \lambda \to +0,$$

(30)

due to Lemma 6 and the Tauberian theorem [4, Ch. XIII.5, Theorem 4] applied, for instance, to the right hand side of

$$\lambda^{-1} \mathbb{E}\left[1 - e^{-\lambda L_T}\right] = \int_{0}^{\infty} \mathbb{P}(L_T > x) e^{-\lambda x} dx,$$

and to use the inequalities

$$\mathbb{E}\left[1 - \exp\left\{-L_{iT} Q_{n}^{(1,N)}(0)\right\}\right] \leq F(n) \leq \mathbb{E}\left[1 - \exp\left\{-L_T \sum_{i=1}^{N} Q_{n}^{(i,N)}(0)\right\}\right].$$

Proof, of Theorem 2. We first check (21). Notice that each particle of type i of generation n has either a mother of type 0 (of generation $n - 1$), or an ancestor of generation k, $1 \leq k < n$ whose mother is of type 0; recall that the number of particles of type i of generation k having a mother of type 0 is denoted by Y_{ki}. By a decomposition of Z_n, based on this fact and using the branching property, we get:

$$\mathbb{E}\left[1 - s_1^{Z_n} \cdots s_N^{Z_n}\right] = \mathbb{E}\left[1 - \prod_{k=1}^{n} \prod_{i=1}^{N} \left(H_{n-k}^{(i,N)}(s)\right)^{Y_{ki}}\right] = \mathbb{E}\left[1 - e^{R(n;s)}\right],$$

where $H_0^{(i,N)}(s) = s_i$ by convention, and

$$R(n;s) = \sum_{k=1}^{n} \sum_{i=1}^{N} Y_{ki} \log H_{n-k}^{(i,N)}(s).$$

In particular,

$$\mathbb{P}(Z_n \neq 0) = \mathbb{E}\left[1 - e^{R(n;0)}; T \leq \sqrt{n}\right] + O\left(\mathbb{P}(T > \sqrt{n})\right).$$
Since \(\log(1 - x) \sim -x \) as \(x \to +0 \) and for \(k \leq \sqrt{n} \) and \(n \to \infty \)

\[
Q_n^{(i,N)}(0) = 1 - H_n^{(i,N)}(0) \leq Q_{n-k}^{(i,N)}(0) \leq Q_{n-\sqrt{n}}^{(i,N)}(0) = (1 + o(1)) Q_n^{(i,N)}(0),
\]

we obtain

\[
E \left[e^{R_{n0}}; T \leq \sqrt{n} \right] = E \left[\exp \left\{ - (1 + o(1)) \sum_{i=1}^{N} L_{ni} Q_n^{(i,N)}(0) \right\}; T \leq \sqrt{n} \right]
\]

\[
= E \left[\exp \left\{ - (1 + o(1)) \sum_{i=1}^{N} L_{Ti} Q_n^{(i,N)}(0) \right\}; T \leq \sqrt{n} \right]
\]

\[
= E \left[\exp \left\{ - (1 + o(1)) \sum_{i=1}^{N} L_{Ti} Q_n^{(i,N)}(0) \right\} - O \left(P (T > \sqrt{n}) \right) \right].
\]

Thus,

\[
P (Z_n \neq 0) = E \left[1 - \exp \left\{ -(1 + o(1)) \sum_{i=1}^{N} L_{Ti} Q_n^{(i,N)}(0) \right\} \right] + O \left(P (T > \sqrt{n}) \right), \quad (31)
\]

and (21) follows from Corollary 1 and (23).

Now we prove (22). Recall that we always take \(X_0 = 1, Z_0 = 0 \).

