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Deformation of the O’Grady moduli spaces

Arvid Perego, Antonio Rapagnetta

February 3, 2016

Abstract

In this paper we study moduli spaces of sheaves on an abelian or
projective K3 surface. If S is a K3, v = 2w is a Mukai vector on S,
where w is primitive and w2 = 2, and H is a v−generic polarization
on S, then the moduli space Mv of H−semistable sheaves on S whose
Mukai vector is v admits a symplectic resolution M̃v. A particular case
is the 10−dimensional O’Grady example M̃10 of irreducible symplectic
manifold. We show that M̃v is an irreducible symplectic manifold which
is deformation equivalent to M̃10 and that H2(Mv,Z) is Hodge isometric
to the sublattice v⊥ of the Mukai lattice of S. Similar results are shown
when S is an abelian surface.

1 Introduction and notations

Moduli spaces of semistable sheaves on abelian or projective K3 surfaces are an
important tool to produce examples of irreducible symplectic manifolds. In the
following, S will denote an abelian or projective K3 surface.

An element v ∈ H̃(S,Z) := H2∗(S,Z) will be written as v = (v0, v1, v2),
where vi ∈ H2i(S,Z), and v0, v2 ∈ Z. It will be called Mukai vector if v0 > 0
and v1 ∈ NS(S), or if v0 = 0 and v1 is the first Chern class of an effective

divisor. Recall that H̃(S,Z) has a pure weight-two Hodge structure defined as

H̃2,0(S) := H2,0(S), H̃0,2(S) := H0,2(S),

H̃1,1(S) := H0(S,C)⊕H1,1(S)⊕H4(S,C),

and a lattice structure with respect to the Mukai pairing (., .). In the following,
we let v2 := (v, v) for every Mukai vector v; moreover, for every Mukai vector v
define the sublattice

v⊥ := {α ∈ H̃(S,Z) | (α, v) = 0} ⊆ H̃(S,Z),

which inherits a pure weight-two Hodge structure from the one on H̃(S,Z).
If F is a coherent sheaf on S, we define its Mukai vector to be

v(F ) := ch(F )
√
td(S) = (rk(F ), c1(F ), ch2(F ) + ǫrk(F )),

where ǫ = 1 if S is K3, and ǫ = 0 if S is abelian. Let H be an ample line bundle
on S. For every n ∈ Z and every coherent sheaf F , let F (nH) := F ⊗OS(nH).

1Mathematical Subject Classification: 14J60, 14D20, 14J17
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The Hilbert polynomial of F with respect to H is PH(F )(n) := χ(F (nH)),
and the reduced Hilbert polynomial of F with respect to H is

pH(F ) :=
PH(F )

αH(F )
,

where αH(F ) is the coefficient of the term of highest degree in PH(F ).

Definition 1.1. A coherent sheaf F is H−stable (resp. H−semistable) if it
is pure and for every proper E ⊆ F we have pH(E )(n) < pH(F )(n) (resp.
pH(E )(n) ≤ pH(F )(n)) for n≫ 0.

LetH be a polarization and v a Mukai vector on S. We writeMv(S,H) (resp.
M s

v (S,H)) for the moduli space of H−semistable (resp. H−stable) sheaves on
S with Mukai vector v. If no confusion on S and H is possible, we drop them
from the notation.

From now on, we suppose that H is v−generic (see section 2.1). We write
v = mw, where m ∈ N and w is a primitive Mukai vector on S. It is known that
if M s

v 6= ∅, then M s
v is smooth, quasi-projective, of dimension v2+2 and carries

a symplectic form (see Mukai [13]). If S is abelian, a further construction is

necessary: choose F0 ∈ Mv(S,H), and define av : Mv(S,H) −→ S × Ŝ in the

following way (see [26]): let p
Ŝ

: S × Ŝ −→ Ŝ be the projection and P the

Poincaré bundle on S × Ŝ. For every F ∈Mv(S,H) we let

av(F ) := (det(p
Ŝ!((F − F0)⊗ (P − O

S×Ŝ
)), det(F ) ⊗ det(F0)

−1).

Moreover, we define Kv(S,H) := a−1
v (0S ,OS), where 0S is the zero of S.

If v = w (i. e. m = 1) and H is v−generic, the moduli space Mv(S,H)
(resp. Kv(S,H) if S is abelian) is well understood thanks to the work of several
authors (see Mukai [14], Beauville [1], O’Grady [15], Yoshioka [23], [24]). If
v2 < 2 (resp. if v2 < 6 if S is abelian), then Mv(S,H) (resp. Kv(S,H)) is
either empty, a point or a surface. The remaining cases are covered by the
following:

Theorem 1.2. (Yoshioka). Let S be an abelian or projective K3 surface, v
a primitive Mukai vector and H a v−generic polarization. Then Mv(S,H) =
M s

v (S,H), and we have the following results:

1. if S is K3 and v2 ≥ 2, then Mv is an irreducible symplectic variety of
dimension 2n = v2 + 2, which is deformation equivalent to Hilbn(S), the
Hilbert scheme of n−points on S. Moreover, there is a Hodge isometry
between v⊥ and H2(Mv,Z), where the latter has a lattice structure given
by the Beauville form;

2. if S is abelian and v2 ≥ 6, then Kv(S,H) is an irreducible symplectic
variety of dimension 2n = v2 − 2, which is deformation equivalent to
the generalized Kummer variety Kn(S) on S, i. e. the Albanese fibre of
Hilbn+1(S), and there is a Hodge isometry between v⊥ and H2(Kv,Z).

If v is not primitive, H is v−generic and w2 ≥ 2, then Mv is singular: it is
then natural to ask if there is a symplectic resolution of Mv, i. e. a resolution
of the singularities πv : M̃v −→Mv such that on M̃v there is a symplectic form
extending the one on M s

v . The first result appearing in the literature is the
following:
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Theorem 1.3. (O’Grady).

1. Let S be a projective K3 surface, v := (2, 0,−2) and H be v−generic.

Then M10 := Mv(S,H) admits a symplectic resolution π : M̃10 −→ M10,

and M̃10 is an irreducible symplectic variety of dimension 10 and second
Betti number 24.

2. Let S be an abelian surface, v := (2, 0,−2) and H be v−generic. Then

K6 := Kv(S,H) admits a symplectic resolution π : K̃6 −→ K6, and K̃6 is
an irreducible symplectic variety of dimension 6 and second Betti number
8.

The first example is studied by O’Grady in [16], the computation of its second
Betti number is started in [16] and completed in [20]. The second example is
contained in [17]. The general case is as follows: if H is v−generic and w2 < 0,
then Mv(S,H) is either empty or a point, whereas if w2 = 0, then Mv(S,H) is
a symmetric product of surfaces. For the remaining cases, we have the following
answer about the existence of symplectic resolutions (see [12] and [9]):

Theorem 1.4. Let S be an abelian or projective K3 surface, v = mw a Mukai
vector such that m ≥ 2 and w2 ≥ 2. If w = (r, ξ, a), suppose that if r = 0 then
a 6= 0. Finally, let H be a v−generic polarization. Then:

1. if m = 2 and w2 = 2, then Mv(S,H) admits a symplectic resolution

πv : M̃v = M̃v(S,H) −→ Mv, obtained as the blow-up of Mv along the
singular locus Σv =Mv \M s

v with reduced structure (Lehn-Sorger);

2. if m ≥ 3, or m = 2 and w2 ≥ 4, then Mv(S,H) does not admit any
symplectic resolution and it is locally factorial (Kaledin-Lehn-Sorger).

In this paper, we deal with the moduli spaces verifying the conditions of
point 1 of Theorem 1.4. We resume these conditions in the following:

Definition 1.5. Let S be an abelian or projective K3 surface, v a Mukai vector,
H an ample line bundle on S. We say that (S, v,H) is an OLS-triple if the
following conditions are verified:

1. the polarization H is primitive and v−generic;

2. there is a primitive Mukai vector w ∈ H̃(S,Z) such that v = 2w and
w2 = 2;

3. if w = (0, ξ, a), then a 6= 0.

The name OLS-triple is chosen because they were first studied by O’Grady
in [16], [17] and Lehn-Sorger in [12]. If (S, v,H) is an OLS-triple, thenMv(S,H)

admits a symplectic resolution M̃v(S,H) obtained by blowing-up Mv(S,H)
along its singular locus with reduced structure. If S is abelian, let

K̃v = K̃v(S,H) := π−1
v (Kv),

and we still write πv : K̃v −→ Kv for the symplectic resolution.
The aim of the present paper it to generalize Theorem 1.2 to OLS-triples.

Namely, the first result we prove is the following, about the possible irreducible
symplectic manifolds one can produce as symplectic resolution of the moduli
spaces Mv(S,H) and Kv(S,H) starting from an OLS-triple (S, v,H):
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Theorem 1.6. Let (S, v,H) be an OLS-triple.

1. If S is K3, then M̃v(S,H) is an irreducible symplectic variety which is

deformation equivalent to M̃10.

2. If S is abelian, then K̃v(S,H) is an irreducible symplectic variety which

is deformation equivalent to K̃6.

The proof of this Theorem is contained in Section 2. The idea is to use
deformations of the moduli spaces and of their symplectic resolutions induced
by deformations of the underlying surfaces, and isomorphisms between moduli
spaces with different Mukai vectors which are induced by Fourier-Mukai trans-
forms (the main ingredient here is given by some results of Yoshioka, see [25]).
The second result we prove is about the singular cohomology of the moduli
spaces Mv(S,H) and Kv(S,H):

Theorem 1.7. Let (S, v,H) be an OLS-triple.

1. If S is K3, then π∗
v : H2(Mv,Z) −→ H2(M̃v,Z) is injective, and the

restrictions to H2(Mv,Z) of the pure weight-two Hodge structure and of

the Beauville form on H2(M̃v,Z) give a pure weight-two Hodge structure
and a compatible lattice structure on H2(Mv,Z). Moreover, there is a
Hodge isometry

λv : v⊥ −→ H2(Mv,Z).

2. If S is abelian, then π∗
v : H2(Kv,Z) −→ H2(K̃v,Z) is injective, and the

restrictions to H2(Kv,Z) of the pure weight-two Hodge structure and of

the Beauville form on H2(K̃v,Z) give a pure weight-two Hodge structure
and a compatible lattice structure on H2(Kv,Z). Moreover, there is a
Hodge isometry

νv : v⊥ −→ H2(Kv,Z).

By compatible lattice structure we mean that the classes of type (2, 0) with
respect to the weight-two Hodge structure on H2(Mv,Z) are orthogonal to the
classes of type (1, 1) and of type (2, 0). The proof of this is contained in Section
3. The reason why π∗

v is injective is because the singularities of Mv and Kv are
rational. The construction of the morphisms λv and νv is a generalization of that
of the Mukai-Donaldson morphism. Using Theorem 1.6 and some commutativity
of diagrams we can reduce to the case ofM10 orK6: there one finally uses results
of [19] and [20] to conclude.

2 Deformations of moduli spaces

In this section we study how moduli spaces and their symplectic resolutions vary
under deformation. In section 2.1 we recall the notion of v−genericity, v−walls
and v−chambers. In section 2.2 we introduce the main deformation we will
look at, i. e. the deformation of a moduli space and of its symplectic resolution
induced by a deformation of an OLS-triple along a smooth, connected curve. In
section 2.3 we give explicit deformations of OLS-triples whose Mukai vector has
positive rank, and in section 2.4 we use these and some results of [25] to prove
Theorem 1.6.
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2.1 Genericity for polarizations

In this section we recall the notion of v−genericity, v−walls and v−chambers.
In the following, S will always denote an abelian or a projective K3 surface, and
v = (v0, v1, v2) a Mukai vector on S.

