A constant phase approach for the frequency response of stochastic linear oscillators

Abstract : When studying a mechanical structure, evaluation of its frequency response function (FRF) over a given frequency range is one of the main interests. Computational cost aside, evaluating FRFs presents no methodological difficulty in the deterministic case. Doing this when the model includes some uncertain parameters may however be more difficult as multimodality and discontinuity can arise around resonances. Indeed, even for a single degree of freedom system, it can be shown that usual methods of the probabilistic frame such as generalized Polynomial Chaos may fail to properly describe the probability density function of the response amplitude. This study proposes another approach which involves a shift in the usual quantities used to draw FRFs. Instead of computing the stochastic response for a given excitation frequency, this work adopts a constant response phase point of view. For each phase value of the oscillator response, the uncertainty over some parameters is propagated to the corresponding uncertain amplitudes and excitation frequencies. This provides much smoother variations of the involved quantities which are much easier to describe using a simple Polynomial Chaos approach. Both analytical and numerical results will be exposed for a single degree of freedom oscillator whose stiffness follows a uniform law.
Type de document :
Article dans une revue
Mechanics & Industry, EDP Sciences, 2016, 17 (2), pp.206. 〈http://www.mechanics-industry.org/〉. 〈10.1051/meca/2015057〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

Contributeur : Emmanuelle Sarrouy <>
Soumis le : mercredi 3 février 2016 - 11:42:34
Dernière modification le : mercredi 11 avril 2018 - 01:43:28
Document(s) archivé(s) le : samedi 12 novembre 2016 - 05:13:42


Fichiers éditeurs autorisés sur une archive ouverte



Emmanuelle Sarrouy, Emmanuel Pagnacco, Eduardo Souza de Cursi. A constant phase approach for the frequency response of stochastic linear oscillators. Mechanics & Industry, EDP Sciences, 2016, 17 (2), pp.206. 〈http://www.mechanics-industry.org/〉. 〈10.1051/meca/2015057〉. 〈hal-01266728〉



Consultations de la notice


Téléchargements de fichiers