Recommending Competent Users from Semantic Traces Using a Bayes Classifier

Abstract : When users collaborate, they leave traces in some way or another. These traces in return offer a clue whether a user is competent enough on a subject. This helps further collaboration because knowing the specialization of users helps to distribute tasks reasonably. In this article, we propose a semantic model of traces and analyze classified traces using a Bayes classifier. We exploit the results to offer recommendation on competent users accordingly.
Document type :
Conference papers
Liste complète des métadonnées

Cited literature [23 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01266501
Contributor : Ning Wang <>
Submitted on : Wednesday, February 3, 2016 - 3:30:29 PM
Last modification on : Thursday, February 7, 2019 - 5:50:27 PM
Document(s) archivé(s) le : Saturday, November 12, 2016 - 4:02:46 AM

File

IEEESMC2015_ver1_wn.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Ning Wang, Marie-Hélène Abel, Jean-Paul Barthès, Elsa Negre. Recommending Competent Users from Semantic Traces Using a Bayes Classifier. IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC 2015 ), Oct 2015, HongKong, China. pp.1351-1356, ⟨10.1109/SMC.2015.240⟩. ⟨hal-01266501⟩

Share

Metrics

Record views

146

Files downloads

146