2.1.1 Genericity for v0 ≥ 2

Suppose v0 ≥ 2. If F is a coherent sheaf of Mukai vector v, we define the
discriminant of F as ∆(F ) := 2v0c2 − (v0− 1)v21 , where c2 is the second Chern
class of F . We define

|v| := v20
4
∆(F )

for some coherent sheaf F of Mukai vector v: notice that |v| does not depend
on the chosen sheaf F , but only on v.

Remark 2.1. Notice that ifMv 6= ∅, then |v| ≥ 0: indeed, there is a semistable
sheaf F of Mukai vector v, hence the Bogomolov inequality gives ∆(F ) ≥ 0.
Moreover, we remark that |v| depends only on (v, v) and v0: if S is K3, we have

|v| = v2

0

4 (v, v) +
v4

0

2 , and if S is abelian, we have |v| = v2

0

4 (v, v) +
v2

0

2 . If (S, v,H)
is an OLS-triple, then |v| > 0.

If |v| > 0, we define

Wv := {D ∈ NS(S) | − |v| ≤ D2 < 0},

and we let Wv := ∅ if |v| = 0.

Definition 2.2. A polarization H is v−generic if H ·D 6= 0 for every D ∈Wv.

Notice that if ρ(S) = 1, then the ample generator H of the Picard group of
S is v−generic. If ρ(S) ≥ 2, we need the following:

Definition 2.3. Suppose that ρ(S) ≥ 2. If D ∈ Wv, the v−wall associated to
D is

WD := {α ∈ Amp(S) |D · α = 0}.

The v−wall associated to D ∈ Wv is a hyperplane in Amp(S). Moreover,
by Theorem 4.C.2 of [8] the subset

⋃
D∈Wv

WD ⊆ Amp(S) is locally finite.

Definition 2.4. Suppose that ρ(S) ≥ 2. A connected component of the open
subset Amp(S) \⋃D∈Wv

WD of Amp(S) is called v−chamber.

By definition, a polarization is v−generic if and only if it lies in a v−chamber.
The following shows that if we change the polarization inside a chamber, the
moduli space does not change (for a proof, see [27]):

Proposition 2.5. Suppose that ρ(S) ≥ 2 and that v = (v0, v1, v2) is such that
v0 ≥ 2. Let C be a v−chamber, and suppose that H,H ′ ∈ C. Then a sheaf E

of Mukai vector v is H−(semi)stable if and only if it is H ′−(semi)stable, i. e.
there is a natural identification between Mv(S,H) and Mv(S,H

′).

We conclude this section with an important property that we will need in
the following, which is a particular case of Corollary 4.2:
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Lemma 2.6. Let T be a smooth, connected curve, f : X −→ T a smooth,
projective family of K3 surfaces (resp. of abelian surfaces) and H a line bundle
on X . For every t ∈ T write Xt := f−1(t) and Ht := H|Xt

, and suppose that
for every t ∈ T the line bundle Ht is ample. Let 0 ∈ T be such that X0 = S
and H0 = H. Moreover, let v = (v0, v1, v2) be a Mukai vector on X0 such that
v0 ≥ 2, and write v1 = c1(L) for some L ∈ Pic(X0). Let L ∈ Pic(X ) be such
that L0 = L, and let vt := (v0, c1(Lt), v2) be a Mukai vector on Xt. If H0 is
v−generic, then the set

T ′ := {t ∈ T |Ht is not vt − generic}

is locally given by a finite number of points.

2.1.2 Genericity for v0 = 0

Suppose now v = (0, v1, v2), where v1 is the first Chern class of an effective
divisor, and v2 6= 0.

Definition 2.7. Let E be any pure sheaf with Mukai vector v, and let F ⊆ E

with Mukai vector u = (0, u1, u2). The divisor associated to the pair (E ,F ) is
D := u2v1 − v2u1. The set of the non numerically trivial divisors associated
to all the possible pairs is denoted Wv, and a polarization H is v−generic if
H ·D 6= 0 for every D ∈Wv.

As before, if ρ(S) = 1, then the ample generator of Pic(S) is v−generic. For
ρ(S) ≥ 2 we need again to introduce walls and chambers:

Definition 2.8. Let D ∈ Wv. The v−wall associated to D is

WD := {α ∈ Amp(S) |α ·D = 0}.

As before, the v−wall WD is a hyperplane in Amp(S). As shown in [24],
the set of v−walls is finite.

Definition 2.9. Suppose that ρ(S) ≥ 2. A connected component of the open
subset Amp(S) \⋃D∈Wv

WD of Amp(S) is called v−chamber.

Again, a polarization is v−generic if and only if it lies in a v−chamber. As
in the previous section, we have the following (see [27]):

Proposition 2.10. Suppose that ρ(S) ≥ 2 and that v = (0, v1, v2) is such that
v2 6= 0. Let C be a v−chamber, and suppose that H,H ′ ∈ C. Then a sheaf E

of Mukai vector v is H−(semi)stable if and only if it is H ′−(semi)stable, i. e.
there is a natural identification between Mv(S,H) and Mv(S,H

′).

To conclude this section, we state the following lemma about the openness
of the v−genericity for Mukai vectors v of rank 0, which is a particular case of
Lemma 4.4:

Lemma 2.11. Let T be a smooth, connected curve, f : X −→ T a smooth,
projective family of K3 surfaces (resp. of abelian surfaces) and H a line bundle
on X . For every t ∈ T write Xt := f−1(t) and Ht := H|Xt

, and suppose that
for every t ∈ T the line bundle Ht is ample. Let 0 ∈ T be such that X0 = S
and H0 = H. Moreover, let v = (0, v1, v2) be a Mukai vector on X0 such that
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v2 6= 0, and write v1 = c1(L) for some L ∈ Pic(X0). Let L ∈ Pic(X ) be such
that L0 = L, and let vt := (0, c1(Lt), v2) be a Mukai vector on Xt. If H0 is
v−generic, then the set

T ′ := {t ∈ T |Ht is not vt − generic}

is finite.

2.2 Deformations of OLS-triples

We introduce the main construction we use in the following. Let (S, v,H) be an
OLS-triple and T a smooth, connected curve, and use the following notation: if
f : Y −→ T is a morphism and L ∈ Pic(Y ), for every t ∈ T we let Yt := f−1(t)
and Lt := L|Yt

.

Definition 2.12. Let (S, v,H) be an OLS-triple, where v = 2(r, ξ, a) and ξ =
c1(L). A deformation of (S, v,H) along T is a triple (X ,H ,L ), where:

1. X is a projective, smooth deformation of S along T , i. e. there is a
smooth, projective, surjective map f : X −→ T such that Xt is a projec-
tive K3 surface (resp. an abelian surface) for every t ∈ T , and there is
0 ∈ T such that X0 ≃ S;

2. H is a line bundle on X such that Ht is ample for every t ∈ T and such
that H0 ≃ H;

3. L is a line bundle on X such that L0 ≃ L;

If (X ,H ,L ) is a deformation of an OLS-triple (S, v,H) along a smooth,
connected curve T , where v = 2(r, ξ, a), then for every t ∈ T we write ξt :=
c1(Lt), wt := (r, ξt, a) and vt := 2wt.

Remark 2.13. Notice that if (S, v,H) is an OLS-triple and (X ,H ,L ) is a
deformation of (S, v,H) along a smooth, connected curve T , then (Xt, vt,Ht)
is an OLS-triple if and only if Ht is vt−generic. Indeed, we have vt = 2wt,
where wt = (r, ξt, a) is primitive and w2

t = 2. Moreover, if r = 0, then ξt is
effective: we have ξ2t = 2, hence either ξt or −ξt is effective; as ξ is effective,
then −ξ ·H < 0, so that −ξt · Ht < 0, hence ξt is effective.

Remark 2.14. Consider an OLS-triple (S, v,H) where v = 2(r, ξ, a), r > 0
and ξ = c1(L). Let T be a smooth, connected curve. Moreover, consider a
smooth, projective deformation f : X −→ T of S such that X0 ≃ S, and on X

consider two line bundles H and L such that H0 ≃ H and L0 ≃ L. In general
(X ,H ,L ) is not a deformation of the OLS-triple (S, v,H) along T : this is
the case if and only if Ht is ample for every t ∈ T . As the set of t ∈ T such
that Ht is ample is a Zariski open subset of T , by removing a finite number of
points from T we can always assume that (X ,H ,L ) is a deformation of the
OLS-triple (S, v,H) along T .

The reason why we introduce the notion of deformation of an OLS-triple, is
because it allows us to study how the algebraic structure of the corresponding
moduli space (and of its symplectic resolution) varies under variations of the
algebraic structure of the base surface. The first result we prove is that the
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relative moduli space φ : M −→ T of semistable sheaves associated to a de-
formation of an OLS-triple along a smooth, connected curve T , is a flat family
over a Zariski open neighborhood of any t ∈ T such that (Xt, vt,Ht) is an
OLS-triple.

Lemma 2.15. Let (S, v,H) be an OLS-triple, T a smooth, connected curve,
and (X ,H ,L ) a deformation of (S, v,H) along T . If t ∈ T is such that
(Xt, vt,Ht) is an OLS-triple, then φ : M −→ T is flat over t.

Proof. Let t ∈ T be such that (Xt, vt,Ht) is an OLS-triple, T 0 := T \ {t} and
M 0 := φ−1(T 0). The morphism φ is flat over t if and only if the fiber Mt is the
limit of the fibers Ms as s→ t, by Lemma II-29 of [4]. Now, the limit is the fiber
over t of the closure of the family M 0, hence there is an inclusion of the limit
in Mt. As (Xt, vt,Ht) is an OLS-triple, we have that Ht is vt−generic, hence
Mt = Mvt(Xt,Ht) is reduced and irreducible (see [9]), and it has to coincide
with the previous limit.

If (S, v,H) is an OLS-triple, then choosing a non-trivial deformation of it
along a smooth, connected curve T , up to removing a finite number of points
of T we get a projective, flat deformation φ : M −→ T of Mv(S,H). We now
present the main result of this section, which is about local properties of this
deformation: it is easy to see that if t0 ∈ T is any point and U is any open
neighborhood of t0 in T , then φ−1(U) is not isomorphic to a product Mt0 ×U .
However, we show in the following Proposition, that this is true locally around
every t ∈ T such that (Xt, vt,Ht) is an OLS-triple.

Proposition 2.16. Let (S, v,H) be an OLS-triple, T a smooth, connected
curve, and (X ,H ,L ) a deformation of (S, v,H) along T . Let 0 ∈ T be such
that (X0, v0,H0) = (S, v,H). For every p ∈ M0 the germ (M , p) is isomorphic,
as germ of complex spaces, to the product (T, 0)× (M0, p).

Proof. As the statement is analytic, we can suppose from now on that T is a
small open disk, and that Ht is vt−generic for every t ∈ T by Lemma 4.1.
We need the following definition: let φ : M −→ T (resp. φs : M s −→ T ) be
the relative moduli space of semistable (resp. stable) sheaves associated to the
deformation (X ,H ,L ) of (S, v,H) along T . Let Σ := M \ M s, which is a
closed subset of M . Notice that

Σ =
⋃

t∈T

Σvt ,

and we use the notation Σt := Σ ∩ M = Σvt . Moreover, for every t ∈ T let Ωt

be the singular locus of Σt, and Ω be the closed subset of M parameterizing
sheaves of the form E ⊕ E , where E is stable. Notice that

Ω =
⋃

t∈T

Ωt.