Consider first the case \(N = 1 \). Writing for simplicity \(Y_k = Y_{ki1}, Z_n = Z_{n1}, s = s_1 \) and \(H_n(s) = H_n^{(1,1)}(s) = E \left[s^{Z_n} | Z_0 = 1 \right] \) we have

\[
E \left[s^{Z_n} | Z_n > 0 \right] = \frac{E \left[s^{Z_n} \right] - E \left(Z_n = 0 \right)}{P (Z_n > 0)} = 1 - \frac{E \left[1 - s^{Z_n} \right]}{P (Z_n > 0)},
\]

and by (31)

\[
E \left[1 - s^{Z_n} \right] = E \left[1 - \exp \left\{ \sum_{k=1}^{n} Y_k \log H_{n-k}(s) \right\} \right].
\]

By the criticality condition \(1 - H_n(0) \sim (b_1 n)^{-1} \). Thus, if \(s = e^{-\lambda/(b_1 n')} \), then

\[
1 - s \sim \lambda / (b_1 n') \sim 1 - H_{[n'/\lambda]}(0),
\]

where \([x] \) denotes the integral part of \(x \). Hence it follows that for any \(t > 1 \) as \(n \to \infty \)

\[
1 - H_n \left(e^{\lambda/n'} \right) \sim 1 - H_n \left(H_{[n'/\lambda]}(0) \right) = 1 - H_{n+[n'/\lambda]}(0) \sim \lambda / (b_1 n').
\]

This, similar to the previous estimates for the survival probability of the \((N + 1)\)-type branching process gives (recall that \((X_0, Z_0) = (1, 0)\))

\[
E \left[1 - \exp \left\{ -\lambda Z_n / (b_1 n') \right\} \right] \sim E \left[1 - \exp \left\{ -\lambda c n^{-1} L_{T_1} \right\} \right] \sim \frac{K_0}{\log n}.
\]
Since $P(Z_n > 0) \sim K_0/\log n$, it follows that for any fixed $t > 1$ and $\lambda > 0$

$$\lim_{n \to \infty} E \left[\exp \left\{ -\lambda Z_n / (b_1 n^t) \right\} \mid Z_n > 0 \right] = 1 - \frac{1}{t}.$$

This implies that the conditional law of $Z_n/(b_1 n^t)$ given $Z_n > 0$ converges to the law of a random variable X with $P(X = 0) = 1 - t^{-1}$ and $P(X = +\infty) = t^{-1}$. Therefore, for any $t > 1$

$$G(t) = \lim_{n \to \infty} \mathbb{P} \left(n^{-1} Z_n \leq b_1 \mid Z_n > 0 \right)$$

$$= \lim_{n \to \infty} \mathbb{P} \left(\frac{\log Z_n}{\log n} \leq t \mid Z_n > 0 \right) = 1 - \frac{1}{t}. \quad (32)$$

Since $\lim_{t \downarrow 1} G(t) = 0$ we may rewrite (32) for any $t > 0$ as

$$\lim_{n \to \infty} \mathbb{P} \left(\frac{\log Z_n}{\log n} \leq t \mid Z_n > 0 \right) = 1 - \frac{1}{1 + \max(0, t-1)}, \quad (33)$$

as desired.

Now we consider the case $N \geq 2$ and use the equality

$$E \left[s_1^{Z_{n1}} \ldots s_N^{Z_{nN}} \mid Z_{n1} > 0 \right] = \frac{E \left[1 - s_1^{Z_{n1}} \ldots s_N^{Z_{nN}} I \{ Z_{n1} = 0 \} \right]}{P(Z_{n1} > 0)}$$

$$- \frac{E \left[1 - s_1^{Z_{n1}} \ldots s_N^{Z_{nN}} \right]}{P(Z_{n1} > 0)}. \quad (34)$$

We study each term at the right-hand side of (34) separately. By (31) and $\log(1 - x) \sim -x, x \to +0$ we see that, as $n \to \infty$

$$E \left[1 - s_1^{Z_{n1}} \ldots s_N^{Z_{nN}} \right] = E \left[1 - \exp \left\{ -(1 + o(1)) R_N(n, s) \right\} \right]. \quad (35)$$

where

$$R_N(n, s) := \sum_{k=1}^{n} \sum_{i=1}^{N} Y_{ki} Q_{n-k}^{(i,N)}(s).$$

Let now t_1, \ldots, t_N be a tuple of positive numbers satisfying (10). It follows from Lemma 2 that, for $1 - s_i = n^{-t_i}, i = 1, \ldots, N$

$$Q_{n}^{(i,N)}(s) \asymp n^{-\min_{i \leq i \leq N}(t_i - l + i)} = n^{-\min_{i \leq i \leq N}(t_i - l)}. \quad (36)$$

