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GJMS-TYPE OPERATORS ON A COMPACT RIEMANNIAN

MANIFOLD: BEST CONSTANTS AND CORON-TYPE

SOLUTIONS

SAIKAT MAZUMDAR

Abstract. In this paper we investigate the existence of solutions to a non-

linear elliptic problem involving critical Sobolev exponent for a polyharmonic

operator on a Riemannian manifold M . We first show that the best constant
of the Sobolev embedding on a manifold can be chosen as close as one wants

to the Euclidean one, and as a consequence derive the existence of minimizers

when the energy functional goes below a quantified threshold. Next, higher en-
ergy solutions are obtained by Coron’s topological method, provided that the

minimizing solution does not exist. To perform this topological argument, we

overcome the difficulty of dealing with polyharmonic operators on a Riemann-
ian manifold and adapting Lions’s concentration-compactness lemma. Unlike

Coron’s original argument for a bounded domain in Rn, we need to do more
than chopping out a small ball from the manifold M . Indeed, our topological

assumption that a small sphere on M centred at a point p ∈ M does not re-

tract to a point in M\{p} is necessary, as shown for the case of the canonical
sphere where chopping out a small ball is not enough.

1. Introduction

Let M be a compact manifold of dimension n ≥ 3 without boundary. Let k be
a positive integer such that 2k < n. Taking inspiration from the construction of
the ambient metric of Fefferman-Graham [14] (see [15] for an extended analysis of
the ambient metric), Graham-Jenne-Mason-Sparling [18] have defined a family of
conformally invariant operators defined for any Riemannian metric. More precisely,
for any Riemannian metric g on M , there exists a local differential operator Pg :
C∞(M) → C∞(M) such that Pg = ∆k

g + lot where ∆g := −divg(∇), and, given

u ∈ C∞(M) and defining ĝ = u
4

n−2k g, we have that

(1) Pĝ(ϕ) = u−
n+2k
n−2kPg (uϕ) for all ϕ ∈ C∞(M).

Moreover, Pg is self-adjoint with respect to the L2−scalar product. A scalar in-
variant is associated to this operator, namely the Q−curvature, denoted as Qg ∈
C∞(M). When k = 1, Pg is the conformal Laplacian and the Q−curvature is the
scalar curvature multiplied by a constant. When k = 2, Pg is the Paneitz operator
introduced in [27]. The Q−curvature was introduced by Branson and Ørsted [9].
The definition of Qg was then generalized by Branson [7, 8]. In the specific case
n > 2k, we have that Qg := 2

n−2kPg(1). Then, taking ϕ ≡ 1 in (1), we get that
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Pgu = n−2k
2 Qĝu

n+2k
n−2k on M . Therefore, prescribing the Q−curvature in a conformal

class amounts to solving a nonlinear elliptic partial differential equation(PDE )of
2kth order. Results for the prescription of the Q−curvature problem for the Paneitz
operator (namely k = 2) are in Djadli-Hebey-Ledoux [12], Robert [29], Esposito-
Robert [13]. Recently, Gursky-Malchiodi [19] proved the existence of a metric with
constant Q−curvature (still for k = 2) provided certain geometric hypotheses on
the manifold (M, g) holds. These hypotheses have been simplified by Hang-Yang
[20] (see the lecture notes [21])

In the present paper, we are interested in a generalization of the prescription of the
Q−curvature problem. Namely, given f ∈ C∞(M), we investigate the existence of
u ∈ C∞(M), u > 0, such that

(2) Pu = fu2]k−1 in M,

where 2]k := 2n
n−2k and P : C∞(M) → C∞(M) is a smooth self-adjoint 2kth order

partial differential operator defined by

Pu = ∆k
gu+

k−1∑
l=0

(−1)l∇jl...j1
(
Al(g)i1...il,j1...jl∇i1...ilu

)
(3)

where the indices are raised via the musical isomorphism and for all l ∈ {0, . . . , k−
1}, Al(g) is a smooth symmetric T 0

2l-tensor field on M (that is: Al(g)(X,Y ) =
Al(g)(Y,X) for all T l0-tensors X,Y on M). When P := Pg, then (2) is equivalent

to say that Qĝ = 2
n−2kf with ĝ = u

4
n−2k g.

The conformal invariance (1) of the geometric operator Pg yields obstruction to the
existence of solutions to (2). The historical reference here is Kazdan-Warner [23];
for the general GJMS operators, we refer to Delanoë-Robert [11]. In particular,
it follows from [11] that on the canonical sphere (Sn, can), there is no positive

solution u ∈ C∞(Sn) to Pcanu = (1 + εϕ)u2]k−1 for all ε 6= 0 and all first spherical
harmonic ϕ. For the conformal Laplacian (that is k = 1), Aubin [3] proved that the
existence of solutions is guaranteed if a functional goes below a specific threshold.
We generalize this result for any k ≥ 1 in Theorem 3. In the case of a smooth
bounded domain, Coron [10] introduced a variational method based on topological
arguments, provided the minimizing solution does not exist. Our main theorem is
in this spirit:

Theorem 1. Let (M, g) be a smooth, compact Riemannian manifold of dimension
n and let k be a positive integer such that 2k < n. We let P be a coercive operator
as in (3). Let ιg > 0 be the injectivity radius of the manifold M . Suppose that the
manifold M contains a point x0 such that the embedded (n−1)− dimensional sphere
Sx0

(ιg/2) := {x ∈M/dg(x, x0) = ιg/2} is not contractible in M\{x0}. Then there
exists ε0 ∈ (0,

ιg
2 ) such that the equation{
Pu = |u|2

]
k−2

u in ΩM
Dαu = 0 on ∂ΩM for |α| ≤ k − 1

(4)

has a non-trivial C2k(ΩM ) solution for ΩM := M\Bx0(ε0). Moreover, if the Green’s
Kernel of P on ΩM is positive, then we can choose u > 0.