As Mt =Mvt(Xt,Ht) for every t ∈ T , the point p ∈ M0 is one of the following:
p is smooth, i. e. p ∈ M s

0 ; p ∈ Σ0 \ Ω0, i. e. p is essentially an A1−singularity:
more precisely, we have (M0, p) ≃ (C8, 0) × ({x2 + y2 + z2 = 0}, 0) (see [12]);
the last possibility is p ∈ Ω0. If p is smooth, the result is trivial, and there is
nothing to prove. Hence, we suppose p ∈ Σ0. We have then two cases:
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Case 1: p ∈ Σ0 \ Ω0. Consider the Zariski tangent space TpM of M at p:
we have dim(TpM ) = dim(M ) + 1 = 12. Indeed, as (M0, p) ≃ (C8, 0)× ({x2 +
y2 + z2 = 0}, 0), we have dim(TpM0) = 11 and, as M0 is a Cartier divisor of
M , we have dim(TpM ) ≤ 12. Now, let ϕ : N −→ T be the relative moduli
space of semistable sheaves with Mukai vector w, i. e. Nt = Mwt

(Xt,Ht) for
every t ∈ T : by [12], for every t ∈ T we have that Σt ≃ Sym2(Mwt

), hence
φ|Σ : Σ −→ T is identified with the morphism ϕ : Sym2

T (N ) −→ T induced
by ϕ. By this identification between ϕ and φ|Σ, the fact that ϕ is smooth and
projective implies that φ|Σ is submersive at p ∈ Σ, i. e. the differential dpφ
is surjective: hence there is τ ∈ TpM such that dpφ(τ) 6= 0. This means that
τ /∈ TpM0, so that dim(TpM ) = 12.

Now, consider an analytic open neighborhood U of p in TpM , so we can view
it as an open neighborhood of 0 in C12. We let x1, ..., x12 be a coordinate system
on C12: we can suppose x12 = t, a local coordinate of T at 0, and the point p
corresponds to the point (0, ..., 0). Moreover, U ∩M is an analytic subvariety of
U of codimension 1, hence there is f ∈ Ohol(U), a holomorphic function on U ,
such that the equation of U∩M is f(x1, ..., x11, t) = 0. Finally, we can choose U
so that U ∩Ω = ∅. As seen before, we have that Σ\Ω is smooth and submersive
on T , so that we can suppose that the equation of U ∩ Σ is x1 = x2 = x3 = 0.

Now, near the point p the fibre M0 is analytically isomorphic to a product
of an A1−singularity with a smooth polydisc, hence we have

f(x1, ..., x11, 0) = x21 + x22 + x23,

so that
f(x1, ..., x11, t) = x21 + x22 + x23 +

∑

j

pj(x1, ..., x11)t
j ,

where pj are holomorphic functions on U depending only on x1, ..., x11. More-
over, we have pj ∈ I2 for every j, where I is the ideal of Ohol(U) generated by
x1, x2 and x3.

Now, let p : U −→ T defined as p(x1, ..., x11, t) := t, and let V := U ∩ Σ, on
which we have coordinates x4, ..., x11, t. Finally, let

p′ : U −→ V, p′(x1, ..., x11, t) := (x4, ..., x11, t)

and q : V −→ T be defined as q(x4, ..., x11, t) := t. Notice that q ◦ p′ = p. More-
over, the fibers of p′ are all singular, and the fiber over 0 has an A1−singularity.
By the deformation theory of A1−singularities of [10], there is an open neigh-
borhood U ′ ⊆ M of the point p which is a product of an A1−singularity by a
9−dimensional polydisc D. As φ|U ′ is identified with p|U ′ , then the projection
onto D factors φ. Hence φ is locally trivial at p, and we are done.

Case 2: p ∈ Ω0. The strategy is the following: first, we show that for every
n ∈ N, the infinitesimal n−th order deformation of M0 induced by M is locally
trivial at p. Once this is shown, the statement follows in this way: by Corollary
0.2 of [5] there is a maximal subspace (T ′, 0) ⊆ (T, 0) such that (MT ′ , p) is
isomorphic, as germ of complex spaces, to the product (T ′, 0)× (M0, p) (where
MT ′ := M ×T T ′). Notice that as the infinitesimal n−th order deformation
of M0 induced by M is locally trivial at p for every n, then T ′ is positive
dimensional. As T is a curve, we finally get (T ′, 0) = (T, 0), and we are done.

We are left to prove that the infinitesimal n−th order deformation of M0

induced by M is locally trivial at the points of Ω0 for every n, and we proceed
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by induction on n. For n = 1, let

T 1 := E xt1(Ω1
M0
,OM0

),

where Ω1
M0

is the sheaf of holomorphic 1−forms on M0: then T 1 is supported

on Σ0, and the local sections of T 1 correspond to local infinitesimal first order
deformations of M0. Moreover, by [12] we know that T 1 is pure.

We show that the infinitesimal first order deformation of M0 induced by M

is locally trivial at p: consider a Stein open neighborhood U1 of p in M0, and
let s be the element of T 1 on U1 induced by M . Let q ∈ U1 ∩ (Σ0 \Ω0): then q
is a point of the previous case, hence s is locally trivial at q. This means that
there is a Stein open neighborhood Vq ⊆ U1 of q such that s|Vq

is trivial. By
purity of T 1, s is trivial on U1, and we are done.

By induction, suppose that the infinitesimal n−th order deformation of M0

induced by M is locally trivial at p. There are two extensions of it to a local
infinitesimal (n + 1)−th order deformation at p: the trivial one, which we call
s1, and the one induced by M , which we call s2. By Theorem 2.11 of [22]
and Lemma 2.12 of [6] there is a transitive action of T 1 on the space of small
extensions, hence there is an element h of T 1 on a Stein open neighborhood
U of p such that h(s1) = s2, where h(s1) is the action of h on s1. Let q ∈
U ∩(Σ0 \Ω0): as this is a point of the previous case, the infinitesimal (n+1)−th
order deformation of M0 induced by M is locally trivial at q, hence there is a
Stein open neighborhood Vq ⊆ U of q such that s2|Vq

= s1|Vq
. This implies that

h|Vq
is trivial. Again, by purity of T 1 this implies that h is trivial on U , so that

s1 = s2 on U , and we are done.

The Proposition we just proved has two important consequences. The first
one is that if (S1, v1, H1) and (S2, v2, H2) are two OLS-triples which are re-
lated by a deformation of OLS-triples along a smooth, connected curve, then
M̃v1(S1, H1) and M̃v2(S2, H2) are deformation equivalent.

Proposition 2.17. Let (S, v,H) be an OLS-triple, T a smooth connected curve,
and (X ,H ,L ) a deformation of (S, v,H) along T .

1. If S is a K3 surface, then M̃v(S,H) is irreducible symplectic if and only

if M̃vt(Xt,Ht) is for some t ∈ T such that (Xt, vt,Ht) is an OLS-triple,
and their deformation classes are equal.

2. If S is an abelian surface, Then K̃v(S,H) is irreducible symplectic if and

only if K̃vt(Xt,Ht) is for some t ∈ T such that (Xt, vt,Ht) is an OLS-
triple, and their deformation classes are equal.

Proof. Let us suppose that S is K3, and define π : M̃ −→ M to be the blow-up
of M along Σ = M \ M s with reduced structure. We have a morphism

ψ := φ ◦ π : M̃ −→ T,

which is projective (as φ and π are projective) and flat over a Zariski open
subset of T containg the subset

TOLS := {t ∈ T | (Xt, vt,Ht) is an OLS− triple}
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(by Lemma 2.15). Notice that TOLS is open and connected in the classical topol-
ogy by Lemma 4.1. By [12], for every t ∈ TOLS the moduli space Mvt(Xt,Ht)

admits a symplectic resolution M̃vt(Xt,Ht) obtained as blow up ofMvt(Xt,Ht)
along Σvt,red. As an immediate consequence of Proposition 2.16, we have that

M̃t = (BlΣred
M )t = BlΣt,red

Mt.

Moreover, we have Mt =Mvt(Xt,Ht) and Σt,red = Σvt,red, so that

M̃t = M̃vt(Xt,Ht)

for every t ∈ TOLS . Hence M̃t is a smooth, symplectic, projective variety. As
TOLS is smooth and connected, the statement follows as in the proof of Corollary
6.2.12 of [8].

If S is an abelian surface, we need one step more: define X̂ := Pic0(X ),

with the natural map f̂ : X̂ −→ T , which is again smooth. Consider

Z := {(0Xt
,OXt

) ∈ Xt × X̂t | t ∈ T } ⊆ X ×T X̂ ,

with the natural morphism g : Z −→ T , which is clearly an isomorphism.
Moreover, we define a T−morphism

a : M −→ X ×T X̂ ,

such that a|Mt
:= avt . Set ã := π ◦ a : M̃ −→ X ×T X̂ , and let K̃ := ã−1(Z).

If t ∈ TOLS, then we have K̃t = K̃vt(Xt,Ht), hence the statement follows again
as in the proof of Corollary 6.2.12 of [8].

The second consequence of Proposition 2.16 is that the family φ : M −→ T is
topologically a product on small open subsets of T parameterizing OLS-triples.
More precisely, we have the following:

Corollary 2.18. Let (S, v,H) be an OLS-triple, T a smooth, connected curve
and (X ,H ,L ) a deformation of (S, v,H) along T . Let φ : M −→ T be the
relative moduli space induced by (X ,H ,L ). Then for every t ∈ T such that
(Xt, vt,Ht) is an OLS-triple, there is an analytic open neighborhood U ⊆ T of
t, and a homeomorphism

h : φ−1(U) −→ Mt × U,

such that pU ◦ h = φ, where pU : Mt × U −→ U is the projection.

Proof. As the statement is local, by Lemma 4.1 we can suppose that T is a small
open disk and that Ht is vt−generic for every t ∈ T , i. e. that (Xt, vt,Ht)
is an OLS-triple. Let S := {S1, S2, S3} be the stratification of M given by
S1 := M \ Σ, S2 := Σ \ Ω and S3 := Ω. By Proposition 2.16, we see that
Sing(M ) =

⋃
t∈T Sing(Mt). As Sing(Mt) = Σt, we then get Sing(M ) = Σ.

Similarily, we have Sing(Σ) = Ω. Moreover, as Ωt is smooth for every t ∈ T ,
Proposition 2.16 implies also that Ω is smooth. In conclusion, all the strata of
S are smooth, and if Si is the closure of Si in M for every i = 1, 2, 3, then
we see that Si+1 is the singular locus of Si. Hence, by Proposition 2.16 we see
that every stratum Si is submersive over T . As Si is proper over T for every

11



i = 1, 2, 3, the statement follows from the Thom First Isotopy Lemma (see
Theorem 3.5 in Chapter 1 of [2]) if we prove that S is a Whitney stratification.

Again, by Proposition 2.16 it is sufficient to prove that for every t ∈ T , the
stratification St = {S1,t, S2,t, S3,t} of Mvt defined letting Si,t := Si ∩ Mt for
i = 1, 2, 3 (i. e. S1,t =M s

vt
, S2,t = Σvt \Ωvt and S3,t = Ωvt), is Whitney. To do

so, we need to show that Si,t is Whitney regular over Sj,t for every j > i (see
Definition 1.7 of [2]). We have two cases:

Case 1 : S1,t is Whitney regular over S2,t. Let p ∈ S2,t = Σt\Ωt: then there is
an open neighborhood U ⊆Mvt of p, which is a product of a type A1−singularity
by an 8−dimensional polydisc. As the stratification of the singularities of the
type A1−singularity is Whitney, this implies the Whitney regularity of S1 over
S2.

Case 2 : S1,t and S2,t are Whitney regular over S3,t. Let q ∈ S3,t = Ωt: by
[12] there is open neighborhood of q in Mt which is of the form Z × V , where
V is a smooth polydisk of dimension 4, and Z is a 6−dimensional singular
variety whose singular locus Z ′ has dimension 4, and such that Z ′′ := Sing(Z ′)
is 0−dimensional. In Z × V the stratification St is {(Z \ Z ′) × V, (Z ′ \ Z ′′) ×
V, Z ′′ × V }. Now, the strata S1,t and S2,t are Whitney regular over S3,t if and
only if (Z \ Z ′)× V and (Z ′ \ Z ′′) × V are Whitney regular over Z ′′ × V . But
this is true by Lemma 1.10 in Chapter 1 of [2], as Z ′′ is 0−dimensional, and we
are done.