Since

$$\min_{1 \leq i \leq N} \min_{1 \leq i \leq N} (t_i - l + i) = \min_{1 \leq i \leq N} (t_i - l + 1) > 1 \quad (37)$$
by our conditions, we have as \(n \to \infty \):

\[
Q_n^{(i,N)}(s) \ll Q_n^{(1,N)}(s) \asymp n^{-\min_{1 \leq l \leq N}(t_l - t + 1)}.
\]

Thus, there exist constants \(C_j, j = 1, 2, 3, 4 \) such that, on the set \(T \leq \sqrt{n} \) the estimates

\[
C_1 L T_1 Q_n^{(1,N)}(s) \leq R_N(n, s) \leq \sum_{k=1}^{n} \sum_{i=1}^{N} Y_{ki} Q_n^{(i,N)}(s) \leq C_2 L T \sum_{i=1}^{N} Q_n^{(i,N)}(s)
\]

are valid for all sufficiently large \(n \). This, in turn, implies

\[
C_3 L T_1 n^{-\min_{1 \leq l \leq N}(t_l - t + 1)} \leq R_N(n, s) \leq C_4 n^{-\min_{1 \leq l \leq N}(t_l - t + 1)} L_T.
\]

Using the estimates above and (30) we get for the selected \(t_1, \ldots, t_N \), as \(n \to \infty \)

\[
E \left[1 - \exp \left\{ - R_N(n, s) \right\} \right] ; T \leq \sqrt{n} = \frac{1 + o(1)}{\log n} \frac{K_0}{1 + \min_{1 \leq l \leq N}(t_l - t)}
\]

\[+ O \left(\mathbb{P}(T > \sqrt{n}) \right),\]

which leads on account of (23) to

\[
\lim_{n \to \infty} (\log n) E \left[1 - s_1^{z_{n1}} \ldots s_N^{z_{nN}} \right] = \frac{K_0}{1 + \min_{1 \leq l \leq N}(t_l - t)}.
\]

Thus,

\[
\lim_{n \to \infty} \frac{E \left[1 - s_1^{z_{n1}} \ldots s_N^{z_{nN}} \right]}{\mathbb{P}(Z_{n1} > 0)} = \frac{1}{1 + \min_{1 \leq l \leq N}(t_l - t)} < 1.
\]

Further,

\[
E \left[1 - s_2^{z_{n2}} \ldots s_N^{z_{nN}} I\{Z_{n1} = 0\} \right] = E \left[1 - \exp \left\{ \sum_{k=1}^{n} \sum_{i=1}^{N} Y_{ki} \log H_n^{(i,N)}(0, s_2) \right\} \right].
\]

By definitions of \(H_n^{(i,N)}(s) \), estimates (36) and the choice of \(s_i, i = 2, \ldots, N \) we have

\[
1 - H_n^{(1,N)}(0, s_2) = 1 - H_n^{(i,N)}(s) = Q_n^{(i,N)}(s) \asymp n^{-\min_{1 \leq l \leq N}(t_l - t + 1)} = o\left(n^{-1}\right).
\]

Besides, as \(n \to \infty \)

\[
1 - H_n^{(1,N)}(0, s_2) = Q_n^{(1,N)}(0, s_2) \sim c_1 n^{-1}
\]

by Lemma 3. Hence it follows that on the set \(T \leq \sqrt{n} \)

\[
\sum_{k=0}^{T-1} \sum_{i=1}^{N} Y_{ki} \log H_n^{(i,N)}(0, s_2) = -(1 + o(1)) \sum_{k=0}^{T} \sum_{i=1}^{N} Y_{ki} Q_n^{(i,N)}(0, s_2)
\]

\[= -(1 + o(1)) L T \sum_{i=1}^{N} Q_n^{(i,N)}(0, s_2)
\]
and, moreover,
\[Q_n^{(1,N)}(0,s_2)L_{T_1} \leq \sum_{i=1}^{N} L_{T_i} Q_n^{(i,N)}(0,s_2) \leq C_2 Q_n^{(1,N)}(0,s_2)L_{T}. \]