In the original result of Coron [10] (see also Weth and al. [5] for the case k = 2),
the authors work with a smooth domain of Rn and assume that it has a small “hole”.
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In the context of a compact manifold, this assumption is not enough: indeed, the
entire compact manifold minus a small hole might retract on a point. We discuss
the example of the canonical sphere in Section 7, where the existence of a hole is
not sufficient to get solutions to (2).
Concerning higher-order problems, we refer to Bartsch-Weth-Willem [5], Pucci-
Serrin [28], Ge-Wei-Zhou [17], the general monograph Gazzola-Grunau-Sweers [16]
and the references therein.

Among other tools, the proof of Theorem 1 uses a Lions-type Concentration Com-
pactness Lemma adapted to the context of a Riemannian manifold: this will be the
object of Theorem 4.

Equation (2) has a variational structure. Since P is self-adjoint in L2, we have that
for all u, v ∈ C∞(M).

∫
M

uP (v) dvg =

∫
M

vP (u) dvg =

∫
M

∆k/2
g u∆k/2

g v dvg +

k−1∑
l=0

∫
M

Al(g)(∇lu,∇lv) dvg

(5)

where

∆l/2
g u :=

{
∆m
g u if l = 2m is even
∇∆m

g u if l = 2m+ 1 is odd

and, when l = 2m + 1 is odd, ∆
k/2
g u∆

k/2
g v =

(
∇∆m

g u,∇∆m
g v
)
g
. If P is coercive

and f > 0, then, up to multiplying by a constant, any solution u ∈ C∞(M) to (2)
is a critical point of the functional

u 7→ JP (u) :=

∫
M

uP (u) dvg( ∫
M

f |u|2
]
k dvg

)2/2]k
.(6)

It follows from (5) that JP makes sense in the Sobolev spaces H2
k(M), where for

1 ≤ l ≤ k, H2
l (M) which is the completion of C∞(M) with respect to the u 7→∑l

α=0 ‖∇αu‖2. Equivalently (see Robert [30]), H2
l (M) is also the completion of the

space C∞(M) with respect to the norm

(7) ‖u‖2H2
l

:=

l∑
α=0

∫
M

(∆α/2
g u)2 dvg.

By the Sobolev embedding theorem we get a continuous but not compact embedding

of H2
k(M) into L2]k(M). The continuity of the embedding H2

k(M) ↪→ L2]k(M) yields
a pair of real numbers A,B such that for all u ∈ H2

k(M)

‖u‖2
L2
]
k
≤ A

∫
M

(∆k/2
g u)2 dvg +B ‖u‖2H2

k−1
.(8)

See for example Aubin [4] or Hebey [22]. Following the terminology introduced by
Hebey, we then define

A(M) := inf{A ∈ R : ∃ B ∈ R with the property that inequality (8) holds}.(9)
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As for the classical case k = 1 (see Aubin [4]), the value of A(M) depends only
on k and the dimension n. More precisely, we let Dk,2(Rn) be the completion of
C∞c (Rn) for the norm u 7→ ‖∆k/2u‖2, and we define K0(n, k) > 0

(10)
1

K0(n, k)
:= inf

u∈Dk,2(Rn)\{0}

∫
Rn(∆k/2u)2 dx(∫
Rn |u|

2]k dx
) 2

2
]
k

.

as the best constant in the Sobolev’s continuous embedding Dk,2(Rn) ↪→ L2]k(Rn).
Our second result is the following:

Theorem 2. Let (M, g) be a smooth, compact Riemannian manifold of dimension
n and let k be a positive integer such that 2k < n. Then A(M) = K0(n, k) > 0. In
particular, for any ε > 0, there exists Bε ∈ R such that for all u ∈ H2

k(M) one has(∫
M

|u|2
]
k dvg

) 2

2
]
k ≤ (K0(n, k) + ε)

∫
M

(∆k/2
g u)2 dvg +Bε ‖u‖2H2

k−1
.(11)

As a consequence of this result, we will be able to prove the existence of solutions
to (2) when the functional JP goes below a quantified threshold, see Theorem 3.

This paper is organized as follows. In Section 2, we study the best-constant problem
and prove Theorem 2. In Section 3, we prove Theorem 3 by classical minimizing
method. In Section 4, we prove a Concentration-Compactness Lemma in the spirit
of Lions. Section 5 is devoted to test-functions estimates and the proof of the exis-
tence of solutions to (4) via a Coron-type topological method. Section 6 deals with
positive solutions, and Section 7 with the necessity of the topological assumption of
Theorem 1. The appendices concern regularity and a general comparison between
geometric norms.

Acknowledgements. I would like to express my deep gratitude to Professor Frédéric
Robert and Professor Dong Ye, my thesis supervisors, for their patient guidance,
enthusiastic encouragement and useful critiques of this work.

2. The Best Constant

It follows from Lions [24] and Swanson [32] that the extremal functions for the
Sobolev inequality (10) exist and are exactly multiples of the functions

Ua,λ = αn,k

(
λ

1 + λ2|x− a|2

)n−2k
2

a ∈ Rn, λ > 0(12)

where the choice of αn,k’s are such that for all λ, ‖Ua,λ‖2]k = 1 and ‖Ua,λ‖2Dk,2 =

1
K0(n,k) . They satisfies the equation ∆ku = 1

K0(n,k) |u|
2]k−2

u in Rn

Next we consider the case of a compact Riemmanian manifold. The first result we
have in this direction is the following.