2.3 Deformations and Mukai vectors of positive rank

In this section we consider OLS-triples with Mukai vector v of positive rank, and
we show that the deformation classes of M̃v and K̃v depend only on the rank
of v. To do so, we follow closely the arguments used by O’Grady in [15]. As a
first step, we remark that the tensorization via a line bundle does not change
the moduli spaces. Let S be an abelian or projective K3 surface.

Definition 2.19. Let v, v′ ∈ H̃(S,Z) be two Mukai vectors, v = (v0, v1, v2),
v′ = (v′0, v

′
1, v

′
2) and v0, v

′
0 > 0. We say that v and v′ are equivalent if there is

a line bundle L on S such that v′ = v · ch(L).
Notice that if v is equivalent to v′, then v0 = v′0 and v2 = (v′)2, so that

Wv =Wv′ (by Remark 2.1), and H is v−generic if and only if it is v′−generic.
Moreover, (S, v,H) is an OLS-triple if and only if (S, v′, H) is an OLS-triple.
If (S, v,H) and (S, v′, H) are two OLS-triples such that v′ = v · ch(L) for some
line bundle L ∈ Pic(S), then the tensorization with L defines an isomorphism
betweenMv(S,H) andMv′(S,H). This is due to the following, which is Lemma
1.1 of [24]:

Lemma 2.20. If v is a Mukai vector of positive rank, H is v−generic and L ∈
Pic(S), then the tensorization with L gives an isomorphism between Mv(S,H)
and Mv′(S,H).

Remark 2.21. This Lemma is originally stated only for stable sheaves, but the
argument goes through for semistable sheaves.

In order to give explicit deformations of an OLS-triple (S, v,H) where v =
2(r, ξ, a) and r > 0, we use the irreducibility of the moduli space of polarized K3
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or abelian surfaces. Hence, it is useful to suppose ξ = c1(H), which is always
possible by the following:

Lemma 2.22. Let (S, v,H) be an OLS-triple where v = 2(r, ξ, a) is such that
r > 0. Suppose that ρ(S) ≥ 2, and let C be the v−chamber such that H ∈ C.
Then there exists a Mukai vector v′ = 2(r, ξ′, a′) such that

1. v′ is equivalent to v;

2. ξ′ is a primitive ample class lying in C.

Moreover, we can choose v′ so that (ξ′)2 ≫ 0.

Proof. The proof is essentially the one of Lemma II.6 of [15]: there one requires
ξ to be primitive, but Yoshioka noticed that the same argument goes through
in the more general case of r and ξ prime to each other (see [25]). This last
condition is always verified: write w = (r, ξ, a), which is primitive and w2 = 2,
i. e. ξ2 = 2ra+ 2. Suppose that s ∈ N is such that r = sr′ and ξ = sξ′. Then
s2(ξ′)2 = 2sar′ + 2. As S is abelian or K3, we have (ξ′)2 = 2l for some l ∈ Z,
so that s(sl − ar′) = 1. As s ∈ N this implies s = 1, and we are done.

An important class of OLS-triples is given by those on elliptic K3 or abelian
surfaces, as in this case we have a priviledged class of polarizations. In order
to prove that the deformation class of M̃v(S,H) depends only on the rank of v,
the strategy will be to deform the OLS-triple (S, v,H) to an OLS-triple on an
elliptic K3 or abelian surface with a polarization in this priviledged class. Let
then Y be an elliptic K3 or abelian surface such that NS(Y ) = Z · f ⊕ Z · σ,
where f is the class of a fiber and σ is the class of a section. Let v be a Mukai
vector on Y , and recall the following definition (see [15]):

Definition 2.23. A polarization H on Y is called v−suitable if H is in the
unique v−chamber whose closure contains f .

We have an easy numerical criterion to guarantee that a polarization on Y
is v−suitable:

Lemma 2.24. Let Y be an elliptic K3 or abelian surface such that NS(Y ) =
Z · σ ⊕ Z · f , where σ is a section and f is a fibre, and let v = (v0, v1, v2)
be a Mukai vector on Y such that v0 > 0. Let H be a polarization such that
c1(H) = σ + lf for some l ∈ Z.

1. If S is K3, then H is v−suitable if l ≥ |v|+ 1.

2. If S is abelian, then H is v−suitable if l ≥ |v|.
Proof. If S is a K3 surface, this is Lemma I.0.3 of [15]. For the abelian case the
proof is similar: H is v−suitable if and only if D ·H and D · f have the same
sign for every D ∈ Wv. Notice that D = aσ + bf for some a, b ∈ Z, so that
D ·f = a. Suppose D ·f > 0, i. e. a > 0. We have D ·H = la+ b and D2 = 2ab.
As D2 ≥ −|v|, we then get b ≥ −l/2a. If l ≥ |v|, we then get

D ·H = la+ b ≥ |v|a− (|v|/2a) > 0,

and we are done.

The main result of this section is the following:
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Proposition 2.25. Let (S1, v1, H1) and (S2, v2, H2) be two OLS-triples verify-
ing the two following conditions:

1. S1 and S2 are two projective K3 surfaces or two abelian surfaces;

2. if vi = 2(ri, ξi, ai), then r1 = r2 > 0.

Then M̃v1(S1, H1) is deformation equivalent to M̃v2(S2, H2). In particular, The-
orem 1.6 is true for (S1, v1, H1) if and only if it is true for (S2, v2, H2).

Proof. The argument we present here was first used by O’Grady in [15], then
extended by Yoshioka in [23]. For i = 1, 2, we let Li ∈ Pic(Si) be such that
ξi = c1(Li).

First of all, we can always assume ρ(Si) > 1. Indeed, consider a non-
trivial deformation (Xi,Hi,Li) of the OLS-triple (Si, vi, Hi) along a smooth,
connected curve T , and let 0 ∈ T be such that (Xi,0, vi,0,Hi,0) = (Si, vi, Hi).
By Lemma 2.6, there is a small open neighborhood U of 0 in T such that the
triple (Xi,t, vi,t,Hi,t) is an OLS-triple for all t ∈ U . By the Main Theorem of
[18], we know that the locus of t ∈ U such that ρ(Xi,t) > 1 is dense in the
classical topology of U : by Proposition 2.17 we can then suppose ρ(Si) > 1.

By Lemma 2.22 and Proposition 2.5 we may also suppose (Si, vi, Hi) to be
such that vi = 2(r, c1(Hi), ai) and H2

i = 2di, where di ≫ 0. Now, let Y be a
K3 (resp. abelian) surface admitting an elliptic fibration and such that

NS(Y ) = Z · σ ⊕ Z · f,

where f is the class of a fiber, and σ is the class of a section. For i = 1, 2,
there is a smooth, connected curve Ti and a deformation (X ′

i ,H
′
i ,L

′
i ) over

Ti of the OLS-triple (Si, vi, Hi) such that there is t ∈ Ti with the property
(X ′

i,t, v
′
i,t,H

′
i,t) = (Y, v′i, H

′
i), where

1. c1(H
′
i) = σ + lif , where li ≫ 0.

2. v′i = 2(r, c1(H
′
i), ai).

By Proposition 2.17, we have that M̃vi(Si, Hi) is deformation equivalent to

M̃v′

i
(Y,H ′

i), so we just need to show the statement for (Si, vi, Hi) = (Y, v′i, H
′
i),

for i = 1, 2. Let ξ′i := c1(H
′
i). Notice that (v

′
1)

2 = (v′2)
2 and they have the same

rank: hence |v′1| = |v′2|, so that by Lemma 2.24 a polarization is v′1−suitable
if and only if it is v′2−suitable. Again by Lemma 2.24, we have that H ′

i is
v′i−suitable for i = 1, 2, as li ≫ 0. Then H ′

1 and H ′
2 lie in the same chamber C

(which is clearly a v′i−chamber for i = 1, 2). By Proposition 2.5 we then change
to a common generic polarization H ∈ C, which is v′i−generic for i = 1, 2.

As (v′1)
2 = (v′2)

2, we have (ξ′1)
2 − 2ra1 = (ξ′2)

2 − 2ra2, and as

(ξ′i)
2 = (σ + lif)

2 = 2li − 2,

(in the abelian case we have ξ2i = 2li), we then get the equation

(1) l1 = l2 + r(a1 − a2).

Notice that v′1 and v′2 are then equivalent: indeed, we have

v′2 · ch(OY ((a1 − a2)f)) = 2(r, σ + l2f, a2) · (1, (a1 − a2)f, 0) =
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= 2(r, σ + l1f, a1) = v′1,

where the second equality follows from equation (1). By Lemma 2.20 we are
then done.

Remark 2.26. We observe that in order to relate M̃v1(S1, H1) and M̃v2(S2, H2)
in the previous proof, we only used deformations of the symplectic resolutions
induced by deformations of OLS-triples along a smooth, connected curve, and
isomorphisms between moduli spaces given by tensorization with a line bundle.

2.4 Proof of Theorem 1.6

In this section we finally prove Theorem 1.6: the crucial facts are two lemmas
due to Yoshioka [25]. If S is an abelian or projective K3 surface, write ∆ for
the diagonal of S × S, I∆ for the ideal sheaf of ∆ and, if S is abelian, let P

be the Poincaré bundle on S × Ŝ and Ĥ the dual polarization on Ŝ.

Lemma 2.27. (Yoshioka). Let (S, v,H) be an OLS-triple where v = 2(0, ξ, a)
is such that a≫ 0.

1. If S is K3, let v̂ := 2(a, ξ, 0), and suppose that H is v̂−generic. Then the
Fourier-Mukai transform F : Db(S) −→ Db(S) with kernel I∆ sends any
H−(semi)stable sheaf with Mukai vector v to an H−(semi)stable sheaf
with Mukai vector v̂. In particular, it defines an isomorphism between
M̃v(S,H) and M̃v̂(S,H).

2. If S is abelian, let v̂ := 2(a, ξ̂, 0), where ξ̂ is the dual of ξ. Then the

Fourier-Mukai transform F : Db(S) −→ Db(Ŝ) with kernel P sends any

H−(semi)stable sheaf with Mukai vector v to an Ĥ−(semi)stable sheaf
with Mukai vector v̂. In particular, it defines an isomorphism between
K̃v(S,H) and K̃v̂(Ŝ, Ĥ).

Proof. We prove the statement for K3 surfaces, the case of abelian surfaces is
analogue. Let w := (0, ξ, a) and ŵ := (a, ξ, 0), and notice that as H is v−generic
(resp. v̂−generic), then it is w−generic (resp. ŵ−generic). By Proposition 3.14
of [25], as a≫ 0 the Fourier-Mukai functor of the statement sends an H−stable
sheaf with Mukai vector v (resp. w) to an H−stable sheaf of Mukai vector
v̂ (resp. ŵ). As Mv = M s

v ∪ Sym2Mw and Mw = M s
w (as w is primitive

and H is w−generic), then F induces an open embedding f : Mv(S,H) −→
Mv̂(S,H): as H is v̂−generic and Mv(S,H) is projective, this implies that

f is an isomorphism, which induces an isomorphism between M̃v(S,H) and

M̃v̂(S,H).

The following lemma is Theorem 3.18 of [25]:

Lemma 2.28. (Yoshioka). Let (S, v,H) be an OLS-triple such that NS(S) =
Z · h, where h = c1(H) is ample and h2 = 2. Write v = 2(r, nh, a), and suppose
n≫ 0.

