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Kinetic theory and quasilinear theories of jet dynamics

F. BOUCHET, C. NARDINI AND T. TANGARIFE

Regretfully, Tomás Tangarife suddenly and unexpectedly

passed away few months before completing the writing of

this chapter. Most of the science discussed in this text has

been developed by a long and patient work by the three

authors, including Tomás PhD thesis. Freddy Bouchet and

Cesare Nardini pay homage to Tomás unique friendship and

passion for science, and would like to remember the quiet,

intense, and enriching collaboration that led to these scien-

tific results.

1.1 Introduction

Turbulence in planetary atmospheres leads very often to self

organisation of the largest scales of the flow and to jet for-

mation, as discussed in many chapters of this book. We sum-

marise here a theory for jet formation and maintenance in

a regime where velocity fluctuations around the base jet are

very small compared to the zonal jet velocity itself. This

regime is frequently present in the atmosphere of outer plan-

ets, the most prominent example being probably Jupiter’s

troposphere jets, see chapters 2.3.8 and 2.3.9 of this book.

Such jets are continuously dissipated and forced by weak

non-zonal turbulent motion either from the deep atmosphere

or due to the differential heating of the planet. The balance

between forcing and dissipation is mediated by the non-zonal

turbulent flow: eddy dynamics, strongly affected by the jets,

leads to momentum flux convergence (Reynolds’ stress di-

vergence) that balance dissipation. This balance determines

the jet velocity profile. Moreover, for this regime the zonal

jet themselves are quasi-stationary: they evolve over time

scales much longer than the typical time scale of the non-

zonal structures, as exemplified for instance by comparison

between Cassini and Voyager data for Jupiter’s zonal jets.

In such a regime, it is justified to treat the non-zonal part

of the dynamics with a quasi-linear approximation: at lead-

ing order, the dynamics of the non-zonal flow is described

by the equation linearised close to the quasi-stationary

zonal jets. Such quasi-linear approaches have been com-

monly studied for decades in many theoretical discussions

of geostrophic turbulence. Specifically for the problem of

jet formation, such a quasi-linear approach is at the core of

Stochastic Structural Stability Theory (S3T) first proposed

by Farrell, Ioannou [1, 14, 15], for quasi-geostrophic tur-

bulence, and discussed in section 5.2.2 of this book. More

recently, an interpretation in terms of a second order clo-

sure (CE2) has also been given [22, 23, 42, 43] (see section

5.1.2 of this book). All these different forms of quasi-linear

approximations have been extensively studied numerically,

both using stochastic and deterministic forcings [12]. Very

interesting empirical studies (based on numerical simu-

lations) have been performed recently in order to study

the validity of this type of approximation [22, 24, 31, 43],

using the barotropic equations as well as more complex

dynamics. The S3T equations have also been used to study

theoretically the transition from a turbulence without a

coherent structure to a turbulence with zonal jets [1, 33, 40]

(see sections 5.2.3, 5.2.4 of this book) and a generalisation

aimed at studying the emergence of non-zonal structures is

also discussed in section 5.2.5. These results are probably

very close to approaches using Rapid Distortion Theory, or

WKB Rapid Distortion Theory [27, 28, 29]. We also ob-

serve that such a quasi-linear approach is classical in many

other problems in theoretical physics for more than half a

century, as it is for instance at the core of the kinetic theory

of plasmas and astrophysical systems (see for example the

derivation of Lenard-Balescu and similar kinetic equations

in [3, 4, 19, 30, 25, 26]). It is also a classical approach in

fluid mechanics as it has been the base of the kinetic theory

of point vortices and of two dimensional turbulence when

dominated by large scale flows, for more than three decades.

It is extremely useful to understand that all these physical

problems fall into the same class of theoretical problems: the

same tools may be developed and very interesting analogies

may emerge. For this reason we refer to the quasilinear

theory of zonal jet dynamics as an example of a kinetic

theory.

The aim of this chapter is to discuss the theoretical as-

pects of such a quasilinear description of statistically station-

ary jets. The basic questions are: When is such an approach

expected to be valid? Why? What are the limitations and

the expected errors using such an approximation? Should

the deterministic S3T equations be corrected by stochastic

terms? Does such an approach describe only average states

or can it describe also fluctuations of the jet velocity profile?

In situations where multiple attractors exist, like for instance

for Jupiter’s zonal jets, is it possible to compute transition

rates between attractors from a quasilinear theory?

In order to address these issues, we study the jet forma-

tion problem in the simplest possible theoretical framework:

the two-dimensional equations for a barotropic flow with

a beta effect. These equations, also called the barotropic
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quasi-geostrophic equations, are the simplest relevant ones

for the understanding of large scale planetary flows [34]. The

theoretical approach summarized in this chapter could be

in principle extended to the equivalent barotropic quasi-

geostrophic model (also called the Charney–Hasegawa–

Mima equation), to the multi-layer quasi-geostrophic mod-

els or to quasi-geostrophic models for continuously stratified

fluids [34], even if the dynamics in those model is obviously

of a different nature as no baroclinic effects are modeled in

the barotropic equations.

In statistical physics, kinetic theories are always associ-

ated with an asymptotic expansion with respect to a small

parameter. Our first message is that for turbulent barotropic

flows on a beta plane such a non dimensional parameter can

be clearly identified [6, 7]. It is denoted α, and represents

the ratio between i) an inertial time scale for the advection

of small non-zonal eddies by the zonal jet and ii) the forc-

ing time scale or equivalently the dissipation time scale (the

spin-up or spin-down time scale, needed to reach a statis-

tically stationary energy balance). This will clearly answer

our first question: a quasi-linear approach will be expected

to be valid when this parameter is small. This is discussed

in section 1.2.

In section 1.2, we present the barotropic model and dis-

cuss the range of parameters that leads to the formation of

zonal jets. We also present the equation that describes the

effective dynamics of zonal jets. The theoretical derivation of

this equation is briefly presented in section 1.3. This techni-

cal section can be entirely skipped at first reading. We then

present the inviscid damping mechanism of the non-zonal

eddies in section 1.4, answering the question: Why should

a quasilinear approach be expected to be valid. Inviscid

damping also allows to show that the time scale separation

assumed to derive the effective equation of the slow zonal

jet evolution is actually a self-consistent hypothesis. In sec-

tion 1.5, we discuss comparison with numerical experiments,

where we stress the expected errors using a quasilinear ap-

proximation. In section 1.6, we discuss the fluctuations of

the slow zonal jet dynamics. First we explain that a white

in time noise can be easily added in order to describe Gaus-

sian fluctuations. Then we explain how quasilinear approach

can also be generalized in order to predict the large fluctua-

tions that drive the dynamics from an attractor with a given

number of zonal jets to a new attractor with either more or

less zonal jets, as was observed on Jupiter in the past.