Lemma 2.1. Let (M, g) be a smooth, compact Riemannian manifold of dimension
n and let k be a positve integer such that 2k < n. Any constant A in inequality (8)
has to be greater than or equal to K0(n, k), whatever the constant B be.
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Proof of Lemma 2.1: We fix ε > 0 small. It follows from Lemma 9.1 that there
exists, δ0 ∈ (0, ιg) depending only on (M, g), ε, where ιg is the injectivity radius of
M , such that for any point p ∈M , any 0 < δ < δ0, l ≤ k and u ∈ C∞c (B0(δ))∫

M

(∆l/2
g (u ◦ exp−1

p ))2
g dvg ≤ (1 + ε)

∫
Rn

(∆l/2u)2 dx(13)

and

(1− ε)

 ∫
Rn

|u|2
]
k dx

2/2]k

≤

∫
M

|u ◦ exp−1
p |2

]
k dvg

2/2]k

(14)

Then plugging the above inequalities into (8) we obtain that any u ∈ C∞c (B0(δ))
satisfies ∫

Rn

|u|2
]
k dx

2/2]k

≤ 1 + ε

1− ε
A

∫
Rn

(∆k/2u)2 dx+ Cε

k−1∑
l=0

∫
Rn
|∇lu|2 dx.(15)

Let v ∈ C∞c (Rn) with supp(v) ⊂ B0(R0). For λ > 1 let vλ = v(λx). Then for λ
large, supp(vλ) ⊂ B0(δ). Taking u ≡ vλ in (15), a change of variable yields

1

λn−2k

 ∫
Rn

|v|2
]
k dx

2/2]k

≤ 1 + ε

1− ε
· A

λn−2k

∫
Rn

(∆k/2v)2 dx+ Cε

k−1∑
l=0

1

λn−2l

∫
Rn
|∇lv|2 dx.

(16)

Multiplying by λn−2k and letting λ → +∞, we get that for all v ∈ Dk,2(Rn), we
have  ∫

Rn

|v|2
]
k dx

2/2]k

≤ 1 + ε

1− ε
A

∫
Rn

(∆k/2v)2 dx.(17)

Therefore 1+ε
1−εA ≥ K0(n, k) for all ε > 0, and letting ε → 0 yields A ≥ K0(n, k).

This ends the proof of Lemma 2.1. 2

We now prove (11) to get Theorem 2.

Step 1: A local inequality. From a result of Anderson (Main lemma 2.2 of [2]) it
follows that for any point p ∈M there exists a harmonic coordinate chart ϕ around
p. Then from Lemma 9.1, for any 0 < ε < 1, there exists τ > 0 small enough such
that for any point p ∈M and for any u ∈ C∞c (Bp(τ)), one has∫

Rn

(∆k/2(u ◦ ϕ−1))2 dx ≤
(

1 +
ε

3K0(n, k)

)∫
M

(∆k/2
g u)2 dvg(18)

and  ∫
M

|u|2
]
k dvg

2/2]k

≤
(

1 +
ε

3K0(n, k)

) ∫
Rn

|u ◦ ϕ−1|2
]
k dx

2/2]k

.(19)



6 SAIKAT MAZUMDAR

The expression for the Laplacian ∆g in the harmonic coordinates is ∆gu = −gij∂iju.
Then (10) implies that for any u ∈ C∞c (Bp(τ)) ∫

M

|u|2
]
k dvg

2/2]k

≤ (K0(n, k) + ε)

∫
M

(∆k/2
g u)2 dvg.(20)

Step 2: Finite covering and proof of the global inequality. Since M is
compact, it can be covered by a finite number of balls Bpi(τ/2), i = 1, . . . , N . Let
αi ∈ C∞c (Bpi(τ)) be such that 0 ≤ αi ≤ 1 and αi = 1 in Bpi(τ/2). We set

ηi =
α2
i

N∑
j=1

α2
j

.(21)

Then (ηi)i=1,...,N is a partition of unity subordinate to the cover (Bpi(τ))i=1,...,N

such that
√
ηi’s are smooth and

N∑
i=1

ηi = 1. In the sequel, C denote any positive

constant depending on k, n, the metric g on M and the functions (ηi)i=1,...,N . Now

for any u ∈ C∞(M), we have

‖u‖2
2]k

= ‖u2‖2]k/2 =

∥∥∥∥∥
N∑
i=1

ηiu
2

∥∥∥∥∥
2]k/2

≤
N∑
i=1

∥∥ηiu2
∥∥

2]k/2
=

N∑
i=1

‖√ηiu‖22]k .(22)

So for any u ∈ C∞(M), using inequality (20) we obtain that ∫
M

|u|2
]
k dvg

2/2]k

≤ (K0(n, k) + ε)

N∑
i=1

∫
M

(∆k/2
g (
√
ηiu))2

g dvg.(23)

Next we claim that there exists C > 0 such that

N∑
i=1

∫
M

(∆k/2
g (
√
ηiu))2 dvg ≤

∫
M

(∆k/2
g u)2 dvg + C ‖u‖2H2

k−1
.(24)

Assuming that (24) holds we have from (23)

 ∫
M

|u|2
]
k dvg

2/2]k

≤ (K0(n, k) + ε)

∫
M

(∆k/2
g u)2

g dvg + (K0(n, k) + ε)C ‖u‖2H2
k−1

.

(25)

This proves (11), and therefore, with Lemma 2.1, this proves Theorem 8. We are

now left with proving (24).

