Differential uniformity and second order derivatives for generic polynomials

Abstract : For any polynomial $f$ of ${\mathbb F}_{2^n}[x]$ we introduce the following characteristic of the distribution of its second order derivative, which extends the differential uniformity notion: $$\delta^2(f):=\max_{\substack{ \alpha \in {\mathbb F}_{2^n}^{\ast} ,\alpha' \in {\mathbb F}_{2^n}^{\ast} ,\beta \in {\mathbb F}_{2^n} \\ \alpha\not=\alpha'}} \sharp\{x\in{\mathbb F}_{2^n} \mid D_{\alpha,\alpha'}^2f(x)=\beta\}$$ where $D_{\alpha,\alpha'}^2f(x):=D_{\alpha'}(D_{\alpha}f(x))=f(x)+f(x+\alpha)+f(x+\alpha')+f(x+\alpha+\alpha')$ is the second order derivative. Our purpose is to prove a density theorem relative to this quantity, which is an analogue of a density theorem proved by Voloch for the differential uniformity.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01266567
Contributeur : Yves Aubry <>
Soumis le : lundi 20 mars 2017 - 13:15:11
Dernière modification le : lundi 25 septembre 2017 - 09:47:04
Document(s) archivé(s) le : mercredi 21 juin 2017 - 12:52:25

Fichiers

Aubry_Herbaut_170320.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01266567, version 1
  • ARXIV : 1703.07299

Collections

Citation

Yves Aubry, Fabien Herbaut. Differential uniformity and second order derivatives for generic polynomials. 2016. 〈hal-01266567〉

Partager

Métriques

Consultations de la notice

225

Téléchargements de fichiers

99