1.2 The inertial limit and the effective slow jet

dynamics

1.2.1 Non-dimensional parameters and the inertial

limit

We study the formation of coherent structures in the

barotropic equation on a beta-plane, in a doubly periodic

domain D = [0, 2πLlx)× [0, 2πL),

∂tq + v · ∇q = −λω − νn,d (−∆)n ω +
√
ση, (1.1)

where v = ez ×∇ψ is the non-divergent velocity; ω = ∆ψ,

q = ω + βdy, and ψ are the vorticity, the potential vorticity

and the stream function, respectively. λ is a linear friction

coefficient, νn,d is a (hyper-)viscosity coefficient, and βd is

the mean gradient of potential vorticity. η is a white in time

Gaussian random noise, with spatial correlations

E [η(r1, t1)η(r2, t2)] = C(r1 − r2)δ(t1 − t2)

that parametrize the forces (physically due, for example,

to the effect of baroclinic instabilities or convection). The

correlation function C is assumed to be normalised such that

σ represents the average energy injection rate, so that the

average energy injection rate per unit of area (or equivalently

per unit of mass taking into account density and the layer

thickness) is ǫ = σ/4π2L2lx.

For atmospheric flows, viscosity is often negligible in the

global energy balance and this is the regime that we will

study in the following. Then the main energy dissipation

mechanism is linear friction. The evolution of the average

energy (averaged over the noise realisations) E is given by

dE

dt
= −2λE + σ.

In a stationary state we have E = Estat = σ/2λ, express-

ing the balance between forces and dissipation. This relation

gives the typical velocity associated with the coherent struc-

ture U ∼
√
Estat/L ∼

√

ǫ/2λ. As will be clear in the follow-

ing, we expect the non-zonal velocity perturbation to follow

an inviscid relaxation, on a typical time scale proportional

to the inverse of the shear rate.

For small values of βd, it is expected that the structure is

a jet at the largest scale of the box, so that a typical vorticity

or shear is s = U/L corresponding to a time τ = L/U . It is

then natural to define a non-dimensional parameter α as the

ratio of the shear time scale over the dissipative time scale

1/λ,

α = λτ = L

√

2λ3

ǫ
.

When α is small, there is a time scale separation between

the relaxation time of the non-zonal perturbations and the

evolution of zonal jets. It is thus natural to derive an effective

theory of the slow evolution of zonal jets using a small α

expansion.

We write the non-dimensional barotropic equation using

the box size L as a length unit and the inverse of a typical

shear τ = L/U as a time unit. We thus obtain (with a slight

abuse of notation, due to the fact that we use the same

symbols for the non-dimensional fields):

∂tq + v · ∇q = −αω − νn (−∆)n ω +
√
2αη, (1.2)

with q = ω+βy, where, in terms of the dimensional param-

eters, we have νn = νn,dτ/L
2n, β = βdLτ . Observe that the

above equation is defined on a domain D = [0, 2πlx)×[0, 2π)

and the averaged stationary energy for νn ≪ α is of order

one. In the following, we will consider the case of viscos-

ity, n = 1, and denote ν = ν1, but all the results can be

generalized to any type of hyper-viscosity.

We observe that when the beta effect is large enough,

several jets develop. Many works in literature [44] suggest
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that the largest relevant scale of the flow is then given by

the Rhines scale

LR = (U/βd)
1/2 =

(

ǫ/β2dλ
)1/4

.

Such an estimate is actually relevant for LR ≤ L. In this

regime, the Rhines scale gives actually the order of magni-

tude of the meridional jet width. Then a typical shear rate

is s = U/LR corresponding to a time τR = LR/U . Then the

ratio of the shear and dissipation time scales is

αR = λτR = LR

√

2λ3

ǫ
.

αR is then be the natural expansion parameter in order to

obtain an effective theory of the slow evolution of zonal

jets. We recognise that αR ∝
(

Rβd

)−5
where Rβd

=

β
1/10
d ǫ1/20λ−1/4 is the zonostrophy index used in many ref-

erences. We thus conclude that when LR ≤ L, the kinetic

theory regime, the regime in which the quasilinear approach

is expected to be valid, is the regime when αR ≪ 1, or equiv-

alently when Rβd
≫ 1. We note that it is indeed observed in

numerical simulations [11, 16] that the perturbations around

zonal jets decrease when Rβd
increases, as expected from

this discussion.

In the following, for simplicity we consider only the non-

dimensional equations obtained using τ as the time unit,

the natural one for LR ≥ L. Developing the theory for the

non-dimensional equations obtained using τR as time unit,

the natural one for LR ≤ L, would however be very simi-

lar. Moreover we note that αR ≤ α when LR ≤ L. Thus,

the hypothesis α≪ 1 made in the following actually implies

αR ≪ 1. In section 1.5.2, from some specific numerical sim-

ulations results, we discuss how small should actually be α

or αR in order to be in the kinetic theory regime.

1.2.2 The effective slow zonal jet dynamics

As eddies are weak with respect to the zonal jet in many

physical situations, our main goal is to describe the effective

evolution of the zonal degrees of freedom integrating out the

effect of the eddies. As explained in the previous section, and

discussed more precisely in section 1.4, when α≪ 1 the ed-

dies relax to a stationary state on a time scale much shorter

than the time for the evolution of the jet. For this reason

we investigate the range of parameters ν ≪ α ≪ 1, called

inertial limit. The mathematical approach is called stochas-

tic averaging, or adiabatic treatment [17]. In this section we

describe the main result, the kinetic equation (1.5), and its

consequences for the dynamics of slow jets. In the next sec-

tions, we will describe the derivation of the kinetic equation.

To extract the jet degrees of freedom out of the velocity

field v, we introduce the zonal average

U(y) ≡
〈

v(x)(x, y)
〉

=
1

2πlx

∫

dx v(x)(x, y) ; (1.3)

the jet velocity profile that we want to describe is thus

(U(y), 0). The zonal part of the vorticity field will be de-

noted by qz = 〈q〉. The non-zonal part of the velocity will

be denoted by a subscript m:
√
αvm =

√
α
(

v
(x)
m , v

(y)
m

)

= v − (U, 0) , (1.4)

and analogous expressions for vorticity and stream-function

fields. We also define the zonal and non-zonal parts of the

noise as η = ηz + ηm, and ζz the effect of ηz on the zonal

jet U , such that ηz = −∂yζz. Observe the presence of
√
α

in the definition of the non-zonal fields, which express the

fact that non-zonal fluctuations are weak with respect to the

mean flow. This is equivalent to assume the presence of a

time-scale separation. The fact that this choice is actually a

consistent hypothesis is one of the main points of our work;

it will be discussed all along the chapter.

Our main result can be described as follows: in the limit

ν ≪ α≪ 1, the dynamics of the zonal jet velocity profile U

is described by the kinetic equation

1

α

∂U

∂t
= EU

[〈

v
(y)
m ωm

〉]

− U +
ν

α

∂2U

∂y2
+

√
2ζz +

√
αξ[U ] ,

(1.5)

where ωm solves

∂tωm + L0
U [ωm] = −αωm + ν∆ωm +

√
2ηm , (1.6)

where

• L0
U is the advection operator linearised around U ; explic-

itly, we have

L0
U [ωm] = U(y)∂xωm + (∂yqz) ∂xψm . (1.7)

Observe that the eddies evolve according to the linearized

advection operator because their amplitude is of order
√
α

smaller then the mean flow.
• EU [·] is the average of the quantity in brackets over the

stationary measure of the equation (1.6). Explicitly, we

have

EU [f [ωm]] = lim
t→∞

Em[f [ωm]] (1.8)

for any functional f , where Em is the average over reali-

sations of the noise ηm.
〈

v
(y)
m ωm

〉

is the zonally averaged

momentum flux convergence, then EU

[〈

v
(y)
m ωm

〉]

, that

may be called a Reynolds stress divergence, is the statis-

tical average of the momentum flux convergence. We note

that EU

[〈

v
(y)
m ωm

〉]

can be computed directly from the

two points correlation function for the vorticity derived

from Eq. (1.6).