Step 3: Proof of (24): For any positive integer m, one can write that

∆m
g (
√
ηiu) =

√
ηi∆

m
g u+ P(2m−1,1)

g (u,
√
ηi) + L2m−2√

ηi,g
(u)(26)
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where

P(2m−1,1)
g (u,

√
ηi) =

∑
|l|=2m−1,|β|=1

(al,β∂β
√
ηi)∇lu, and L2m−2√

ηi,g
(u) =

2m−2∑
|l|=0

al(
√
ηi) ∇lu

(27)

the coefficients al,β and al(
√
ηi) are smooth functions on M . The al,β ’s depends

only on the metric g and on the manifold M and al(
√
ηi)’s depends both on the

metric g, the function
√
ηi and its derivatives upto order 2m. We shall use the same

notations P(2m−1,1)
g (u,

√
ηi), L2m−2√

ηi,g
(u) for any expression of the above form.

Step 3.1: k is even. We then write k = 2m, m ≥ 1, and then

N∑
i=1

∫
M

(
∆m
g (
√
ηiu)

)2
dvg =

N∑
i=1

∫
M

ηi
(
∆m
g u
)2

dvg

+

N∑
i=1

∫
M

(
P(2m−1,1)
g (u,

√
ηi)
)2

dvg +

N∑
i=1

∫
M

(
L2m−2√

ηi,g
(u)
)2

dvg

+2

N∑
i=1

∫
M

√
ηi∆

m
g u P(2m−1,1)

g (u,
√
ηi) dvg + 2

N∑
i=1

∫
M

√
ηi∆

m
g u L2m−2√

ηi,g
(u) dvg

+2

N∑
i=1

∫
M

P(2m−1,1)
g (u,

√
ηi) L2m−2√

ηi,g
(u) dvg(28)

We note that

N∑
i=1

∫
M

(
P(2m−1,1)
g (u,

√
ηi)
)2

dvg ≤ C ‖u‖2H2
2m−1

. and

N∑
i=1

∫
M

(
L2m−2√

ηi,g
(u)
)2

dvg ≤ C ‖u‖2H2
2m−2

.

(29)

On the other hand

N∑
i=1

∫
M

√
ηi∆

m
g u P(2m−1,1)

g (u,
√
ηi) dvg =

N∑
i=1

∑
|l|=2m−1

∑
|β|=1

∫
M

(
√
ηi∆

m
g u)((al,β∂β

√
ηi)∇lu) dvg

=
1

2

N∑
i=1

∑
|l|=2m−1

∑
|β|=1

∫
M

(∆m
g u)((al,β∂βηi)∇lu) dvg

=
1

2

∑
|l|=2m−1

∑
|β|=1

∫
M

(∆m
g u)((al,β ∂β(

N∑
i=1

ηi))∇lu) dvg = 0

(30)

while using the integration by parts formula we obtain

N∑
i=1

∫
M

√
ηi∆

m
g u L2m−2√

ηi,g
(u) dvg ≤ C ‖u‖2H2

2m−1
(31)
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and by Hölder inequality

N∑
i=1

∫
M

P(2m−1,1)
g (u,

√
ηi) L2m−2√

ηi,g
(u) dvg ≤ C ‖u‖2H2

2m−1
(32)

Hence if k is even, then

N∑
i=1

∫
M

(
∆m
g (
√
ηiu)

)2
dvg ≤

∫
M

(
∆m
g u
)2

dvg + C ‖u‖2H2
2m−1

.(33)

So we have the claim for k even.

Step 3.2: k is odd. We then write k = 2m+ 1 with m ≥ 0. We have

∇
(
∆m
g (
√
ηiu)

)
=
√
ηi ∇

(
∆m
g u
)

+ (∆m
g u) ∇√ηi +∇

(
P(2m−1,1)
g (u,

√
ηi)
)

+∇
(
L2m−2√

ηi,g
(u)
)(34)

and so

N∑
i=1

∫
M

∣∣∇ (∆m
g (
√
ηiu)

)∣∣2 dvg =

N∑
i=1

∫
M

ηi
∣∣∇ (∆m

g u
)∣∣2 dvg +

N∑
i=1

∫
M

(∆m
g u)2 |∇√ηi|2 dvg

(35)

+

N∑
i=1

∫
M

∣∣∣∇(P(2m−1,1)
g (u,

√
ηi)
)∣∣∣2 dvg +

N∑
i=1

∫
M

∣∣∣∇(L2m−2√
ηi,g

(u)
)∣∣∣2 dvg

+ 2

N∑
i=1

∫
M

(
√
ηi ∇

(
∆m
g u
)
, (∆m

g u) ∇√ηi ) dvg + 2

N∑
i=1

∫
M

(
√
ηi ∇

(
∆m
g u
)
,∇
(
P(2m−1,1)
g (u,

√
ηi)
)

) dvg

+ 2

N∑
i=1

∫
M

(
√
ηi ∇

(
∆m
g u
)
,∇
(
L2m−2√

ηi,g
(u)
)

) dvg + 2

N∑
i=1

∫
M

((∆m
g u) ∇√ηi,∇

(
P(2m−1,1)
g (u,

√
ηi)
)

) dvg

+ 2

N∑
i=1

∫
M

((∆m
g u) ∇√ηi,∇

(
L2m−2√

ηi,g
(u)
)

) dvg + 2

N∑
i=1

∫
M

(∇
(
P(2m−1,1)
g (u,

√
ηi)
)
,∇
(
L2m−2√

ηi,g
(u)
)

) dvg

(36)

We have that

N∑
i=1

∫
M

∣∣∣∇(P(2m−1,1)
g (u,

√
ηi)
)∣∣∣2 dvg ≤ C ‖u‖2H2

2m
and

N∑
i=1

∫
M

∣∣∣∇(L2m−2√
ηi,g

(u)
)∣∣∣2 dvg ≤ C ‖u‖2H2

2m−1

(37)

while
N∑
i=1

∫
M

(
√
ηi ∇

(
∆m
g u
)
, (∆m

g u) ∇√ηi) dvg =

N∑
i=1

∫
M

(∇
(
∆m
g u
)
, (∆m

g u) (
√
ηi ∇
√
ηi)) dvg

=
1

2

N∑
i=1

∫
M

(∇
(
∆m
g u
)
, (∆m

g u) ∇ηi) dvg =
1

2

∫
M

(∇
(
∆m
g u
)
, (∆m

g u) ∇(

N∑
i=1

ηi)) dvg = 0

(38)
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And we obtain∣∣∣∣∣∣
N∑
i=1