1. If S is K3, then the Fourier-Mukai transform F : Db(S) −→ Db(S) with
kernel I∆ sends H−(semi)stable sheaves with Mukai vector 2(r, nh, a) to
H−(semi)stable sheaves with Mukai vector 2(a, nh, r). In particular, it

defines an isomorphism between M̃2(r,nh,a)(S,H) and M̃2(a,nh,r)(S,H).
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2. If S is abelian, then the Fourier-Mukai transform F : Db(S) −→ Db(Ŝ)
with kernel P sends H−(semi)stable sheaves with Mukai vector 2(r, nh, a)

to Ĥ−(semi)stable sheaves with Mukai vector 2(a, nĥ, r). In particular, it

defines an isomorphism between K̃2(r,nh,a)(S,H) and K̃2(a,nĥ,r)(Ŝ, Ĥ).

Remark 2.29. Suppose that S is a K3 or abelian surface such that NS(S) =
Z·h, where h = c1(H) is ample and h2 = 2, and let v = 2w be a Mukai vector on
S such that w is primitive and w2 = 2. It is then easy to see that w = (r, nh, a)
for some r, n, a ∈ Z such that gcd(r, n, a) = 1 and n2 = ra + 1.

We now proceed with the proof of Theorem 1.6:

Theorem 1.6. Let (S, v,H) be an OLS-triple.

1. If S is K3, then M̃v(S,H) is irreducible symplectic and deformation equiv-

alent to M̃10.

2. If S is abelian, then K̃v(S,H) is irreducible symplectic and deformation

equivalent to K̃6.

Proof. Let (S, v,H) be an OLS-triple where S is a projective K3 surface (the
proof in the abelian case is analogue), and write v = 2(r, ξ, a). We show that

M̃v(S,H) is deformation equivalent to M̃2(0,h,2)(X,H), where X is a surface

such that NS(X) = Z · h, h = c1(H) is ample and H
2
= 2. The equivalence

is obtained using deformations of the simplectic resolutions induced by defor-
mations along smooth, connected curves of the corresponding OLS-triple, and
isomorphism between moduli spaces. As a particular case is M̃10, we are done.

Step 1 : suppose that S = X and v = 2(0, h, a), where a = 2k for some k ∈ Z.

Then M̃v(X,H) ≃ M̃2(0,h,2)(X,H): indeed v = 2(0, h, 2) · ch(OX((k − 1)H)),

and as tensoring with a multiple of H does not change H−(semi)stability, we
get an isomorphism

M2(0,h,2)(X,H) −→M2(0,h,a)(X,H), E 7→ E ⊗ OX((k − 1)H),

and we are done.
Step 2 : suppose that (S, v,H) is an OLS-triple such that r > 0. By Proposi-

tion 2.25 we know that M̃v(S,H) is deformation equivalent to M̃2(r,nh,a)(X,H),
for some n ∈ Z and a = (n2 − 1)/r (by Remark 2.29). Choose n ≫ 0 such
that the corresponding a is even. As n ≫ 0, point 1 of Lemma 2.28 gives
an isomorphism between M2(r,nh,a)(X,H) and M2(a,nh,r)(X,H), which is de-

formation equivalent to M2(a,h,0)(X,H) by Proposition 2.25. Moreover, as
n ≫ 0 we have a ≫ 0, hence by point 1 of Lemma 2.27 we have an iso-
morphism between M2(a,h,0)(X,H) and M2(0,h,a)(X,H). As a is even, we have

M2(0,h,a)(X,H) ≃M2(0,h,2)(X,H) by Step 1, and we are done.
Step 3 : suppose that (S, v,H) is any OLS-triple such that r = 0. Let v′ :=

v · ch(OS(dH)) for some d ∈ N such that d≫ 0 and v′2 6= 0. A straightforward
computation shows that H is v′−generic, and that the tensorization with dH
does not change the H−(semi)stability. Hence we have an isomorphism

Mv(S,H) −→Mv′(S,H), E 7→ E ⊗ OS(dH).
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Notice that

v′ = 2(0, ξ, a) · (1, dH, d2H2/2) = 2(0, ξ, a+ dH · ξ).

As H is ample and ξ is effective, we have a + dξ · H ≫ 0 as d ≫ 0, hence we
assume a ≫ 0. Let now v̂ := 2(a, ξ, 0). If H is not v̂−generic, by Proposition
2.10 we may replace H with a v−generic polarization H ′ lying in the same
v−chamber of H which is v̂−generic. By point 1 of Lemma 2.27 we have then
an isomorphism between Mv(S,H) and Mv̂(S,H): we are now in the situation
of Step 2, hence we are done.

3 The second integral cohomology of the moduli

spaces

Let (S, v,H) be an OLS-triple. In this section we define a morphism

λv : v⊥ −→ H2(Mv,Z).

For primitive Mukai vectors v with v2 = 0, this was defined (using semi-universal
families) first by Mukai [14], who showed that it gives a Hodge isometry between
v⊥/Z · v and H2(Mv,Z) (in this case Mv is a K3 surface). For v primitive
and v2 ≥ 2, this morphism was constructed by Mukai [14], O’Grady [15] and
Yoshioka [23], who showed that λv gives a Hodge isometry between v⊥ and
H2(Mv,Z) (the latter being a lattice with respect to the Beauville form, as it
is an irreducible symplectic manifold).

In the present section we define λv for any OLS-triple (S, v,H): as in the
case of primitive Mukai vectors, using a semi-universal family on S ×M s

v one
defines a morphism λsv which, a priori, takes values only in H2(M s

v ,Q). As
(S, v,H) is an OLS-triple, M s

v is an open subset which is strictly contained in
Mv, and we show that H2(M s

v ,Q) ≃ H2(Mv,Q), so that we finally define a
morphism λv : v⊥ −→ H2(Mv,Q).

The main result of the section is to show that the morphism λv takes values in
H2(Mv,Z), and moreover that it is a Hodge isometry between v⊥ andH2(Mv,Z)
(or H2(Kv,Z) if S is abelian). Before doing this, we need to show that on
H2(Mv,Z) there are a pure weight-two Hodge structure and an integral bilinear
form: as shown in section 3.1, these are induced by the pure weight-two Hodge
structure on H2(M̃v,Z) and by the Beauville form of M̃v (which is now known
to be an irreducible symplectic manifold), as a consequence of the fact that the
singularities of Mv are rational. In section 3.3 we show that λv takes values
in H2(Mv,Z) and that it is a Hodge isometry: by [19], this is the case for the
O’Grady examples; by following the steps of the proof of Theorem 1.6, we show
that this is then always verified.

3.1 Hodge structure and integral bilinear form

In this section we show that on H2(Mv,Z) and H2(Kv,Z) there are a pure
weight-two Hodge structure and an integral bilinear form for every OLS-triple
(S, v,H). As a first step we show that they are free Z−modules.

17



Lemma 3.1. Let X be a normal, irreducible projective variety with rational
singularities, and let f : X̃ −→ X be a resolution of the singularities. The
morphism f∗ : H2(X,Z) −→ H2(X̃,Z) is injective.

Proof. As X is a normal, irreducible projective variety having rational singu-
larities and f : X̃ −→ X is a resolution of singularities, then Rif∗OX̃

= 0 for
every i > 0. Moreover, by the Zariski Main Theorem the natural morphism
OX −→ f∗OX̃

is an isomorphism, and f∗O
∗
X̃

≃ O∗
X . Applying the functor Rf∗

to the exponential sequence of X̃ we then find R1f∗Z = 0. Consider the Leray
spectral sequence

Ep,q
2 := Hp(X,Rqf∗Z) =⇒ Hp+q := Hp+q(X̃,Z).

As Ep,1
2 = 0 for every p ∈ Z, the map E2,0

2 −→ H2 is injective. But this is the

map f∗ : H2(X,Z) −→ H2(X̃,Z), and we are done.

Corollary 3.2. Let (S, v,H) be an OLS-triple.

1. If S is K3, then H2(Mv,Z) is free.

2. If S is abelian, then H2(Kv,Z) is free.

Proof. If S is a K3 surface, thenMv has rational singularities: indeed, it admits
a symplectic resolution, therefore the singularities are canonical, hence rational
by Elkik [3]. By Lemma 3.1,

π∗
v : H2(Mv,Z) −→ H2(M̃v,Z)

is injective. Finally, by Theorem 1.6 we know that M̃v is an irreducible sym-
plectic manifold, hence it is simply connected. This implies that H2(M̃v,Z) is
free, so H2(Mv,Z) is free. The case of abelian surfaces is analogue.

Remark 3.3. By Lemma 3.1 and the proof of Corollary 3.2, the pull-back mor-
phism π∗

v : H2(Mv,Z) −→ H2(M̃v,Z) is an injection of mixed Hodge structures.
By strict compatibility of the weight filtrations, the mixed Hodge structure on
H2(Mv,Z) is then pure of weight two. Explicitely, the pure weight-two Hodge
structure on H2(Mv,Z) is defined as follows:

Definition 3.4. Let (S, v,H) be an OLS-triple where S is a K3 surface. The
pure weight-two Hodge structure on H2(Mv,Z) is defined as follows:

H2,0(Mv) := π∗
v(H

2(Mv,C)) ∩H2,0(M̃v),

H1,1(Mv) := π∗
v(H

2(Mv,C)) ∩H1,1(M̃v),

H0,2(Mv) := π∗
v(H

2(Mv,C)) ∩H0,2(M̃v).

Similarily, we define the pure weight-two Hodge structure on H2(Kv,Z).

We now deal with the quadratic form. Recall that if (S, v,H) is an OLS-

triple, then M̃v(S,H) and K̃v(S,H) are irreducible symplectic manifolds by

Theorem 1.6. This implies that on H2(M̃v,Z) and H
2(K̃v,Z) we have a lattice

structure with respect to the Beauville form. As π∗
v is injective, this induces an

integral bilinear form on H2(Mv,Z) and H2(Kv,Z) which is compatible with
the Hodge structure we just defined. More explicitely, we have the following:

18



Definition 3.5. Let (S, v,H) be an OLS-triple where S is a K3 surface. We
define an integral bilinear form on H2(Mv,Z):

qv : H2(Mv,Z)×H2(Mv,Z) −→ Z, qv(α, β) := q̃v(π
∗
vα, π

∗
vβ),

where q̃v is the Beauville form of M̃v(S,H). Similarily, we define an integral
bilinear form on H2(Kv,Z) for every OLS-triple (S, v,H) where S is an abelian
surface.

Remark 3.6. The integral bilinear form on H2(Mv,Z) will be shown to be
non-degenerate for every OLS-triple (S, v,H) (as a corollary of Theorem 1.7),
hence it defines a lattice structure on H2(Mv,Z) which is compatible with the
pure weight-two Hodge structure.

3.2 Mukai-Donaldson-Le Potier morphism

In this section we define a morphism

λv : v⊥ −→ H2(Mv,Z)

for every OLS-triple (S, v,H). The strategy is the following: consider a semi-
universal family F on S ×M s

v of similitude ρ. Then define

λsv,F : H̃(S,Z) −→ H2(M s
v ,Q), λsv,F (α) :=

1

ρ
[pM∗(p

∗
S(α

∨ ·
√
tdS) · ch(F ))]1.

Here, if α = (α0, α1, α2), we define α∨ := (α0,−α1, α2), and pM and pS are
the two projections of S × M s

v to M s
v and S respectively. If S is abelian,

composing with the inclusion morphism jsv : Ks
v −→M s

v we then get a morphism
νsv,F := j∗v ◦ λsv,F .

Now, if α ∈ v⊥ and F ,F ′ are two semi-universal families, then λsv,F (α) =
λsv,F ′ (α) (resp. νsv,F (α) = νsv,F ′ (α)). We have then a map

λsv : v⊥ −→ H2(M s
v ,Q), (resp. νsv : v⊥ −→ H2(Ks

v ,Z))

which does not depend on the chosen semi-universal family. The problem is to
extend λsv to a morphism

λv : v⊥ −→ H2(Mv,Z),

i. e. such that if iv : M s
v −→ Mv is the inclusion, we have λsv = i∗v ◦ λv. If S is

abelian, and jv : Kv −→Mv is the inclusion, we then get a morphism

νv := j∗v ◦ λv : v⊥ −→ H2(Kv,Z).