Clearly, the presence of a long-time limit in the averaging

procedure of the above quantity is due to the fact that

a time scale separation is present in the system: eddies

evolve much faster (on a time scale of order one) than the

zonal jet, which evolves only on a time scale of order 1/α.
• ξ[U ] is a stochastic term, that depends on the velocity

profile U . Its correlation function is denoted by

E[ξ[U ](y1, t1) ξ[U ](y2, t2)] = ΞNL[U ](y1, y2)δ(t1 − t2) .

(1.9)

ΞNL accounts for the effects of fluctuations of large but

finite time averages of the momentum flux convergence
〈

v
(y)
m ωm

〉

. The expression for ΞNL can be derived using

a Green-Kubo formula, that can be evaluated from the

two point-two times vorticity correlation function, as

explained in [8].
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Let us discuss the physical properties of each of the terms

of the kinetic equation (1.5). First of all, no hidden α nor

ν dependencies are present in the kinetic equation. That

means that in the considered regime ν ≪ α ≪ 1, the

stochastic term
√
αξ[U ] is negligible. At first order in our

perturbative expansion, the kinetic equation reduces to

1

α

∂U

∂t
= EU

[〈

v
(y)
m ωm

〉]

− U +
√
2ζz . (1.10)

The deterministic evolution of the zonal jet is dictated by

the first two terms on the r.h.s. of eq. (1.10). The first one

is the momentum flux convergence v
(y)
m ωm averaged both

on the zonal direction (the symbol 〈·〉) and according to the

average EU described above. The second one, −U , is just

the direct effect of linear friction on the jet profile. At this

order, fluctuations of the zonal jet profile are only given by

ζz, expressing the direct effect of the forcing on the zonal

jet.

From eq. (1.10), it is evident that the deterministic evo-

lution of zonal jet profile is very slow, on a time scale

of order 1/α. We should however observe that a subtlety

may arise and break this conclusion: it is not obvious that

EU

[〈

v
(y)
m ωm

〉]

has a limit in the inertial limit α → 0. In-

deed, a large time limit enters in the definition of EU , see

eq. (1.8) and eddies evolve according to equation (1.6) where

no dissipation is present in the aforementioned limit.

It is actually true that the statistical average of the mo-

mentum flux convergence EU

[〈

v
(y)
m ωm

〉]

may diverge if no

further hypothesis are assumed on the base flow U , and then

the asymptotic expansion would break down and the valid-

ity of the kinetic equation (1.10) would be very unlikely. For

example, this happens if U has unstable or neutral modes. In

section 1.4, we will explain the steps of the theoretical jus-

tification that the statistical average of the momentum flux

convergence is finite if U has no unstable nor neutral modes.

As a consequence we expect that under the hypothesis that

U has no unstable nor neutral modes, the slow evolution

of U on a time scale of order 1/α is actually described at

leading order by deterministic part of the kinetic equation

(1.10).

It is also important to observe that the statistical average

of the momentum flux convergence is a functional of U . This

means that, in general the kinetic equation (1.10) may ad-

mit more than one attractor for fixed values of the physical

parameters. This will be of importance in section 1.6.

Eq. (1.10) is very similar to equations already introduced

in the literature on a phenomenological ground (S3T and

CE2, see [1, 40, 42] and the following chapters of this book),

and should coincide in the inertial limit α→ 0. Their precise

relation is discussed in section 1.5.

At next order in the kinetic equation (1.5) the stochas-

tic term ξ arises. This subdominant correction has essential

consequences, especially in the physically relevant case of

no forcing acting at large scales: ζz = 0. Indeed, under such

an assumption, the kinetic equation at leading order (1.10)

gives a deterministic evolution that does not describe jet

fluctuations. In the inertial limit α→ 0, equation (1.5) with

ξ, properly describes Gaussian fluctuations of the jet. An-

other situation of particular interest arises when the deter-

ministic dynamics has more than one attractor. The statisti-

cal properties of rare transitions between different attractors

then requires to study the fluctuation of large but finite time

averages of the momentum flux convergence. We note how-

ever that the Gaussian fluctuations described by ξ may not

be precise enough to describe the statistics of the rare tran-

sitions between attractors, and that one has then to study

large deviations of finite time averages of the momentum

flux convergence. This kind of question are one of the most

interesting perspectives of our work, as further discussed in

section 1.6. In section 1.6 we also argue that this may be

relevant for Jupiter’s zonal jets.

1.3 Stochastic averaging of the barotropic

equations

In this section we summarise the perturbative technique that

permits to obtain formally, in the inertial limit ν ≪ α≪ 1,

the kinetic equation (1.5) for the slow evolution of the zonal

jet velocity profile U . This section follows a classical [17] but

rather technical development for dynamical systems with a

fast and slow time scale and can be entirely skipped at first

reading. Moreover, not all the details will be given here and

we address the interested reader to [8]. In section 1.4 we will

go beyond this formal justification, by justifying the self-

consistency of the hypothesis made by checking the orders

of magnitude of the main terms in the asymptotic expansion.

1.3.1 Decomposition into zonal flow and eddies

Zonal jets are characterised by their velocity profile v(r, t) =

U(y, t)ex. From Eq. (1.2), it is natural to assume that the

turbulent fluctuations are of order
√
α. A major part of this

work, summarised in section 1.4, will consist in proving that

this assumption is self-consistent. Defining the zonal projec-

tion 〈.〉 of a generic function f as

〈f〉(y) = 1

2πlx

∫ 2πlx

0
dx f(r),

the zonal part of the potential velocity field will be denoted

by U ≡ 〈v · ex〉; the rescaled non-zonal part of the flow vm

is then defined through the decomposition

v(r) = U(y)ex +
√
αvm(r). (1.11)

Similarly, the potential vorticity will be denoted q = qz +√
αωm.

We now project the barotropic equation (1.2) into zonal

∂tqz = −α∂y
〈

v
(y)
m ωm

〉

− αωz + ν∂2yωz +
√
2αηz (1.12)

and non-zonal part

∂tωm + LU [ωm] +
√
αNL[ωm] =

√
2ηm, (1.13)

with the linear operator

LU [ωm] = U(y)∂xωm+ q′z(y)∂xψm+αωm−ν∆ωm (1.14)
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and the non-linear operator

NL[ωm] = vm · ∇ωm − 〈vm · ∇ωm〉 .

In the above equations, ηz = 〈η〉 (resp. ηm = η − 〈η〉) is a

white in time Gaussian noise with spatial correlation func-

tion Cz = 〈C〉 (resp. Cm = C−〈C〉). Observe that the cross

correlation between ηz and ηm is exactly zero, due to the

translational invariance of C.

In the decomposed equations (1.12), (1.13) it is clear that

the natural time-scale of evolution of qz is of order 1/α while

the natural time-scale of evolution of ωm is of order 1. This

is a direct consequence of our working ansatz that turbulent

fluctuations are weak (1.11).

