Mixed-symmetry multiplets and higher-spin curvatures

Abstract : We study the higher-derivative equations for gauge potentials of arbitrary mixed-symmetry type obtained by setting to zero the divergences of the corresponding curvature tensors. We show that they propagate the same reducible multiplets as the Maxwell-like second-order equations for gauge fields subject to constrained gauge transformations. As an additional output of our analysis, we provide a streamlined presentation of the Ricci-like case, where the traces of the same curvature tensors are set to zero, and we present a simple algebraic evaluation of the particle content associated with the Labastida and with the Maxwell-like second-order equations.
Type de document :
Article dans une revue
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2015, 48 (22), pp.225401. 〈10.1088/1751-8113/48/22/225401〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01266439
Contributeur : Xavier Bekaert <>
Soumis le : mardi 2 février 2016 - 15:58:35
Dernière modification le : mercredi 13 février 2019 - 01:22:51

Lien texte intégral

Identifiants

Collections

Citation

Xavier Bekaert, Nicolas Boulanger, Dario Francia. Mixed-symmetry multiplets and higher-spin curvatures. Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2015, 48 (22), pp.225401. 〈10.1088/1751-8113/48/22/225401〉. 〈hal-01266439〉

Partager

Métriques

Consultations de la notice

65