In order to do this, we need to study the relation between H2(Mv) and H
2(M s

v ).
We have the following:

Lemma 3.7. Let (S, v,H) be an OLS-triple, and let iv : M s
v −→ Mv (resp.

iv : Ks
v −→ Kv) be the inclusion. Then

i∗v : H2(Mv,Z) −→ H2(M s
v ,Z)

(resp. i∗v : H2(Kv,Z) −→ H2(Ks
v ,Z)) is injective.

19



Proof. We have a commutative diagram, every row of which is exact:

(2)

H2(Mv,M
s
v )

c→ H2(Mv,Z)
i∗v→ H2(M s

v ,Z)
f↓ π∗

v↓ π∗

v↓

H2(M̃v, π
−1
v (M s

v ))
c̃→ H2(M̃v,Z)

ĩ∗v→ H2(π−1
v (M s

v ),Z)

where ĩv : π−1
v (M s

v ) −→ M̃v is the inclusion. As M̃v \ π−1
v (M s

v ) = Σ̃v, the

exceptional divisor of πv, which is irreducible, we have H2(M̃v, π
−1
v (M s

v )) ≃
Z, and c̃(1) = c1(Σ̃v). Let α ∈ H2(Mv,Z) be such that i∗v(α) = 0, so that

ĩ∗v ◦ π∗
v(α) = 0. As the second row of the diagram (2) is exact, there is n ∈ Z

such that π∗
v(α) = c̃(n) = nc1(Σ̃v).

Now, we introduce the following notation: let Σ0
v ⊆ Σv be the smooth locus

of Σv. Following [16] we know that πv : π−1
v (Σ0

v) −→ Σ0
v is a P1−bundle, whose

generic fiber is then a rational curve δ. As δ is contracted by πv, we have
π∗
v(α) · δ = 0. On the other hand, by adjunction the normal bundle to Σ̃v is the

canonical bundle of Σ̃v, hence it has degree −2 on δ. In conclusion, we have

0 = π∗
v(α) · δ = nc1(Σ̃v) · δ = −2n,

so that n = 0. Hence π∗
v(α) = 0, but as π∗

v is injective by Lemma 3.1, we then
have α = 0, so that i∗v is injective, and we are done for the K3 surface case. The
proof of the abelian case is similar.

If α ∈ v⊥ and µ1(α), µ2(α) ∈ H2(Mv,Z) are such that i∗v(µ1(α)) = i∗v(µ2(α)),
then by Lemma 3.7 we have that µ1(α) = µ2(α). Hence, if there is an extension
of λsv(α) to an element of H2(Mv,Z), then this extension is unique, and we call
it λv(α). In conclusion, the problem is only to find an extension.

In order to do so, we recall a construction due to Le Potier. Let Khol(S) be
the holomorphic K−theory of S, and let

vect∨ : Khol(S) −→ H̃(S,Z), vect∨([E]) := (v(E))∨,

where [E] is the class in Khol(S) of a sheaf E on S. Notice that vect∨ gives an

isomorphism between Khol(S) and H̃
1,1(S) ∩ H̃(S,Z). Let

(., .) : Khol(S)×Khol(S) −→ Z, ([E], [F ]) := χ(E ⊗ F ),

and it is easy to see that ([E], [F ]) = −(v(E), v(F )) for every sheaves E,F on S.
Let E be any sheaf parameterized byMv(S,H), ev := [E ] and e⊥v ⊆ Khol(S) the
orthogonal of ev with respect to (., .). Finally, let Rv ⊆ Qv be the open subset
of H−semistable quotients in a Quot-scheme Qv, such that Mv = Rv/GL(N)
for some N ∈ Z. Let qR and qS be the projections of S × Rv onto Rv ad S
respectively, and let F be a universal family on S ×Rv. Then define

LR
v,F : Khol(S) −→ Pic(Rv), LR

v,F ([E]) := det(pR!(p
∗
S [E] · [F ])).

If F and F ′ are two universal families on S×Rv, then L
R
v,F ([E]) = LR

v,F ′([E])

for every [E] ∈ e⊥v (see Lemma 1.2 of [11]), so we get a morphism

LR
v : e⊥v −→ Pic(Rv).
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Lemma 3.8. Let (S, v,H) be an OLS-triple. Then for every [E] ∈ e⊥v the line
bundle LR

v ([E]) descends to a line bundle Lv([E]) ∈ Pic(Mv).

Proof. The line bundle LR
v ([E]) has a natural GL(N)−linearization inherited

from the one we have on F . Let [P ] ∈ Rv be a point with closed GL(N)−orbit
corresponding to a sheaf F ∈Mv. Let π : Rv −→Mv be the quotient morphism,
so that π([P ]) = F . We need to show that the action of the stabilizer Stab([P ])
is trivial on the fiber LR

v ([E])[P ]. We know that this is the case if F is H−stable
by [11], hence we suppose F = (F1⊗V1)⊕ (F2⊗V2), where F1, F2 are H−stable
and V1, V2 are vector spaces. We know that

Stab([P ]) ≃ Aut(F ) ≃ GL(V1)×GL(V2).

Moreover, we have

LR
v ([E])[P ] ≃

2⊗

i=1

(
det(H•(Fi ⊗ E))dim(Vi) ⊗ (det(Vi))

χ(Fi⊗E)

)
,

and the action of an element (M1,M2) ∈ Stab([P ]) is simply the multiplication
by det(M1)

χ(F1⊗E)det(M2)
χ(F2⊗E). As the polarization H is v−generic, then

v(F1) = v(F2) = v/2: hence, as [E] ∈ e⊥v , we get χ(F1⊗E) = χ(F2⊗E) = 0. In
conclusion, the action of any element of the stabilizer is trivial, so that LR

v ([E])
descends to a line bundle Lv([E]) ∈ Pic(Mv).

We have, in conclusion, a morphism Lv : e⊥v −→ Pic(Mv). The main result
of the section is the following:

Proposition 3.9. Let (S, v,H) be any OLS-triple. Then there is a morphism

λv : v⊥ −→ H2(Mv,Z)

such that i∗v ◦ λv = λsv.

Proof. By Lemma 3.8 we have a morphism Lv : e⊥v −→ Pic(Mv). In the

following we use the notation (v⊥)1,1 := v⊥ ∩ H̃1,1(S). An application of the
Grothendieck-Riemann-Roch Theorem shows that if α ∈ (v⊥)1,1 and [E] ∈ e⊥v
is such that vect∨([E]) = α, then

λsv(α) = i∗v(c1(Lv([E])))

(for a similar computation, see [19]). Hence, we define λv(α) := c1(Lv([E])), so
that we finally get a morphism

λv : (v⊥)1,1 −→ H2(Mv,Z).

It remains to show that we can define λv on the whole v⊥. To do so, we use
a deformation argument. Let T be a smooth, connected curve and (X ,H ,L )
be a deformation of the OLS-triple (S, v,H) along T , and write f : X −→ T for
the associated map, which is smooth and projective. Write v = 2(r, c1(L), a),
and let 0 ∈ T be such that (X0, v0,H0) = (S, v,H). Finally, assume that the
Kodaira-Spencer map of the given family f : X −→ T is injective at 0, and let
φ : M −→ T be the relative moduli space of semistable sheaves associated with
the deformation (X ,H ,L ).
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By Corollary 2.18 and Lemmas 2.6 and 2.11 there is a small analytic open
neighborhood U of 0 in T parameterizing OLS triples, such that f−1(U) is
homeomorphic to the product S × U over U , and φ−1(U) is homeomorphic to
the product Mv × U over U . Up to shrinking U , we can even suppose that the
local systems R2if∗Z, R

2φ∗Z and R2φs∗Z are constant (hence even those with
coefficients in Q, R and C are constant). Notice that this means that we can

identify H̃(Xt,Z) with H̃(S,Z) (as lattices), H2(Mvt ,Z) with H2(Mv,Z) and
H2(M s

vt
,Q) with H2(M s

v ,Q).
As v is constant over U , we can then consider V ⊆ ⊕2

i=0R
2if∗Z to be a

local system such that for every t ∈ T we have Vt = v⊥t . As we have relative
semi-universal families, then we define a morphism

λ : V −→ R2φs∗Q,

such that for every t ∈ U we have λt = λvt .
Notice that we just need to show that there is a finite set of generators

{α1, ..., αn} of v⊥ such that for every i = 1, ..., n there is ti ∈ U such that

αi ∈ v⊥ ∩ H̃1,1(Xti). Indeed, by Lemma 3.8 we have that λsvti (αi) extends

to an element λvti (αi) ∈ H2(Mvti
,Z). Hence even λsv(αi) extends to λv(αi) ∈

H2(Mv,Z). Now, let α ∈ v⊥: then there are µ1, ..., µn ∈ Z such that

α =

n∑

i=1

µiαi.

But this implies that λsv(α) extends to the element

λv(α) :=

n∑

i=1

µiλv(αi) ∈ H2(Mv,Z).

Since by Lemma 3.7 the extension is unique, the previous equality gives us the
desired morphism of Z−modules λv : v⊥ −→ H2(Mv,Z).

We then prove that there is a finite set of generators {α1, ..., αn} of v⊥ such

that for every i = 1, ..., n there is ti ∈ U such that αi ∈ v⊥ ∩ H̃1,1(Xti). To do
so, define

V := {α ∈ ⊕2
i=0H

2i(S,C) | (α, v)C = 0},
where (., .)C is the extension of the Mukai pairing to ⊕2

i=0H
2i(S,C). Notice

that V = v⊥ ⊗C, and it is a 23−dimensional complex vector space. Finally, let
P := P(V ).

Let Ω ⊆ P(H2(S,C)) be the period domain, and let P : U −→ Ω be the
period map sending t ∈ U to H2,0(Xt). Recall that we assumed that the
Kodaira-Spencer map of the family f : X −→ T is injective at 0: then, the
injectivity of the period map P implies that up to shrinking U we can identify
U with its image P (U) ⊆ P(H2(S,C)). In this way we may identify t with

the period of Xt. Now, for every t ∈ U we have that vt ∈ H̃1,1(Xt), then
(t, v)C = (t, vt)C = 0, so that t ∈ P. In conclusion we have U ⊆ P.

Consider the incidence variety I ⊆ U × P, i. e.

I := {(t, [w]) ∈ U × P | (t, w)C = 0}.
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First of all, we notice that I is a smooth, projective variety such that dim(I) =
dim(P). Indeed, if g : I −→ U is the projection, then for every t ∈ U we have

g−1(t) ≃ P(V ∩ (H̃2,0(Xt)⊕ H̃1,1(Xt))) ⊆ P,

which is a 21−dimensional projective space.
Let now h : I −→ P be the projection to the second factor. Notice that if α ∈

v⊥ and [α] ∈ im(h), then there is t ∈ U such that α ∈ V ∩(H̃2,0(Xt)⊕H̃1,1(Xt)).

Since α is integral we have finally α ∈ V ∩ H̃1,1(Xt), so that the proposition
follows if we prove that there is a finite set {α1, ..., αn} of generators of v⊥ over
Z such that [αi] ∈ im(h) for i = 1, ..., n.

We claim that there is w ∈ V ∩ ⊕2
i=0H

2i(S,R) such that [w] ∈ im(h) and
[w] admits an open analytic neighborhood in P which is contained in im(h).
This will be enough to conclude: indeed, as a consequence im(h) contains a
non-empty open subset of P(V ∩⊕2

i=0H
2i(S,R)) = P(v⊥ ⊗R). As for any non-

empty open subset U of P(v⊥⊗R) there is a finite set {α1, ..., αn} of generators
of v⊥ over Z such that [αi] ∈ U for i = 1, ..., n, we are done.