To proceed further, it is useful to work not at the level

of the stochastic equations presented above but at the level

of the associated functional Fokker-Planck equation. Thanks

to the general theory of stochastic differential equations [17],

(1.12) and (1.13) are equivalent to the Fokker-Planck equa-

tion

∂tP = L0P +
√
αLnP + αLzP, (1.15)

for the probability distribution function (PDF) P [qz, ωm].

The distribution P [qz , ωm] is a functional of the two fields

qz and ωm and is a formal generalisation of the probabil-

ity distribution function for variables in finite dimensional

spaces.

We have divided the Fokker-Planck operator in three parts.

The first one

L0P ≡
∫

dr1
δ

δωm(r1)

[

LU [ωm] (r1)P (1.16)

+
∫

dr2 Cm(r1 − r2)
δP

δωm(r2)

]

(1.17)

is the Fokker-Planck operator that corresponds to the lin-

earized dynamics (1.14) close to the zonal flow U , forced by

a Gaussian noise, white in time and with spatial correlations

Cm. This Fokker-Planck operator acts on the non-zonal vari-

ables only and depends parametrically on U .

At order
√
α, the term

LnP ≡
∫

dr1
δ

δωm(r1)
[NL[ωm](r1)P ]

contains the non-linear interactions between non-zonal de-

grees of freedom.

At order α, the term

LzP ≡
∫

dy1
δ

δqz(y1)

[

(

α∂y
〈

v
(y)
m ωm

〉

+ αωz − ν∂2yωz
)

P

+
∫

dy2Cz(y1 − y2)
δP

δqz(y2)

]

(1.18)

contains the terms that describe the coupling between the

zonal and non-zonal flow, the dynamics due to friction acting

on zonal scales and the zonal part of the stochastic forces.

Our goal now is to obtain a reduced Fokker-Planck equa-

tion that describes only the slow evolution of the zonal jet

U , using a perturbative expansion in the small parameter

α≪ 1.

1.3.2 The quasilinear eddy distribution

As previously stressed, in the limit α ≪ 1, there is a time

scale separation between the evolution of ωm and the evo-

lution of qz . It is thus simple to guess that, to develop the

kinetic theory, we have first to determine the stationary dis-

tribution of ωm, with U held fixed.

Such stationary distribution is obtained by imposing L0P =

0 where U is considered as fixed. This stationary Fokker-

Planck equation describes the statistically stationary state

of the stochastic equation

∂tωm + LU [ωm] =
√
2ηm, (1.19)

with the linear operator LU given by (1.14). Equation

(1.19) is a linear process (Ornstein-Uhlenbeck process),

as a consequence its stationary measure is Gaussian for

any initial state. Moreover, as Em[ωm] = 0, the station-

ary distribution is completely characterised by the sta-

tionary two-points correlation function g∞[qz ](r1, r2) =

limt→∞ Em [ωm(r1, t)ωm(r2, t)], where Em denotes the av-

erage over the realisations of the noise ηm, for fixed U .

The two-points correlation function g∞ is the stationary so-

lution of the so-called Lyapunov equation, obtained from the

Itō formula applied to (1.19),

∂tg + L
(1)
U g + L

(2)
U g = 2Cm, (1.20)

where L
(i)
U is the linearized operator LU defined in (1.14)

acting on the variable ri. From (1.20), it is clear that g∞

depends on the base flow U (or equivalently on qz). As a

consequence, all the quantities averaged with the stationary

distribution of (1.19), also depend parametrically on qz.

We denote by

G[qz , ωm] =
1

Z
e−

1

2

∫
dr1dr2 ωm(r1)(g

∞[qz ])
−1(r1,r2)ωm(r2)

(1.21)

the Gaussian stationary distribution of (1.19) and by

EU [A] =

∫

D[ωm]G[qz , ωm]A[ωm]

the average of an observable A[ωm] over the distribution

G[qz , ωm].

The convergence of g towards g∞ in the limit t→ ∞ im-

plies the existence of the stationary distribution G[qz , ωm].

It is thus a crucial point of this theory and is related to the

self-consistency of the assumed scaling for the fluctuations

(1.11). This fundamental issue is discussed in section 1.4.

1.3.3 Derivation of the slow dynamics of zonal jets

To formalise the perturbative expansion of the Fokker-

Planck equation (1.15), we introduce the decomposition

P = Ps + Pf through the projection operator P :

Ps ≡ PP ≡ G[qz , ωm]

∫

D[ωm]P [qz, ωm],

and Pf ≡ (1− P)P . The two PDF P and Ps differ because

in the latter the turbulent fluctuations are relaxed to their

stationary distribution G[qz , ωm]. We also denote by

R[qz ] =

∫

D[ωm]P [qz , ωm]
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the marginal distribution of the zonal jet, with the turbu-

lence averaged out.

The goal of the pertubative expansion (also called stochas-

tic averaging) is to get a closed equation for the evolution of

R from the complete Fokker-Planck equation (1.15). It fol-

lows classical methods [17], and the explicit computations

in this particular case are reported in [8]. The first step is

to apply the projections P and 1−P on the Fokker-Planck

equation (1.15):

∂tPs = αPLz
(

Ps + Pf

)

,

∂tPf = L0Pf +
(√
αLn + α(1−P)Lz

)

(Ps + Pf ). (1.22)

In the above equations we have used PL0 = L0P = 0, which

is clear from the definition of P , and PLn = 0, due to the

fact that Ln acts only on the non-zonal degrees of freedom.

As it has been anticipated by the notation, we clearly see in

(1.22) the time-scale separation between the slow evolution

of Ps and the fast evolution of Pf .

The equation on Pf can be formally solved using Laplace

transform, and is then injected into the equation on Ps. This

equation is then expanded in powers of α to order α2. Per-

forming the inverse Laplace transform, we observe that the

evolution equation for Ps contains memory terms. However,

in the limit α≪ 1, Ps evolves very slowly and a Markovian-

ization procedure can be employed.

At order α2, we obtain

∂Ps

∂t
=

{

αPLz + α3/2PLz
∫∞

0 dt′ et
′
L0Ln + (1.23)

α2PLz
∫∞

0 dt′ et
′
L0

[

(1−P)Lz + (1.24)

∫∞

0 dt′′ Lnet
′′
L0Ln

]}

Ps(t) +O
(

α5/2
)

. (1.25)

The different terms above can then be computed explicitly

[8], we discuss here the main aspects of this computation.

The first term in the right hand side of (1.25) gives the

momentum flux convergence averaged over the stationary

distribution G[qz , ωm]. The next term vanishes exactly, be-

cause the non-linear interaction term NL[ωm] in Ln leads

to the computation of odd moments of the Gaussian dis-

tribution G[qz , ωm]. At order α2, the first term produces a

diffusion term, which corresponds to a (white in time) Gaus-

sian noise, and the last term represents a correction to the

drift term due to the non-linear interactions.

