Differential uniformity and second order derivatives for generic polynomials

Abstract : For any polynomial $f$ of ${\mathbb F}_{2^n}[x]$ we introduce the following characteristic of the distribution of its second order derivative, which extends the differential uniformity notion: $$\delta^2(f):=\max_{\substack{ \alpha \in {\mathbb F}_{2^n}^{\ast} ,\alpha' \in {\mathbb F}_{2^n}^{\ast} ,\beta \in {\mathbb F}_{2^n} \\ \alpha\not=\alpha'}} \sharp\{x\in{\mathbb F}_{2^n} \mid D_{\alpha,\alpha'}^2f(x)=\beta\}$$ where $D_{\alpha,\alpha'}^2f(x):=D_{\alpha'}(D_{\alpha}f(x))=f(x)+f(x+\alpha)+f(x+\alpha')+f(x+\alpha+\alpha')$ is the second order derivative. Our purpose is to prove a density theorem relative to this quantity, which is an analogue of a density theorem proved by Voloch for the differential uniformity.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01266567
Contributor : Yves Aubry <>
Submitted on : Monday, March 20, 2017 - 1:15:11 PM
Last modification on : Monday, March 4, 2019 - 2:04:22 PM
Document(s) archivé(s) le : Wednesday, June 21, 2017 - 12:52:25 PM

Files

Aubry_Herbaut_170320.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01266567, version 1
  • ARXIV : 1703.07299

Citation

Yves Aubry, Fabien Herbaut. Differential uniformity and second order derivatives for generic polynomials. Journal of Pure and Applied Algebra, Elsevier, 2018, 222 (5), pp.1095-1110. ⟨hal-01266567⟩

Share

Metrics

Record views

465

Files downloads

134