In conclusion, we just need to prove our claim. This is an immediate conse-
quence of the following:

Lemma 3.10. There is w ∈ V ∩ H̃1,1(S) ∩ (⊕2
i=0H

2i(S,R)) such that the map

dh(0,[w]) : T(0,[w])I −→ T[w]P

is an isomorphism.

Proof. Let V = V 2,0⊕V 1,1⊕V 0,2 be the pure weight-two Hodge decomposition
of v⊥ induced by the Hodge decomposition of H̃(S,Z), and write (., .)V for the
C−bilinear form on V induced by the Mukai pairing (., .)C. More explicitely, we

have V i,j = V ∩ H̃i,j(S), and 0 ∈ P is just the line V 2,0. Moreover, let Θ ⊆ P

be the projective tangent line at U in 0, and let W ⊇ V 2,0 be a 2−dimensional
linear subspace of V such that P(W ) = Θ.

As a first step, we show that there is w ∈ V ∩ H̃1,1(S) ∩ (⊕2
i=0H

2i(S,R))
such that w /∈ W⊥, where W⊥ is the orthogonal to W with respect to (., .)V .
As every t ∈ U is represented by a class of type (2, 0) of Xt, U is included in
the smooth quadric Q defined by (., .)V . Hence Θ is included in the projective
tangent space at Q in 0, which is just P(V 2,0 ⊕ V 1,1) as V 2,0 ⊕ V 1,1 is the
orthogonal of V 2,0 with respect to (., .)V . Hence V

2,0 ⊆W ⊆ V 2,0 ⊕ V 1,1 ⊆ V .
As dim(W ) = 2, we have W ∩V 1,1 6= 0. Since (., .)V is non-degenerate on V 1,1,
there must be w ∈ V 1,1 such that w /∈ W⊥. As V 1,1 is defined over R, we can
finally assume that w ∈ V ∩ H̃1,1(S) ∩ (⊕2

i=0H
2i(S,R)).

It remains to show that dh(0,[w]) is an isomorphism. Let M ⊆ V be the line

such that P(M) = [w], so that M is not contained in W⊥. Recall that

T[w]P ≃ Hom(M,V/M), T0U = Hom(V 2,0,W/V 2,0),

T(0,[w])(U × P) ≃ Hom(V 2,0,W/V 2,0)×Hom(M,V/M).

By definition of I, we then have

T(0,[w])I = {(φ, ψ) ∈ T(0,[w])(U × P) | (φ(l),m)V + (l, ψ(m))V = 0},
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where the equation is true for every l ∈ V 2,0 and every m ∈ M (for a similar
computation, see [7], Example 16.20). Moreover, we have

dh(0,[w]) : T(0,[w])I −→ T[w]P, dh(0,[w])(φ, ψ) = ψ.

As I is smooth and dim(I) = dim(P), in order to show that dh(0,[w]) is an
isomorphism we just need to show that it is surjective. Consider then ψ ∈
Hom(M,V/M): as M is not contained in W⊥, for every l ∈ V 2,0 there is an
element φ(l) ∈ W such that

(φ(l),m)V = −(l, ψ(m))V

for every m ∈ M . But this defines an element φ ∈ Hom(V 2,0,W/V 2,0) such
that (φ, ψ) ∈ T(0,[w])I and dh(0,[w])(φ, ψ) = ψ, and we are done.

Now, if w is as in the statement of Lemma 3.10, then it admits an open
analytic neighborhood U contained in im(h) as desidered, and we are done.

3.3 Proof of Theorem 1.7

The aim of this section is to prove the following:

Theorem 1.7. Let (S, v,H) be an OLS-triple.

1. If S is K3, then λv : v⊥ −→ H2(Mv,Z) is a Hodge isometry.

2. If S is abelian, then νv : v⊥ −→ H2(Kv,Z) is a Hodge isometry.

Proof. Let (S, v,H) be an OLS-triple. We need to show the three following
properties:

1. λv (resp. νv) is an isomorphism of Z−modules;

2. λv (resp. νv) is an isometry;

3. λv (resp. νv) is a Hodge morphism.

We introduce the following notations:

λ̃v := π∗
v ◦ λv : v⊥ −→ H2(M̃v,Z), ν̃v := π∗

v ◦ νv : v⊥ −→ H2(K̃v,Z).

Step 1. If S is an abelian or projective K3 surface such that NS(S) = Z · h,
where h = c1(H) is ample and h2 = 2, and v = (2, 0,−2), then λv and νv are
Hodge isometries: this is proved in [19].

Step 2. Let (S, v,H) be an OLS-triple. We show that λv is an isomorphism of
Z−modules. Following the proof of Theorem 1.6, we reduce to the case of Step 1:
the only transformations we use are deformations of the moduli spaces induced
by deformations of the corresponding OLS-triple along a smooth, connected
curve, and isomorphisms between moduli spaces induced by some Fourier-Mukai
transforms.

Deforming an OLS-triple along a smooth, connected curve T , by Corollary
2.18 the Z−module structures of v⊥ and of H2(Mv,Z) remain constant along
the locus of T parameterizing OLS-triples; for the isomorphism induced by the
Fourier-Mukai transform we have the following:
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Lemma 3.11. Let (S, v,H) be an OLS-triple.

1. If S is K3, let P ∈ Db(S × S) and FP : Db(S) −→ Db(S) the Fourier-
Mukai transform with kernel P. Moreover, let φP be the morphism in-
duced by FP in cohomology, and let v′ := φP(v). If FP is an equivalence
and it induces an isomorphism fP : Mv′(S,H) −→ Mv(S,H), then λv is
an isomorphism if and only if λv′ is an isomorphism.

2. If S is abelian, let P ∈ Db(S × Ŝ) and FP : Db(S) −→ Db(Ŝ) the
Fourier-Mukai transform with kernel P. Moreover, let φP be the mor-
phism induced by FP in cohomology, and let v′ := φP(v). If FP is an

equivalence and it induces an isomorphism fP : Kv′(Ŝ, Ĥ) −→ Kv(S,H),
then νv is an isomorphism if and only if νv′ is an isomorphism.

Proof. We show the first point, as the second is similar. We show that the
diagram

(3)

v⊥
φP−→ (v′)⊥

λv↓ ↓λv′

H2(Mv,Z)
f∗

P−→ H2(Mv′ ,Z)

is commutative. By the construction of λv and λv′ , this is true if the following
diagram

(4)

v⊥
φP−→ (v′)⊥

λs
v↓ ↓λs

v′

H2(M s
v ,Q)

f∗

P−→ H2(M s
v′ ,Q)

is commutative, and this is shown to be true by standard computations (see for
example Proposition 2.4 of [24]). As φP and f∗

P
are isomorphisms, then λv is

an isomorphism if and only if λv′ is, and we are done.

In conclusion, we reduce to the case of Step 1, so that λv is an isomorphism
of Z−modules for every OLS-triple (S, v,H).

Step 3. We prove now that λv is an isometry between v⊥ (which has a
lattice structure given by the Mukai pairing) and H2(Mv,Z) (on which we have
an integral bilinear form, as seen in section 3.1). Again, we reduce to the
case of Step 1 following the proof of Theorem 1.6: as in the previous step,
the only transformations we use are deformations of the moduli spaces induced
by deformations of the corresponding OLS-triple along a smooth, connected
curve, and isomorphisms between moduli spaces induced by some Fourier-Mukai
transforms.

Deforming an OLS-triple along a smooth, connected curve T , by Corollary
2.18 the integral bilinear forms on v⊥ and on H2(Mv,Z) remain constant along
the locus of T parameterizing OLS-triples; we then just need to analyze the
isomorphisms induced by Fourier-Mukai transforms. We have the following:

Lemma 3.12. Let (S1, v1, H1) and (S2, v2, H2) be two OLS-triples.

1. If S1 and S2 are K3 and there is an isomorphism f : Mv1 −→ Mv2 , then
the morphism f∗ : H2(Mv2 ,Z) −→ H2(Mv1 ,Z) is an isometry.
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2. If S1 and S2 are abelian and there is an isomorphism f : Kv1 −→ Kv2 ,
then the morphism f∗ : H2(Kv2 ,Z) −→ H2(Kv1 ,Z) is an isometry.

Proof. We prove the first point, as the second is similar. We have a commutative
diagram

H2(Mv2 ,Z)
f∗

−→ H2(Mv1 ,Z)
π∗

v2
↓ ↓π∗

v1

H2(M̃v2 ,Z)
f̃∗

−→ H2(M̃v1 ,Z).

By hypothesis, we have that f is an isomorphism. Moreover, π∗
v1

and π∗
v2

are

isometries onto their images, and f̃∗ is an isometry by [15]. Hence f∗ is an
isometry, and we are done.

In conclusion, we reduce to the case of Step 1, so that λv is an isometry for
every OLS-triple (S, v,H).

Step 4. We show that λv is a Hodge morphism. Suppose in the following
that S is a K3 surface (the proof for S abelian is analogue). To show that λv is

a Hodge morphism is equivalent to show that λ̃v is a Hodge morphism. Notice
that as λv is an isometry by Step 3, then λ̃v is an isometry onto its image.
Recall that λv is defined as an extension of the morphism

λsv : v⊥ −→ H2(M s
v ,Q), λsv(α) =

1

ρ
[p∗(q

∗(α∨ ·
√
td(S)) · ch(F )]1,

where ρ is the similitude of F and p, q are the two projections of S ×M s
v onto

M s
v and S respectively.
As ch(F ) ∈ H2∗(S ×M s

v ,Q), and as M s
v is (up to isomorphism) an open

subset of M̃v, taking the closure of the cycles chi(F ) we get a class c ∈ H2∗(S×
M̃v,Q), whose component ci ∈ H2i(S × M̃v,Q) represents a (i, i)−class. Let p̃

and q̃ be the projections of S × M̃v onto M̃v and S respectively, and consider
the morphism

µ̃v : v⊥ −→ H2(M̃v,Q), µ̃v(α) :=
1

ρ
[p̃∗(q̃

∗(α∨ ·
√
td(S)) · c)]1.

On v⊥ and H2(M̃v,Q) we have pure weight-two Hodge structures, and µ̃v is a

Hodge morphism. Now, a priori the morphisms λ̃v and µ̃v are not equal, but
we have the following:

Lemma 3.13. For every ω ∈ H2,0(S) we have λ̃v(ω) = µ̃v(ω).

Proof. Let ĩv : π−1
v (M s

v ) −→ M̃v be the inclusion. By the very definition of λ̃v
and µ̃v, for every ω ∈ H2,0(S) we have ĩ∗v(λ̃v(ω)) = ĩ∗v(µ̃v(ω)). Moreover, the

kernel of the morphism ĩ∗v : H2(M̃v,C) −→ H2(π−1
v (M s

v ),C) is C · c1(Σ̃v) (see

the proof of Lemma 3.7), so that λ̃v(ω)− µ̃v(ω) = lc1(Σ̃v) for some l ∈ C. But

−2l = lc1(Σ̃v) · δ = (λ̃v(ω)− µ̃v(ω)) · δ = 0

(see the proof of Lemma 3.7 for the definition of δ), so that l = 0, and λ̃v(ω) =
µ̃v(ω) for every ω ∈ H2,0(S).
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As µ̃v is a Hodge morphism, by Lemma 3.13 we have that λ̃v(ω) ∈ H2,0(M̃v)

for every ω ∈ H2,0(S). Hence λ̃v sends the (2, 0)−part of the Hodge structure

of v⊥ to the (2, 0)−part of the Hodge structure of H2(M̃v,Z). Now, consider

α ∈ v⊥ ⊗ C ∩ (H̃2,0(S) ⊕ H̃1,1(S)). Then, for every ω ∈ H2,0(S) we have

(α, ω) = 0, where (., .) is the Mukai pairing on v⊥ ⊗C. As λ̃v is an isometry on
its image by assumption, we have then

q̃v(λ̃v(α), λ̃v(ω)) = 0,

where q̃v is the Beauville form of the irreducible symplectic manifold M̃v. But
this implies that λ̃v(α) ∈ H2,0(M̃v)⊕H1,1(M̃v) for every α ∈ v⊥⊗C∩(H̃2,0(S)⊕
H̃1,1(S)). In conclusion, we see that λ̃v respects the Hodge filtrations, hence it
is a Hodge morphism, and we are done.