We do not enter in further details here; the interested

reader can consult [8], in which the above computation is

detailed. The result of this procedure is a Fokker-Planck

equation for the slow evolution of the zonal jet PDF R

1

α

∂R

∂t
=

∫

dy1
δ

δqz(y1)

{[

∂F1

∂y1
+ ωz(y1)− ν

α
∂2ωz

∂y2

1

]

R[qz ]+

∫

dy2
δ

δqz(y2)
(CR(y1, y2)R [qz ])

}

. (1.26)

This Fokker-Planck equation can be recast in an equiva-

lent stochastic differential equation for the potential vortic-

ity profile qz(y, t)

1

α

∂qz
∂t

= −∂F1

∂y1
− ωz(y1) +

ν

α

∂2ωz

∂y21
+ η[U ], (1.27)

where η[U ] is a white in time Gaussian noise with spatial

correlation CR. In the above equations (1.26,1.27), the drift

term is

F1 = F [U ] + αM[U ],

with

F [U ] = EU

[〈

v
(y)
m ωm

〉]

and the explicit form of M can be found in [8]. The diffusion

coefficient is

CR(y1, y2) = Cz(y1 − y2) + α
∂2

∂y1∂y2
ΞNL(y1, y2) [U ] ,

where we recall that Cz is the zonal average of the cor-

relation function C of the original noise appearing in the

barotropic equations (1.2); the correlation function of the

non linear part of the noise is given by

ΞNL(y1, y2) [U ] = (1.28)
∫∞

0 dt′ EU

[[〈

v
(y)
m ωm

〉

(y1, t
′)
〈

v
(y)
m ωm

〉

(y2, 0)
]]

,

where EU [[A(t)B(0)]] is the covariance of the observables

A[ωm] and B[ωm], with respect to the Gaussian distribution

(1.21).

Equation (1.27) can be integrated to get the evolution

equation of the jet velocity profile U(y, t)

1

α

∂U

∂t
= EU

[〈

v
(y)
m ωm

〉]

+αM[U ]−U+
ν

α

∂2U

∂y21
+
√
2ζz+

√
αξ,

(1.29)

where ξ is a white in time Gaussian noise with spatial cor-

relation

CU (y1, y2) = ΞNL(y1, y2) [U ] (1.30)

with ΞNL given in (1.28).

At second order in the kinetic equation (1.29), there are

two terms: a deterministic one, M, and a stochastic one, ξ:

both of them are functionals of U . We expect the effect of

αM to be only a small correction to the jet relaxation when

α is small. We can thus neglect M, and we obtain (1.5).

1.4 Inviscid damping and consistency of the

asymptotic expansion

The kinetic equation (1.5) that describes the slow dynamics

of zonal jets involves the stationary average EU of the mo-

mentum flux convergence (the Reynolds stress divergence)

EU

[〈

v
(y)
m ωm

〉]

. It is not obvious that this average has a

finite limit in the inertial limit α→ 0. Indeed, the eddy dy-

namics (1.6) is forced but not dissipated in this limit. If the

limit of EU

[〈

v
(y)
m ωm

〉]

would not be finite, then the asymp-

totic expansion may break down and the kinetic equation or
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the related S3T dynamics would probably not be valid. The

ergodicity of the momentum flux convergence (does the time

averages of the momentum flux convergence converge to its

statistical average?) is a also a necessary requirement for the

theory to make sense. We now consider these two essential

questions.

As the dissipation on the eddy equation (1.6) vanishes

in the inertial limit, in order to have finite large time lim-

its and ergodicity, we have to rely on an inviscid damping

mechanism. In the case of the linearized 2D Euler equation

such a mechanism is known as the Orr mechanism [32]. In

this section we first recall classical results about the Orr

mechanism for the two-dimensional Euler equation (β = 0)

[32]. We also discuss their generalisation to any jet profile

[5], holding when the base flow has no modes neither un-

stable nor neutral. Based on the Orr mechanism, we show

that the statistical average of the momentum flux conver-

gence EU

[〈

v
(y)
m ωm

〉]

has a finite limit in the inertial limit.

Thus our kinetic equation is well defined at order α and

the hypothesis of time-scale separation is self consistent, at

least as far as the quasilinear momentum flux convergence

is concerned. Finally, we consider the generalisation of these

results to β 6= 0 and to the case when the base flow has

neutral modes.

1.4.1 Balance between dissipation and forcing

It will be useful in the following discussion to have in mind

a very simple example of the balance between dissipation

and forcing in a stochastic dynamics. We consider the one

degree of freedom Ornstein–Uhlenbeck process

dq

dt
= −αq +

√
ση(t) , (1.31)

where η is a white in time Gaussian noise, α, σ > 0, and with

initial condition q(0) = 0. We investigate the large-time limit

of the variance of q. Integrating equation (1.31)

q(t) =
√
σ

∫ t

0
e−α(t−u)η(u)du , (1.32)

we get

E

[

q(t)2
]

= σ

∫ t

0

[

e−αu
]2

du , (1.33)

where E denotes the average with respect to realisation of

the noise η.

From this simple analysis, we can conclude that the con-

vergence of the variance when t→ ∞ depends on the value

of the friction coefficient α. Indeed, if α > 0, the auto-

correlation function converges to the finite value σ/2α, while

for α = 0, the variance function diverges as σt.

Observe that in equation (1.33), the variance is expressed

from the solution q̃(u) = e−αu of the deterministic equation

∂tq̃ = −αq̃ with initial condition q̃(0) = 1. We thus con-

clude that the convergence of the variance depends on the

large-time behaviour of the associated deterministic linear

evolution, and particularly on the damping mechanism in

this deterministic dynamics.

st = 0 st = 10

st = 20 st = 30

Figure 1.1 Evolution of the perturbation vorticity, advected by
the constant shear base flow U(y) = sy.

This discussion is very general, and an expression similar

to (1.33) can be obtained for any Ornstein-Uhlenbeck pro-

cess [17]. The computation of auto-correlation functions can

be discussed similarly to the computation of the variance.

We thus understand that in the problem we are interested

in, the convergence of the averaged momentum flux conver-

gence EU [〈v(y)m ωm〉] will depend on the large-time behaviour

of the deterministic linear equation

∂tω̃m + L0
U [ω̃m] = −αω̃m + ν∆ω̃m . (1.34)

For finite values of α and ν, and for a stable linear operator

L0
U , the linear friction and viscosity are the main damp-

ing mechanisms. Then, the vorticity auto-correlation func-

tion, and the average momentum flux convergence do exist.

Moreover, we are interested in the particular limit where

ν ≪ α≪ 1 and, for the self-consistency of the expansion we

need a convergence rate independent of the values of ν and

α. Then we need to rely on another damping mechanism,

through the linear operator L0
U . For the linearized Euler

equation, such inviscid damping mechanisms are known as

the Orr mechanism and the depletion of vorticity at the sta-

tionary streamlines [5]. These mechanisms are summarised

in the following section.

Moreover, we can see directly from (1.33) that if the lin-

ear operator is unstable, the deterministic evolution diverges

exponentially, so the auto-correlation function also diverges.

The same way, we see that if the linear operator has neutral

modes, the auto-correlation function will diverge linearly in

time. It is thus essential for the self-consistency of the expan-

sion to assume that the base flow U has no normal modes at

all. This is possible for a linear operator acting in an infinite-

dimensional space, such as L0
U . Actually in many jets, the

dynamics is known to actually expel neutral modes from

the spectrum [18]. We discuss further this hypothesis in the

following paragraphs.
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1.4.2 Orr mechanism and depletion of vorticity at

the stationary streamlines

We consider here the linear deterministic equation (1.34)

with β = 0, and with no viscosity or linear friction, α = ν =

0. The phenomenology is the following: while the vorticity

shows filaments at finer and finer scales when time increases,

non-local averages of the vorticity (such as the one leading

to the computation of the stream-function or the velocity)

converge to zero in the long-time limit. As an example, the

filamentation can be seen in figure 1.1, for the vorticity field

advected by a constant shear flow U(y) = sy. This fila-

mentation and the related relaxation mechanism with no

dissipation for the velocity and stream function is very gen-

eral for advection equations and it has an analog in plasma

physics in the context of the Vlasov equation, where it is

called Landau damping [30].