Using now the same line of arguments as earlier one may show that
\[\lim_{n \to \infty} \mathbb{E} \left[1 - s_2^{Z_{n1}^2} \ldots s_N^{Z_{nN}^2} I \{ Z_{n1} = 0 \} \right] \log n = K_0 \]

implying by (21) with \(N = 1 \) that
\[\lim_{n \to \infty} \frac{\mathbb{E} \left[1 - s_2^{Z_{n1}^2} \ldots s_N^{Z_{nN}^2} I \{ Z_{n1} = 0 \} \right]}{\mathbb{P}(Z_{n1} > 0)} = 1. \]

As a result, given (10) we have
\[G(t_1, \ldots, t_N) = \lim_{n \to \infty} \mathbb{E} \left[s_1^{Z_{n1}^1} \ldots s_N^{Z_{nN}^N} | Z_{n1} > 0 \right] = 1 - \frac{1}{1 + \min_{1 \leq i \leq N} (t_i - l)}. \]

Since \(\lim_{\min_{1 \leq i \leq N} (t_i - l) \downarrow 0} G(t_1, \ldots, t_N) = 0 \) we conclude by the same arguments that have been used to derive (32) and (33) that
\[\lim_{n \to \infty} \mathbb{E} \left[s_1^{Z_{n1}^1} \ldots s_N^{Z_{nN}^N} | Z_{n1} > 0 \right] = 1 - \frac{1}{1 + \max(0, \min_{1 \leq i \leq N} (t_i - l))} \]

for all positive \(t_1, \ldots, t_N \), completing the proof of Theorem 2.

4. The case of three types

It follows from (8) that for a strongly critical \(N \)-type decomposable branching process in a constant environment
\[\mathbb{P} \left(Z_n \neq 0 \mid Z_0 = e_1 \right) \sim \mathbb{P} \left(Z_{n1} + \ldots + Z_{n,N-1} = 0, Z_{nN} > 0 \mid Z_0 = e_1 \right). \]

Thus, given the condition \(\{ Z_n \neq 0 \} \) we observe in the limit, as \(n \to \infty \) only type \(N \) particles. This is not the case for the strongly critical \((N + 1) \)-type decomposable branching process in a random environment. We justify this claim by considering a strongly critical branching process with three types and prove the following statement.

Theorem 3. Let \(N = 2 \). If hypothesis A is valid then
\[\lim_{n \to \infty} \mathbb{P} \left(\frac{\log Z_{n1}}{\log n} \leq t_1, \frac{\log Z_{n2}}{\log n} \leq t_2 \mid Z_n \neq 0, X_0 = 1, Z_0 = 0 \right) = A(t_1, t_2), \quad (41) \]
where

\[
A(t_1, t_2) = \begin{cases}
0, & \text{if } t_1 \in [0, \infty), \ 0 \leq t_2 \leq 1; \\
1 - t_2^{-1}, & \text{if } t_1 \in [0, \infty), \ 1 < t_2 < 2; \\
1/2, & \text{if } 0 \leq t_1 < 1, \ t_2 \geq 2; \\
1 - \frac{1}{2 + \min(t_1 - 1, t_2 - 2)}, & \text{if } t_1 \geq 1, \ t_2 \geq 2.
\end{cases}
\]

Remark 1. Since the survival probability of particles of type 0 up to moment \(n\) is of order \(n^{-1/2}\), particles of this type are absent in the limit.

Remark 2. Since \(\lim_{\min(t_1, t_2 - 1) > 0} A(t_1, t_2) = 0\), Theorem 3 gives a complete description of the limiting distribution for the left-hand side of (41).