Remark 3.14. Theorem 1.7 tells us that the integral bilinear form qv on
H2(Mv,Z) is indeed non-degenerate, hence it defines a lattice structure on
H2(Mv,Z).

4 Appendix: openness of v−genericity

This section is dedicated to prove some properties of v−genericity we used in
the paper which are related with the behaviour of v−genericity in families. The
basic tool is the following, which is the main technical tool we needed for the
proof of Lemma 2.6:

Lemma 4.1. Let

(5)
S

i−→ S

↓ ↓φ
0 −→ B

be family of smooth projective surfaces over a smooth base. Let H ∈ Pic(S),
and for every b ∈ B write Sb := φ−1(b) and Hb := H|Sb

. Suppose that Hb is
ample for every b ∈ B. Then, for any n ∈ N the set Bn of points b ∈ B such
that there exists α ∈ NS(Sb) ∩ H⊥

b with −n ≤ α2 < 0 is locally a finite union
of analytic subvarieties of B.

Proof. Since the statement is local, we may suppose that B is a small polydisk.
In this case, the family S is topologically trivial over B and we have a natural
identification H2(S,Z) = H2(Sb,Z). By this identification, the class Hb does
not depend on b, and we write H = Hb. Denote by b2 the second Betti number
of S and set h2,0 := dim(H2,0(S)). Let Gr(b2 − h2,0, H2(S,C)) be the complex
Grassmannian parametrizing C−vector subspaces ofH2(S,C) of dimension b2−
h2,0. As well known, the period map

P : B −→ Gr(b2−h2,0, H2(S,C)), P (b) := H2,0(Sb)⊕H1,1(Sb) ⊂ H2(S,C)

is holomorphic. For every α ∈ H2(S,Z) write

Gα := {W ∈ Gr(b2 − h2,0, H2(S,C)) |α ∈W}.
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Since α ∈ H2(S,Z), we have that α ∈ NS(Sb) if and only if P (b) ∈ Gα. It
follows that

Bn =
⋃

α ∈ H⊥ ∩H2(S,Z)
−n ≤ α2 < 0

P−1(Gα).

As Gα is an analytic subvariety of Gr(b2−h2,0, H2(S,C)), we then see that Bn is
a countable union of analytic subvarieties of B. It is then enough to show that,
up to shrinking B, there are only finitely many α ∈ H⊥ ∩ H2(S,Z) satisfying
−n ≤ α2 < 0 and such that Gα intersects the image of P .

To do so, let V ⊂ H2(S,R) be the R−vector space consisting of real coho-
mology classes orthogonal to H with respect to the intersection form on S, and
let Gr(b2 − 2h2,0 − 1, V )− be the real Grassmannian parameterizing negative
definite R−vector subspaces of V of dimension b2 − 2h2,0 − 1. Since the map P
is holomorphic, the map

P̂ : B −→ Gr(b2 − 2h2,0 − 1, V )−, P̂ (b) := V ∩H1,1(Sb)

is continuous. For α ∈ H2(S,Z), we let

Γα := {W ∈ Gr(b2 − 2h2,0 − 1, V )− |α ∈W}.

For every α ∈ H⊥∩H2(S,Z), we have that α ∈ H2,0(Sb)⊕H1,1(Sb) if and only

if α ∈ V ∩H1,1(Sb), hence Gα ∩ im(P ) 6= ∅ if and only if Γα ∩ im(P̂ ) 6= ∅. As P̂
is a continuous map, it will then be sufficient to show that there exist an open
neighborhood U of V ∩H1,1(S) in Gr(b2− 2h2,0− 1, V ))− such that U ∩Γα 6= ∅
only for finitely many α ∈ H⊥ ∩H2(S,Z) satisfying −n ≤ α2 < 0.

Set W1 := V ∩ H1,1(S) and W2 := V ∩ (H2,0(S) ⊕ H0,2(S)). Notice that
V =W1⊕W2; moreover, by the Hodge-Reimann bilinear relations we have that
W1 is negative definite, W2 is positive definite and the direct sum is orthogonal
with respect to the intersection form on H2(S). For i = 1, 2 denote by πi :
V −→Wi the projection associated with the given decomposition. We define a
norm on V by

||.|| : V −→ R, ||v|| :=
√
−π1(v)2 + π2(v)2,

where πi(v)
2 is the self-intersection of πi(v) with respect to the cup product on

H2(S,R), for i = 1, 2.
As the integral classes form a discrete subset of V , it is enough to show that

there is an open neighborhood U of W1 in Gr(b2 − 2h2,0 − 1, V )− such that the
set

A :=
⋃

W∈U

{α ∈ H2(S,R) | − n ≤ α2 < 0, α ∈ W}

is bounded, i. e. there is a constant K such that ||α|| < K for every α ∈ A.
To do so, notice that asW1 is transverse toW2, then there exists a neighbor-

hood Ũ of W1 in Gr(b2−2h2,0−1, V )− consisting of negative definite R−vector

subspaces of V which are transverse to W2. Then Ũ can be identified with
a neighborhood of the trivial morphism in the vector space Hom(W1,W2) of

linear morphisms: the identification sends W ∈ Ũ to

LW :W1 →W2, LW (x) := y,
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where y is the unique vector of W2 such that x + y ∈ W . As for i = 1, 2 the
restriction of ||.|| to Wi is still a norm, we get a norm on Hom(W1,W2) by
setting

N(LW ) := max

{ ||LW (x)||
||x||

}

x∈W1\{0}

= max

{√
−π2(w)

2

π1(w)2

}

w∈W\{0}

.

Consider U to be the open neighborhood of W1 defined as

U := {W ∈ Ũ |N(LW ) < 1/
√
2}.

Now, consider α ∈ A. Recall that −n ≤ α2 = π1(α)
2 + π2(α)

2. As α ∈ W for
some W ∈ U we have π2(α)

2 < −N(LW )2π1(α)
2 = −(1/2)π1(α)

2. Hence, we
have the inequality

−π1(α)2 ≤ n+ π2(α)
2 < n− 1

2
π1(α)

2.

It follows that −π1(α)2 < 2n and π2(α)
2 < n. Therefore

||α|| =
√
−π1(α)2 + π2(α)2 <

√
3n

and we are done.

As a corollary of Lemma 4.1 we have a more general version of Lemma 2.6.
The definition of the discriminant of a sheaf we gave in section 2.1 is completely
general: if S is any smooth, projective surface and F is a coherent sheaf of
rank r and Chern classes c1 and c2, then we define the discriminant to be
∆ := 2rc2 − (r − 1)c21. If F is semistable with respect to some polarization,
then ∆(F ) ≥ 0. A polarization H is (r, c1, c2)−generic if H ·D 6= 0 for every

divisor D∈ NS(S) such that − r2

4 ∆ ≤ D2 < 0. We have then the following,
which is an immediate corollary of Lemma 4.1, and of which Lemma 2.6 is a
particular case:

Corollary 4.2. Let B be a smooth, connected scheme, f : X −→ B a smooth,
projective family of surfaces and H ,L ∈ Pic(X ). For every b ∈ B write
Xb := f−1(b), Hb := H|Xb

and Lb := L|Xb
. Suppose that for every b ∈ B the

line bundle Hb is ample, and let r, c2 ∈ Z, r ≥ 2. The set

B′ := {b ∈ B |Hb is not (r, c1(Lb), c2)− generic}

is locally a finite union of analytic subvarieties of B.

We now deal with the openness of genericity for rank 0. As in the previous
case, we study the problem over an arbitrary surface S. If v1 ∈ H2(S,Z) ∩
H1,1(S) is the first Chern class of an effective divisor and χ ∈ Z \ {0}, we say
that a polarization H on S is (0, v1, χ)−generic if H · D 6= 0 for every non
numerically trivial divisor D = χc1(F ) − χ(F )v1, where F is a subsheaf of a
sheaf E with c1(E ) = v1 and χ(E ) = χ (see [24]). Notice that if S is K3 or
abelian and E is a sheaf with v(E ) = (0, v1, v2), then c1(E ) = v1 and χ(E ) = v2.

29



Remark 4.3. By definition, if a polarization H is not (0, v1, χ)−generic, then
there is effective curve C on S such that [C] /∈ Q · v1, χ · (C ·H)/(v1 ·H) ∈ Z

and h0(L(−C)) > 0, where L ∈ Pic(S) is such that v1 = c1(L): here C is the
support with multiplicity of a subsheaf F of a sheaf E of Mukai vector v, and
the condition h0(L(−C)) > 0 comes from the fact that E /F is supported on
the zero-scheme of a section of L(−C). Conversely, if such a curve exists, then
H is not v−generic.

We now prove that the (0, v1, χ)−genericity is an open property. Namely,
we prove the following, which is an analogue (but stronger) version of Corollary
4.2, and which is a more general version of Lemma 2.11:

Lemma 4.4. Let B be a smooth, connected scheme, f : X −→ B a smooth,
projective family of surfaces and H a line bundle on X . For every b ∈ B
write Xb := f−1(b) and Hb := H|Xb

, and suppose that for every b ∈ B the line
bundle Hb is ample. Let 0 ∈ B, v1 = c1(L) for some effective L ∈ Pic(X0) and
χ ∈ Z \ {0}. Let L ∈ Pic(X ) be such that L0 = L. Then the set

B′ := {b ∈ B |Hb is not (0, c1(Lb), χ)− generic}

is a Zariski closed subset of B.

Proof. Let d be the degree of v1 with respect to H . For every d′, pa ∈ Z let
H ilbd′,pa

(X ) −→ B be the relative Hilbert scheme of curves of degree d′ and
arithmetic genus pa. Moreover, let Cd be the set of the curves in the fibres of
f of degree at most d with respect to H . We first show that the set A of the
arithmetic genera of the curves of Cd is finite. As a consequence, the union

H ilbd :=
⋃

0<d′≤d, pa∈A

H ilbd′,pa
(X )

has only a finite number of irreducible components. Moreover, it has a natural
morphism φ : H ilbd −→ B, which is projective.

To show that A is finite, let p ∈ N be such that pHb is very ample for every
b ∈ B. If C ∈ Cd is irreducible, then 0 ≤ pa(C) ≤ (pd−1)(pd−2)/2, so that the
set A′ of the arithmetic genera of the irreducible curves of Cd is finite. Therefore

F :=
⋃

0<d′≤d, pa∈A′

H ilbd′,pa
(X )

has a finite number of irreducible components. Moreover, if C′, C′′ ⊆ Xb are
two curves in F , then C′ · C′′ and C′ · KXb

depend only on the connected
component of F where C′ and C′′ lie, hence there are only a finite number of
possibilities for C′ · C′′ and C′ ·KXb

. Now, if C ⊆ Xb is any curve in Cd, then
pa(C) = 1 + (C2 + C ·KXb

)/2: as the number of irreducible components of C
is at most d, then pa(C) takes a finite number of values, i. e. the set A is finite.

Let Y be the union of all the connected components of H ilbd parameterizing
curvesC such that [C] /∈ Q·c1(Lb) and χ·(C·Hb)/d ∈ Z, for b ∈ B such that C ⊆
Xb. Let Z ⊆ Y be the locus parameterizing curves C such that h0(L′(−C)) > 0
for some L′ ∈ Pic(Xb) with c1(L

′) = c1(Lb): by upper semicontinuity Z is
closed in Y , and by Remark 4.3 we have B′ = φ(Z). As φ is projective, we have
that B′ is a Zariski closed subset of B.
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