In order to be more precise, we consider the deterministic

linear dynamics ∂tω̃m + L0
U [ω̃m] = 0 with initial condition

eikxf(y). As explained at the end of the previous paragraph,

it is natural to assume that the linear operator L0
U has no

normal modes. With this hypothesis, it can be shown [5]

that the solution is of the form ω̃m(x, y, t) = eikxω̃k(y, t)

with, for t going to infinity,

ω̃k(y, t) ∼ ω̃∞

k (y)e−ikU(y)t . (1.35)

We thus see that the vorticity oscillates on a finer and finer

scale as time goes on. By contrast to the behaviour of the

vorticity, any spatial integral of the vorticity decays to zero.

For instance, the results for the x and y components of the

velocity and for the stream function are:

ṽ
(x)
k (y, t) ∼ ω̃∞

k (y)

ikU ′(y)

e−ikU(y)t

t
, (1.36)

ṽ
(y)
k (y, t) ∼ ω̃∞

k (y)

ik(U ′(y))2
e−ikU(y)t

t2
, (1.37)

and

ψ̃k(y, t) ∼
ω̃∞

k (y)

(ikU ′(y))2
e−ikU(y)t

t2
. (1.38)

In all the above formulas, higher order corrections are

present and decay with higher powers in 1/t. From these

expressions, it is clear that the local shear U ′(y) acts as

an effective damping mechanism. This is the so-called Orr

mechanism.

At this stage, a natural question is: what happens when

the local shear vanishes? Indeed, a jet profile necessarily

presents extrema of the velocity, at points y0 such that

U ′(y0) = 0. Such points are called stationary points of

the zonal jet profile. It can be shown that at the sta-

tionary points, the perturbation vorticity also decays for

large times: ω̃∞

k (y0) = 0. This phenomenon, first described

and explained theoretically in [5], has been called vorticity

depletion at the stationary streamlines. It has been ob-

served numerically that the extent of the area for which

ω̃∞

k (y0) ≃ 0 can be very large, up to half of the total

domain, meaning that in a large part of the domain, the

shear is not the explanation for the asymptotic decay. The

formula for the vorticity (1.35) are then valid for any y,

−1 −0.5 0 0.5 1
−3

−2

−1

0
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2

3
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U
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 >
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α = 0.01
α = 0.001
U

Figure 1.2 The stationary momentum flux convergence

EU

[〈

v
(y)
m ωm

〉]

in the case of a linear base profile U(y) = y in a

channel geometry, with ν = 0 and with different values of the
friction coefficient α. We check the convergence of this quantity
to a smooth function in the inertial limit α → 0. The details
about the numerical computation of this quantity can be found
in [8].

even for zonal jets with stationary points, provided they

are stable and have no neutral modes. The formulas for the

velocity and the stream function are valid for any y 6= y0.

Exactly at the specific point y = y0, the damping is still

algebraic with preliminary explanation given in [5], but a

complete theoretical prediction is not yet available.

We have thus seen that, under the hypothesis that β = 0

and that the linear operator L0
U has no normal mode, the

deterministic dynamics of the eddies leads to an inviscid

damping of the velocity and of the stream function. As ex-

plained in the introductory example of the one dimensional

Ornstein–Uhlenbeck stochastic dynamics, this is the key in-

gredient that can ensure the convergence of the average mo-

mentum flux EU [〈v(y)m ωm〉]. We investigate this point in the

following paragraph.

1.4.3 Convergence of the averaged momentum flux

convergence

Starting from the eddy equation (1.6), a direct generalisation

of equation (1.33) for the average momentum flux conver-

gence gives

EU

[〈

v
(y)
m ωm

〉

(y)
]

=
∑

k>0,l

cklFkl(y), with

Fkl(y) = lim
t→∞

∫ t

0
ω̃k(y, u) ṽ

(y)∗
k (y, u) du+ C.C., (1.39)

where ω̃keikx and ṽ
(y)
k eikx are the deterministic solutions to

the linearized equation ∂tω̃+L
0
U ω̃ = 0 with initial condition

eikx+ily , C.C. denotes the complex conjugate, and ckl are

the Fourier components of the forcing correlation function

Cm (a detailed derivation is given in [8]).
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Using the asymptotic expressions of the deterministic

fields (1.35,1.37), we readily see that the integral in equation

(1.39) converges. We have thus proven that, under the hy-

pothesis that β = 0 and that the base flow U has no normal

modes, the momentum flux convergence EU [〈v(y)m ωm〉] con-

verges to a finite quantity when α → 0. This is illustrated

in figure 1.2.

In order for the time scale separation to be justified, and

the kinetic equation to be valid, it is not only required that

the momentum flux convergence EU [〈v(y)m ωm〉] has a limit

when α→ 0, but an ergodic property

lim
T→∞

1

T

∫ T

0
〈vymωm〉(y, t) dt = EU [〈v(y)m ωm〉](y), (1.40)

should also be verified, and this limit should be valid uni-

formly with respect to α. Again the result is not obvious as

we have to count on the inviscid damping mechanism. The

existence of this ergodic limit has been studied [41]. As the

development are quite technical, we just comment here the

main results. First it has been proven that

EU







[

1

T

∫ T

0
〈v(y)m ωm〉(y, t) dt−EU [〈v(y)m ωm〉](y)

]2






...

(1.41)

... ∼
T→∞

A(y)

αT
, (1.42)

which seems to be a negative result about ergodicity. Indeed

one can see from this result that while for finite value of α the

large time ergodic limit is the expected one, the quadratic

error diverge when α→ 0. However it has also been proven

that ergodicity occurs for the momentum flux convergence

understood as distributions. This means that for any smooth

test function φ one can prove that

EU

{[

∫

dy φ(y)
1

T

∫ T

0
〈v(y)m ωm〉(y, t) dt− ... (1.43)

...

∫

dy φ(y)EU [〈v(y)m ωm〉](y)
]2

}

∼
T→∞

B

T
. (1.44)

The quadratic error is then bounded independently on α.

Heuristically this means that the momentum flux divergence

does not converge pointwise because of wild fluctuations, but

as soon as those fluctuation are integrated out, the ergodic

result holds. This is enough for the theory to be self consis-

tent.

Those properties about the convergence of the statistical

averages and the ergodicity property of the time averaged

momentum flux convergence are essential ones for the self

consistency of the theory. At a theoretical level, it means

that the perturbative expansion performed in section 1.3 is

self-consistent at the level of the momentum flux conver-

gence. We stress that a more complete mathematical jus-

tification would also require to justify the self-consistency

of the hypothesis made when we neglected the nonlinear-

nonlinear eddy interactions. As a conclusion, we stress that

proving the ergodicity of the momentum flux convergence is

a decisive step towards a mathematical justification of the

assumption (1.4) and of the time-scale separation.