∫
M

(
√
ηi ∇

(
∆m
g u
)
,∇
(
P(2m−1,1)
g (u,

√
ηi)
)

) dvg

∣∣∣∣∣∣
=

∣∣∣∣∣∣
N∑
i=1

∑
|l|=2m−1

∑
|β|=1

∫
M

(
√
ηi ∇

(
∆m
g u
)
,∇
(
(al,β∂β

√
ηi)∇lu

)
) dvg

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
N∑
i=1

∑
|l|=2m

∑
|β|=1

∫
M

(
√
ηi ∇

(
∆m
g u
)
, (al,β∂β

√
ηi)∇lu) dvg

∣∣∣∣∣∣
+

∣∣∣∣∣∣
N∑
i=1

∑
|l|=2m−1

∑
|β|=1

∫
M

(∇
(
∆m
g u
)
, (
√
ηi ∇(al,β∂β

√
ηi))∇lu) dvg

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
N∑
i=1

∑
|l|=2m

∑
|β|=1

∫
M

(
√
ηi ∇

(
∆m
g u
)
, (al,β∂β

√
ηi)∇lu) dvg

∣∣∣∣∣∣
+

N∑
i=1

∣∣∣∣∣∣∣
∑

|l|=2m−1

∑
|β|=1

∫
Bpi (τ)

(∇
(
∆m
g u
)
, (
√
ηi ∇(al,β∂β

√
ηi))∇lu) dvg

∣∣∣∣∣∣∣(39)

Then we apply the integration by parts formula on each of the domains ϕ−1(Bp1(τ)) ⊂
Rn to obtain∣∣∣∣∣∣

N∑
i=1

∑
|l|=2m

∑
|β|=1

∫
M

(
√
ηi ∇

(
∆m
g u
)
, (al,β∂β

√
ηi)∇lu) dvg

∣∣∣∣∣∣
+

N∑
i=1

∣∣∣∣∣∣∣
∑

|l|=2m−1

∑
|β|=1

∫
Bpi (τ)

(∇
(
∆m
g u
)
, (
√
ηi ∇(al,β∂β

√
ηi))∇lu) dvg

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣
N∑
i=1

∑
|l|=2m

∑
|β|=1

∫
M

(
√
ηi ∇

(
∆m
g u
)
, (al,β∂β

√
ηi)∇lu) dvg

∣∣∣∣∣∣+ C ‖u‖2H2
2m

≤1

2

∣∣∣∣∣∣
N∑
i=1

∑
|l|=2m

∑
|β|=1

∫
M

(∇
(
∆m
g u
)
, (al,β∂βηi)∇lu) dvg

∣∣∣∣∣∣+ C ‖u‖2H2
2m

≤1

2

∣∣∣∣∣∣
∑
|l|=2m

∑
|β|=1

∫
M

(∇
(
∆m
g u
)
, (al,β∂β(

N∑
i=1

ηi))∇lu) dvg

∣∣∣∣∣∣+ C ‖u‖2H2
2m

≤C ‖u‖2H2
2m

since

N∑
i=1

ηi = 1(40)
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Similarly after integration by parts one obtains∣∣∣∣∣∣
N∑
i=1

∫
M

(
√
ηi ∇

(
∆m
g u
)
,∇
(
L2m−2√

ηi,g
(u)
)

) dvg

∣∣∣∣∣∣ ≤ C ‖u‖2H2
2m

(41)

∣∣∣∣∣∣
N∑
i=1

∫
M

((∆m
g u) ∇√ηi,∇

(
P(2m−1,1)
g (u,

√
ηi)
)

) dvg

∣∣∣∣∣∣ ≤ C ‖u‖2H2
2m

(42)

and
N∑
i=1

∫
M

((∆m
g u) ∇√ηi,∇

(
L2m−2√

ηi,g
(u)
)

) dvg

+

N∑
i=1

∫
M

(∇
(
P(2m−1,1)
g (u,

√
ηi)
)
,∇
(
L2m−2√

ηi,g
(u)
)

) dvg ≤ C ‖u‖2H2
2m

(43)

Hence for k odd, we also obtain that

N∑
i=1

∫
M

(
∇
(
∆m
g (
√
ηiu)

))2
dvg ≤

∫
M

(
∇
(
∆m
g u
))2
g
dvg + C ‖u‖2H2

2m
.(44)

Hence we have the claim and this completes the proof.

3. Best constant and direct Minimizaton

Let ΩM ⊂ M be any smooth n−dimensional submanifold of M , possibly with
boundary. In the sequel, we will either take ΩM = M , or M \ Bx0(ε0) for some
ε0 > 0 small enough. We define H2

k,0(ΩM ) ⊂ H2
k(M) as the completion of C∞c (ΩM )

for the norm ‖ · ‖H2
k
. In this section, we prove the following result in the spirit of

Aubin [3]:

Theorem 3. Let (M, g) be a compact Riemannian manifold of dimension n >
2k, with k ≥ 1. ΩM ⊂ M be any smooth n−dimensional submanifold of M as
above. Let P be a differential operator as in (3) and let f ∈ C0,θ(ΩM ) be a Hölder
continuous positive function. Assume that P is coercive on H2

k,0(ΩM ). Suppose
that

(45) inf
u∈Nf

∫
ΩM

uP (u) dvg <
1(

supΩM f
) 2

2
]
k K0(n, k)

,

where

Nf := {u ∈ H2
k,0(ΩM ) :

∫
ΩM

f |u|2
]
k dvg = 1}.(46)

Then there exists a minimizer u ∈ Nf . Moreover, up to multiplication by a constant,

u ∈ C2k(ΩM ) is a solution to{
Pu = f |u|2

]
k−2

u in ΩM
Dαu = 0 on ∂ΩM for |α| ≤ k − 1.
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In addition, if the Green’s function of P on ΩM with Dirichlet boundary condition
is positive, then any minimizer is either positive or negative. When ΩM = M , and
the Green’s function of P on M is positive, then up to changing sign, u > 0 is a
solution to

Pu = fu2]k−1 in M.