Proof. of Theorem 3. We have

\[
E [s_1^{Z_n} s_2^{Z_{n+2}} | Z_n \neq 0] = 1 - \frac{E [1 - s_1^{Z_n} s_2^{Z_{n+2}}]}{P(Z_n \neq 0)},
\]

where

\[
E [1 - s_1^{Z_n} s_2^{Z_{n+2}}] = E \left[1 - \exp \left(\sum_{k=1}^{n} \sum_{i=1}^{2} Y_{ki} \log H_{n-k}^{(i,N)}(s) \right) \right].
\]

Let now \(1 - s_i = n^{-t_i}\). If \(t_1 \geq 1\) and \(t_2 \geq 2\) then by (21) (with \(N = 2\)) and (39) we have

\[
A(t_1, t_2) = 1 - \lim_{n \to \infty} \frac{E [1 - s_1^{Z_n} s_2^{Z_{n+2}}]}{P(Z_n \neq 0)} = 1 - \frac{1}{2} \frac{1}{1 + \min(t_1 - 1, t_2 - 2)},
\]

proving Theorem 3 for \(\min(t_1 - 1, t_2 - 2) \geq 0\). Observe that

\[
\lim_{\min(t_1 - 1, t_2 - 2) > 0} A(t_1, t_2) = 1/2,
\]

and, therefore, contrary to the case \(P(Z_n > 0)\) we need to analyze the case of positive \(t_1, t_2\) meeting the condition \(\min(t_1 - 1, t_2 - 2) < 0\) in more detail.

The same as in the proof of Theorem 2, it is necessary to obtain estimates from above and below for

\[
R_2(n, s) = \sum_{k=1}^{n} \sum_{i=1}^{2} Y_{ki} Q_{n-k}^{(i,2)}(s)
\]

given \(T \leq \sqrt{n}\). Observe that in view of Lemma 4 and the representation

\[
Q_{n}^{(2,2)}(s_2) = 1 - H_{n}^{(2,2)}(s_2) \approx \frac{1}{n^{s_2} + n},
\]
we have

\[1 - H_n^{(1,2)}(s_1, s_2) + 1 - H_n^{(2,2)}(s_2) = 1 - H_n^{(1,2)}(s_1, s_2) = Q_n^{(1,2)}(s_1, s_2). \]

This, in turn, yields for \(T \leq \sqrt{n} \)

\[C_1 Q_n^{(1,2)}(s_1, s_2) L T_1 \leq R_2(n, s) \leq C_2 Q_n^{(1,2)}(s_1, s_2) L T. \]

From this estimate, (30) and Lemma 4 we get as \(n \to \infty \)

\[\mathbb{E} \left[1 - s_1 Z_n^1 s_2 Z_n^2 \right] \sim \frac{K_0}{C(t_1, t_2)} \log n, \]

where

\[C(t_1, t_2) = \begin{cases}
1/2 & \text{if } t_1 \in (0, \infty), 0 < t_2 \leq 1; \\
t_2/2 & \text{if } t_1 \in (0, \infty), 1 < t_2 < 2; \\
1 & \text{if } 0 < t_1 < 1, t_2 \geq 2; \\
1 + \min(t_1 - 1, t_2 - 2) & \text{if } t_1 \geq 1, t_2 \geq 2.
\end{cases} \]

Since \(\mathbb{P}(Z_n \neq 0) \sim 2K_0 (\log n)^{-1} \) for \(N = 2 \), we conclude that for positive \(t_1 \) and \(t_2 \)

\[\lim_{n \to \infty} \mathbb{E} \left[s_1 Z_n^1 s_2 Z_n^2 \mid Z_n \neq 0, X_0 = 1, Z_0 = 0 \right] = 1 - \lim_{n \to \infty} \frac{\mathbb{E}[1 - s_1 Z_n^1 s_2 Z_n^2]}{\mathbb{P}(Z_n \neq 0)} = 1 - \frac{1}{2C(t_1, t_2)} = A(t_1, t_2). \]

Hence the statement of Theorem 3 follows in an ordinary way.

Acknowledgements

VV was supported in part by the Russian Foundation for Basic Research Project N 14-01-00318 and by CNRS of France for a scientific stay of three months in 2013, at LMBA, UMR 6205, Univ. Bretagne-Sud, where the present work has essentially been done.

References