1.4.4 Self consistent theory for the β plane

barotropic model and more complex models

The results presented in the previous paragraphs about the

ergodicity of the momentum flux convergence have been

proven for the linearized Euler equation, i.e. for the case

β = 0. For geophysical applications, it would be very in-

teresting to understand if these results also apply to the

linearized beta-plane equation. So far, the asymptotic be-

havior of the linearized barotropic equation has been mostly

studied in the particular case of a parabolic jet profile, such

that the gradient of potential vorticity U ′′(y) − β either

exactly vanishes [10], or is small [9]. In the first case, the

deterministic linear dynamics can be solved explicitly, and

it can be shown that an inviscid damping mechanism exits,

leading to an algebraic decay of the stream function as

ψ̃k ∼ t−1/2. This decay is not fast enough to insure the

convergence of the statistical average of the momentum flux

convergence (1.39). In this very particular case, the present

theory seems not self-consistent. However the divergence

has probably a very limited spatial extension close to the jet

extrema. Moreover, this case might be a very singular one,

indeed the case of a small but strictly negative potential

vorticity gradient [9] leads to a decay of the stream function

as ψ̃k ∼ t−3/2. Then the momentum flux convergence (1.39)

converges for small α, and the theory seems self-consistent.

The other hypothesis made to obtain the ergodicity result

is that the linear operator L0
U has no normal modes, neither

unstable nor neutral. While this assumption may seem re-

strictive at first, it is actually a generic case for the 2D Eu-

ler equation. It is indeed a classical result that shear flows

without inflection points, or vortices with strictly decreasing

vorticity profile are stable and have no neutral mode [13].

The only examples of stable flows for the 2D Euler dynamics

with neutral modes we are aware of, are cases with localized

vorticity profile [37].

When it comes to the linear barotropic equation, this

assumption might be more restrictive. Indeed, the Rossby

waves are very common neutral modes of the linearized

barotropic dynamics, and are expected to exist in geophys-

ical situations [34]. However, we note that a mechanism of

expulsion of normal modes in the presence of a background

zonal jet has been revealed, and seems to hold in the atmo-

sphere [18]. In the case where the linear dynamics would still

have neutral modes, the typical time scale of propagation of

the wave would be an intermediate time scale between the

evolution of the jet and the evolution of the eddies. This con-

tribution should thus be extracted from the eddies dynam-

ics, and the effective equation of the jets dynamics would be

modified accordingly. This point is currently under investi-

gation.
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1.5 Comparison of theoretical predictions with

numerical experiments

In section 1.5.1, we discuss the relation of the kinetic equa-

tion described in this chapter (eq. 1.10) with related ap-

proaches (the S3T-CE2-quasi-linear equations) discussed in

chapters 5.2.2. and 5.1.2., respectively. In section 1.5.2 we

discuss numerical experiments that confirm that the small

α limit is actually the relevant one for the validity of the

kinetic approach. Finally, in section 1.6 we discuss the ef-

fect of the stochastic terms appearing at higher order in our

equation and explain their importance in order to determine

both Gaussian and large fluctuations of the jet profile.

1.5.1 Deterministic slow evolution of the zonal jets

through kinetic theory and the S3T-CE2 system

As explained in section 1.2.2, the statistical average of the

momentum flux convergence appearing in the equation for

the slow evolution of the zonal jet (1.10) is computed from

the statistically stationary statistics of the linearized dynam-

ics (1.6) for U held fixed. Equivalently, it can be computed

as a linear transform of the stationary solution of the Lya-

punov equation (1.20).

The S3T-CE2 system [1, 40, 42] is obtained from the

quasi-linear approximation (setting to zero the non-linear

eddy-eddy interaction terms in the equation on ωm) and by

moreover taking an average of the momentum flux conver-

gence in the equation for U . Moreover, it is assumed that the

statistical average (over the realisations of noise) coincides

with a spatial average over the zonal direction x. The result-

ing equations are thus very similar to the kinetic equation

(1.10). The main difference is that the jet and the correla-

tion function of the fluctuations evolve simultaneously. In

a statistically stationary state, neither the jet profile U(y)

nor the correlation of the fluctuations g evolve. As a con-

sequence, we can assess that our kinetic equation and the

S3T-CE2 system have the same attractors. The kinetic ap-

proach is a perturbative expansion when the parameter α is

very small. In this limit, because of the time scale separa-

tion, the results of S3T-CE2 should coincide with the kinetic

theory. We will see in next section that the direct numerical

simulations of the barotropic equations are in good agree-

ment with the S3T-CE2 equations, and thus with the kinetic

theory, in this regime α≪ 1.

A very interesting and important practical advantage of

the S3T-CE2 equation is that it gives an autonomous equa-

tion that can be integrated forward in time, independently

of any hypothesis. It is thus an interesting tool in order

to study the dynamics, both numerically and theoretically,

even when the hypothesis for the validity of the kinetic the-

ory are not satisfied. As an example, the case of a homoge-

neous flow, U = 0, that does not enter into the class of flow

with no-modes considered in the kinetic approach, has been

extensively studied in the S3T-CE2 framework [1, 40]. One

reason is that it is explicitly solvable. Those works also give

a very interesting qualitative understanding of the mecha-

nisms leading to the formation of coherent zonal flows.

However, we stress that there is no clear reason to ex-

pect the S3T-CE2 approach to give quantitatively correct

results when the basic hypothesis of the kinetic theory are

not verified. We recall them here: there should be a time

scale separation between the evolution of the non-zonal per-

turbations and the slow jet dynamics (this is the case for

instance if α ≪ 1), and the linear operator LU associated

to the jet profile U should have no normal modes.

1.5.2 Comparison of theoretical results and

numerical simulations

We now investigate the parameters used in numerical simu-

lations of the S3T-CE2-quasi-linear equations. For simplicity

we focus on the work by Tobias and Marston [43], but the

conclusions are the same for the other works [1, 40].

In this paper, it is argued that the strength of the jets is

related to the value of the zonostrophy index

Rβ =
U1/2β1/10

21/2ǫ1/5
, (1.45)

which has also been introduced in [11, 16]. Rβ is obtained

as the ratio of the Rhines scale and of another length scale

built by comparing the intensity of the forcing and of the

mean gradient of potential vorticity β. It is observed that a

large value of Rβ leads to a flow made of robust jets, while a

small value leads to the formation of weak, meandering jets.

Moreover, the comparison between CE2 calculations and di-

rect non-linear simulations shows a very good agreement for

large values of Rβ , and a poor agreement for smaller values

of this index.

We now compare these results with the scaling arguments

and the kinetic theory presented before. First, we can note

that we have the relation

αR =
1

27/2R5
β

, (1.46)

so that the regime Rβ ≫ 1, in which robust jets and good

accuracy of S3T-CE2-quasi-linear approximation are found,

coincides with the regime αR ≪ 1. Let’s now look more

precisely at the different parameters considered in [43].

Three simulations are presented in this paper, correspond-

ing to figures 2(a), 2(b) and 2(c), or 4(a), 4(b) and 4(c) for

the comparison with the CE2 simulation. We find the fol-

lowing results:
• With the parameters of the case (a), we have α = 0.068

and αR = 0.0021, which are both very small. This is in

accordance with the fact that robust jets are found, and

that the quasi-linear approximation is accurate.
• With the parameters of the case (b), we find the values

α = 0.068 and αR = 0.0029, which are still very small.