Proof of Theorem 3: This type of result is classical. We only sketch the proof. For
simplicity, we take ΩM = M . The proof of the general case is similar. Here and in
the sequel, we define (see (5))

IP (u) :=

∫
M

uP (u) dvg for all u ∈ H2
k(M).

We start with the following lemma:

Lemma 3.1. Let (ui) ∈ Nf be a minimizing sequence for IP on Nf . Then

(i) Either there exists u0 ∈ Nf such that ui → u0 strongly in H2
k(M), and u0

is a minimizer of IP on Nf
(ii) Or there exists x0 ∈ ΩM such that f(x0) = maxΩM

f and |ui|2
]
k dvg ⇀ δx0

as i→ +∞ in the sense of measures. Moreover, inf
u∈Nf

IP (u) = 1

K0(n,k)(maxM f)

2

2
]
k

.

Proof of Lemma 3.1: We define α := inf{IP (u)/ u ∈ Nf}. As the functional Ig is
coercive so the sequence (ui) is bounded in H2

k(M). We let u0 ∈ H2
k(M) such that,

up to a subsequence, ui ⇀ u0 weakly in H2
k(M) as i→ +∞, and ui(x)→ u0(x) as

i→ +∞ for a.e. x ∈M . Therefore,

‖u0‖
2]k

L2
]
k

≤ lim inf
i→+∞

‖ui‖
2]k

L2
]
k

= 1.(47)

We define vi := ui− u0. Up to extracting a subsequence, we have that (vi)i → 0 in

H2
k−1(M). We define µi := (∆

k/2
g ui)

2 dvg and ν̃i = |ui|2
]
k dvg and νi = f |ui|2

]
k dvg

for all i. Up to a subsequence, we denote respectively by µ, ν̃ and ν their limits in
the sense of measures. It follows from the concentration-compactness Theorem 4
that,

(48) ν̃ = |u0|2
]
k dvg +

∑
j∈J

αjδxj and µ ≥ (∆k/2
g u0)2 dvg +

∑
j∈I

βjδxi

where J ⊂ N is at most countable, (xj)j∈J ∈M is a family of points, and (αj)j∈J ∈
R≥0, (βj)j∈J ∈ R≥0 are such that

α
2/2]k
j ≤ K0(n, k) βj for all j ∈ J.(49)

As a consequence, we get that

(50) ν = f |u0|2
]
k dvg +

∑
j∈J

f(xj)αjδxj

Since (ui) ∈ Nf , and M is compact, we have that
∫
M
dν = 1 and then

(51) 1 =

∫
M

f |u0|2
]
k dvg +

∑
j∈J

f(xj)αj .
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Since (ui)i → u0 strongly in H2
k−1(M), integrating (48) yields

(52) α ≥ IP (u0) +
∑
j∈J

βj ≥ α‖u0‖22]k +K0(n, k)−1
∑
j∈J

α
2/2]k
j .

Since α ≤ K0(n, k)−1(maxM f)−2/2]k , we then get that

(i) either ‖u0‖2]k = 1 and αj = 0 for all j ∈ J ,

(ii) or u0 ≡ 0, f(xj0)αj0 = 1 for some j0 ∈ J , f(xj0) = maxM f and αj = 0
for all j 6= j0.

In case (i), we get from the strong convergence to 0 of (vi)i in H2
k−1(M) that

IP (ui) =
∫
M

(∆
k/2
g vi)

2 dvg + IP (u0) + o(1) as i → +∞. Since u0 ∈ Nf and (ui) is

a minimizing sequence, we then get that (vi)0 goes to 0 strongly in H2
k(M), and

therefore ui → u0 strongly in H2
k(M).

In case (ii), (52) yields α = K0(n, k)−1(maxM f)−2/2]k and IP (u0) = 0, which yields
u0 ≡ 0 since the operator is coercive.

This completes the proof of Lemma 3.1. 2

We go back to the proof of Theorem 3. Let (ui)i be a minimizing sequence for
IP on Nf . It follows from the assumption (45) that case (i) of Lemma 3.1 holds,
and then, there exists a minimizer u0 ∈ Nf that is a minimizer. Therefore, it is a

weak solution to P kg u0 = αf |u0|2
]
k−2

u0 in M (see (145) for the definition). It then

follows from the regularity Theorem 8.3 that u ∈ C2k,θ(M).

We let G : M×M \{(x, x)/ x ∈M} be the Green’s function of P on M . We assume
that G(x, y) > 0 for all x 6= y ∈M . Green’s representation formula yields

(53) ϕ(x) =

∫
M

G(x, y)(Pϕ)(y) dvg for all x ∈M and all ϕ ∈ C2k(M).