Again, this is in accordance with the fact that strong jets

are found, and that the quasi-linear approximation is ac-

curate.
• With the parameters of the case (c), we have α = 1.45 > 1

and αR = 0.030, which is still quite small. The case (c)

corresponds to weak and meandering jets, and to a very

poor agreement between CE2 and non-linear simulation.
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To conclude this discussion, we find that small values of

αR and α lead to the formation of strong jets, and to a very

good accuracy of the kinetic equation (S3T-CE2-quasi-linear

equations). This observation can also be made from the nu-

merical simulations presented in other papers [1, 40]. How-

ever, the last case (c) suggests that αR, may have to be quite

small in order for the dynamics to be in the range of validity

of the quasi-linear approximation. This can also be seen in

figure 6 of [40], where the ratio of energy contained in the

jets is plotted as a function of an adimensionalized friction

µ∗ and of an adimensionalized gradient of potential vorticity

β∗. Which of αR or α is the more relevant parameter to asses

the range of validity of the quasilinear approximation? We

find that strong jets, together with a good accuracy of the

quasi-linear approximation, is obtained for small values of

µ∗, almost independently of the value of β∗. Then, it seems

that the value of β does not control the robustness of jets

and the validity of the quasi-linear approximation, suggest-

ing that α – and not αR that depends on β – is the relevant

small parameter for the kinetic theory of zonal jets. It may

be interesting to study further this hypothesis that α may

be more relevant than αR to asses the range of validity of

the kinetic theory.

1.6 Fluctuation of momentum flux convergence

and bistability of Jupiter’s zonal jets

Taking into account the terms of order α2 allows to go fur-

ther in the understanding of jets dynamics. Indeed, the first

order (1.10) only describes the relaxation of a jet profile

U towards its attractor and the fluctuations due to the di-

rect effect of the original forcing η acting on zonal degrees

of freedom. However, in most physically relevant situations,

ηz = 〈η〉 = 0, and fluctuation of the zonal jet are due to

fluctuation of the momentum flux convergence; this is the

case we will consider from here on.

At second order in α, a new term appears: a white in time

noise with spatial correlation function αΞNL[U ]. This noise

term describes both Gaussian fluctuations of the jet profile

due to momentum flux convergence fluctuations during the

relaxation, or Gaussian fluctuations of the jet around its

attractors. It is thus an interesting correction whenever one

is interested in Gaussian fluctuations of the jet.

Another type of physical situations when fluctuations are

essential is when the system is multistable because the re-

laxation dynamics (1.10) has two (or more) attractors. Such

a multistability seems to be relevant for Jupiter’s zonal jets.

Indeed during the period 1939-1940 three Jupiter’s white

ovals suddenly appeared, most probably following the insta-

bility and the disappearance of one of the alternating zonal

jets [46, 36]. Cases of multiple attractors are also known

in zonal jet dynamics for beta-plane barotropic turbulence;

for example, in chapter 5.1.2 and 5.2.2, two attractors with

a different number of jets are shown to emerge using the

same physical parameters and different initial conditions. In

Figure 1.3 we show the first example of rare transitions be-

tween zonal jets for the beta-plane barotropic turbulence.

Figure 1.3 Rare transitions between attractors, with
respecpectively two and three alternating jets, for the barotropic
turbulence on a beta plane. Those rare transitions are similar to
the one observed on Jupiter during the period 1939-1940. The
upper plot shows the zonally averaged vorticity as a function of
the slow time αt. The lower plot shows the modulus of the wave
number 2 and 3 Fourier components of the zonally averaged
vorticity, and the energy, as a function of time. Transitions are
extremely rare: 11 transitions are observed over a time scale of
about 106 turnover times (from a work with E. Simonnet).

The most amazing result is that such transitions between a

state with two alternating jets, and a state with three al-

ternating jets, are extremely rare. On the numerical sim-

ulation described in Figure 1.3 only 11 transitions occur

over a time scale of 106 turnover time. Also on Jupiter

such events are extremely rare; indeed since the appear-

ance of the three white ovals about 75 years ago, no sim-

ilar event has been observed. Such situations of bistability

and very rare transitions are very common in geophysical,

two-dimensional, and three-dimensional turbulent flows. For

instance, paths of the Kuroshio current [38], atmospheric

flows [45], Earth’s magnetic field reversal and MHD exper-

iments [2], two–dimensional turbulence simulations and ex-

periments [39, 6, 21, 20], and three–dimensional flows [35]

show this kind of behaviour.

In a bistability situation, for instance the zonal jet bista-

bility described in Figure 1.3, the time the dynamics spend

close to one attractor before jumping to the other is de-

scribed by a Poisson statistics, determined by two transition

rates. Each transition rate is the inverse of the average time

spent close to one attractor before jumping to the other. The

most important scientific question is to determine these two

transition rates. Once those rates are known, the stationary

distribution can be computed, giving access to the station-

ary probability to observe one or the other attractor.

A very interesting issue is to understand if transition rates

could be computed from a quasilinear approximation, and

how. The key point is that such rare transitions are the

consequences of very rare fluctuations of the momentum

flux convergence. Such fluctuations may not be described

by the spatial correlation function αΞNL[U ], which amount

at a Gaussian approximation only. In principle, in a system

with two well separated time scales, as the one described

in this chapter, one can compute such rare transition by
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evaluating the large deviations of the fast variables. For in-

stance in the case of the barotropic turbulence, the quasi-

linear approach leading to neglecting eddy-eddy nonlinear-

ities in equation (1.6) is in principle still valid. But then

one needs to compute large deviations of time average mo-

mentum flux convergence, that is one should compute the

probability to observe the quantity 1
T

∫ T
0 〈v(y)m ωm〉(y, t) dt to

be equal to some arbitrary value R, rather than just the av-

erage of this quantity (giving EU [〈v(y)m ωm〉]) or its Gaussian

fluctuations (related to αΞNL[U ]). For that purpose, the

Lyapunov equation (1.20) is not sufficient and, one should

develop a new formalism based on matrix Riccatti equations.

This approach has been recently developed in [41] and is the

subject of several ongoing researches. The scope of those re-

search is to compute transition rates for Jupiter’s like zonal

jets.

1.7 Conclusion

In this chapter we have discussed a theory of zonal jets veloc-

ity profiles, in an inertial limit, when there is a clear separa-

tion of time scales between the rapid evolution of the turbu-

lent non zonal part of the velocity field and the slow evolu-

tion of zonal jets. Under this hypothesis, and further assum-

ing that the linearised equation close to the zonal jets has

no unstable or neutral eigenmodes, the theory predicts the

jet velocity profile and the turbulence statistics. This sys-

tematic expansion makes precise previous approaches based

on quasi-linear approximations or cumulant expansion.

We foresee many further theoretical developments of this

theory. For instance prediction of phase transitions, bistabil-

ity, and transition rates will be studied in the future, using

large deviation theory. A more complete theoretical study

of the conditions for this theory to be valid in more com-

plex models, including layered and three dimensional quasi

geostrophic models and the primitive equations should also

be considered.

The applications of this theory are further discussed in

the chapters 5.1.2, 5.2.2, 5.2.3, 5.2.4, and 5.2.5 of this book.
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