It follows from Proposition 8.2 that there exists v ∈ H2
k(M) such that

Pv = αf |u0|2
]
k−1

in M.(54)

Standard regularity (taking inspiration from Vand der Vorst [33]) yields v ∈ C2k(M).
We have that P (v ± u0) ≥ 0. Since G > 0, it follows from Green’s formula (53)
that v ± u0 ≥ 0. So v ≥ |u0| and therefore v 6= 0. Independently, since Pv ≥ 0 and
v 6≡ 0, Green’s formula (53) yields v > 0. Using Hölder’s inequality and v ≥ |u0|,
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we get that

JP (u) =

∫
M

vP (v) dvg( ∫
M

f |v|2
]
k dvg

)2/2]k
=

α
∫
M

vf |u0|2
]
k−1

dvg( ∫
M

f |v|2
]
k dvg

)2/2]k
(55)

≤
α

(∫
M

f |v|2
]
k dvg

) 1

2
]
k

(∫
M

f |u0|2
]
k dvg

) 2
]
k
−1

2
]
k

( ∫
M

f |v|2
]
k dvg

)2/2]k
(56)

≤
α

(∫
M

f |u0|2
]
k dvg

) 2
]
k
−1

2
]
k

( ∫
M

f |u0|2
]
k dvg

)1/2]k
≤ α

∫
M

f |u0|2
]
k dvg


2
]
k
−2

2
]
k

≤ α(57)

since
∫
M

f |u0|2
]
k dvg = 1. Since α is the infimum of the functional, we get that

JP (u) = α. Hence v attains the infimum and therefore it also solves the equation

Pv = µfv2]k−1 weakly in M , and v ∈ H2
k,0(M). Moreover, one has equality in all

the inequalities above, and then |u0| = v > 0, and therefore either u0 > 0 or u0 < 0
in M . This ends the proof of Theorem 3. 2

4. Concentration Compactness Lemma

We now state and prove the concentration compactness lemma in the spirit of
P.-L.Lions for the case of a closed manifold:

Theorem 4 (Concentration-compactness). Let (M, g) be a smooth, compact Rie-
mannian manifold of dimension n and let k be a positive integer such that 2k < n.
Suppose (um) be a bounded sequence in H2

k(M). Up to extracting a subsequence,
there exist two nonnegative Borel-regular measure µ, ν on M and u ∈ H2

k(M) such
that

(a) um ⇀ u weakly in H2
k(M)

(b) µm := (∆
k/2
g um)2 dvg ⇀ µ weakly in the sense of measures

(c) νm := |um|2
]
k dvg ⇀ ν weakly in the sense of measures

Then there exists an at most countable index set I, a family of distinct points
{xi ∈M : i ∈ I}, families of nonnegative weights {αi : i ∈ I} and {βi : i ∈ I} such
that
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(i)

ν =|u|2
]
k dvg +

∑
i∈I

αiδxi(58)

µ ≥(∆k/2
g u)2 dvg +

∑
i∈I

βiδxi(59)

where δx denotes the Dirac mass at x ∈M with mass equal to 1.

(ii) for all i ∈ I, α
2/2]k
i ≤ K0(n, k) βi. In particular

∑
i∈I

α
2/2]k
i <∞.

Proof of Theorem 4: By the Riesz representation theorem (µm), and (νm) are
sequences of Radon measures on M .

Step 1: First we assume that u ≡ 0. Let ϕ ∈ C∞(M), then from (2) we have that,

given any ε > 0 there exists Bε ∈ R such that

∫
M

|ϕum|2
]
k dvg

2/2]k

≤ (K0(n, k) + ε)

∫
M

(∆k/2
g (ϕum))2 dvg +Bε||ϕum||2H2

k−1
.

(60)

Since um ⇀ 0 in H2
k(M), letting m → +∞ and then taking the limit ε → 0, it

follows that ∫
M

|ϕ|2
]
k dν

2/2]k

≤ K0(n, k)

∫
M

ϕ2 dµ.(61)

By regularity of the Borel measure ν, (61) holds for any Borel measurable function
ϕ and in particular for any Borel set E ⊂M we have

ν(E)2/2]k ≤ K0(n, k) µ(E).(62)

Therefore the measure ν is absolutely continuous with respect to the measure µ
and hence by the Radon-Nikodyn theorem, we get

(63) dν = fdµ and dµ = gdν + dσ

where f ∈ L1(M,µ) and g ∈ L1(M,ν) are nonnegative functions, σ is a positive
Borel measure on M and dν⊥dσ.

Let S = M\(supp σ). Then for any ϕ ∈ C(M) with support supp(ϕ) ⊂ S one has∫
M

ϕ dν =

∫
M

ϕf dµ =

∫
M

ϕ fg dν.(64)

By regularity of the Borel measures µ and ν (64) holds for any Borel measurable
function ϕ. This implies that fg = 1 a.e with respect to ν. So, in particular g > 0
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ν a.e in S. Let ψ ∈ C(M), taking ϕ = ψχS in (61) we have∫
M

|ψ|2
]
kXS dν

2/2]k

≤ K0(n, k)

∫
M

ψ2XS dµ

= K0(n, k)

∫
M

ψ2XS [gdν + dσ] = K0(n, k)

∫
M

ψ2gXS dν(65)

Since dν⊥dσ and supp ν ⊂ S, we get that∫
M

|ψ|2
]
k dν

2/2]k

≤ K0(n, k)

∫
M

ψ2g dν(66)

By regularity of the Borel measure ν the above relation holds for any Borel mea-
surable function ψ.

Let φ ∈ C(M) and let ψ = φg
1

2
]
k
−2X{g≤N} , dνN = g

2
]
k

2
]
k
−2X{g≤N}dν. Then we have∫

M

|φ|2
]
k dνN

2/2]k

≤ K0(n, k)

∫
M

φ2 dνN .(67)

By regularity of the Borel measure ν the above relation holds for any Borel mea-
surable function φ.
It follows from Proposition 4.1 below that for each N there exist a finite set IN , a
finite set of distinct points {xi : i ∈ IN}and a finite set of weights {α̃i : i ∈ IN}
such that

dνN =
∑
i∈IN

α̃i δxi(68)

Let I =
∞⋃
N=1

IN . Then I is a countable set. For a Borel set E, then one has by

monotone convergence theorem∫
M

χE g

2
]
k

2
]
k
−2 dν = lim

N→∞

∫
M

χE dνN .(69)

So g

2
]
k

2
]
k
−2 dν =

∑
i∈I

α̃iδxi . Since g > 0 ν a.e , there exists αi > 0 such that we have

dν =
∑
i∈I

αiδxi . Since µ = gdν + dσ ≥ gdν, we get that

µ ≥
∑
i∈I

βiδxi where βi = g(xi)αi(70)

Taking ψ = X{xi} in (66) we have for all i ∈ I

α
2/2]k
i ≤ K0(n, k) gαi = K0(n, k) βi(71)
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and

1

K0(n, k)

∑
i∈I

α
2/2]k
i ≤

∑
i∈I

βi ≤ µ(M) < +∞.(72)

This proves the theorem for u ≡ 0. This ends Step 1.

Step 2: Assume u 6≡ 0 and let vm := um − u. Then vm ⇀ 0 weakly in H2
k(M).

Therefore, as one checks, µ̃m := (∆
k/2
g vm)2 dvg ⇀ µ − (∆

k/2
g u)2 dvg and ν̃m :=

|vm|2
]
k dvg ⇀ ν−|u|2

]
k dvg weakly in the sense of measures. Applying Step 1 to the

measures µ̃m and ν̃m yields Theorem 4. 2

We now prove the reversed Hölder inequality that was used in the proof.

Proposition 4.1. Let µ be a finite Borel measure on M and suppose that for any
Borel measurable function ϕ one has∫

M

|ϕ|q dµ

1/q

≤ C

∫
M

|ϕ|p dµ

1/p

(73)

for some C > 0 and 1 ≤ p < q < +∞. Then there exists j points x1, . . . , xj ∈ M ,
and j positive real numbers c1, . . . , cj such that

µ =

j∑
i=1

ciδxi(74)

where δx denotes the Dirac measure concentrated at x ∈ M with mass equal to 1.

Moreover ci ≥ ( 1
C )

pq
q−p .

Proof. Let E be a Borel set in M . Taking ϕ = χE we obtain that, either µ(E) = 0

or µ(E) ≥ ( 1
C )

pq
q−p

We define O := {x ∈ M : for some r > 0 µ(Bx(r)) = 0}. Then O is open. Now
if K ⊂ O is compact, then K can be covered by a finite number of balls each of
which has measure 0, therefore µ(K) = 0. By the regularity of the measure hence it

follows that µ(O) = 0. If x ∈M\O, then for all r > 0 one has µ(Bx(r)) ≥ ( 1
C )

pq
q−p .

Then

µ({x}) = lim
m→+∞

µ(Bx(1/m)) ≥
(

1

C

) pq
q−p

.(75)

Since the measure µ is finite, this implies that that the set M\O is finite. So let
M\O = {x1, · · · , xj}, therefore for any borel set E in M

µ(E) = µ(E ∩ {x1, · · · , xj}) =
∑
xi∈E

µ({xi}) =

j∑
i=1

µ({xi})δxi(E).(76)

Hence the lemma follows with ci = µ({xi}). �
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5. Topological method of Coron

In this section we obtain higher energy solutions by Coron’s topological method
if the functional JP does not have a minimizer, for the case f ≡ 1. This will
complete the proof of the first part of Theorem 1, that is the existence of solutions
to (4) with no sign-restriction. For µ > 0 and y0 ∈ Rn, we define

(77) By0,µ(y) = αn,k

(
µ

µ2 + |y − y0|2

)n−2k
2

where the choice of αn,k’s are such that for all µ, ‖By0,µ‖
L2
]
k

= 1 and ‖By0,µ‖
2
Dk,2 =

1
K0(n,k) . These functions are the extremal functions of the Euclidean Sobolev In-

equality (10) and they satisfy the equation

∆kBy0,µ =
1

K0(n, k)
B2]k−1
y0,µ in Rn.(78)

.

Let η̃r ∈ C∞c (Rn), 0 ≤ η̃r ≤ 1 be a smooth cut-off function, such that η̃r = 1 for
x ∈ B0(r) and η̃r = 1 for x ∈ Rn\B0(2r). Let ιg > 0 be the injectivity radius of
(M, g). For any p ∈M , we let ηp be a smooth cut-off function on M such that

ηp(x) =

{
η̃ ιg

10
(exp−1

p (x)) for x ∈ Bp(ιg) ⊂M
0 for x ∈M\Bp(ιg).

(79)

For any x ∈M , we define

BMp,µ(x) = ηp(x) B0,µ(exp−1
p (x)).(80)

BMp,µ is the standard bubble centered at the point p ∈M and with radius µ

BMp,µ(x) = αn,kηp(x)

(
µ

µ2 + dg(p, x)
2

)n−2k
2

.(81)

We have

Proposition 5.1. Let (M, g) be a smooth, compact Riemannian manifold of di-
mension n and let k be a positve integer such that 2k < n. Consider the functional
JP on the space H2

k(M)\{0}. Then the sequence of functions
(
BMp,µ

)
∈ C∞(M)

defined above is such that:

(a) lim
µ→0

JP (BMp,µ) = 1
K0(n,k) uniformly for p ∈M

(b) lim
µ→0

∥∥BMp,µ∥∥
L2
]
k

= 1 uniformly for p ∈M
(c) BMp,µ ⇀ 0 weakly in H2

k(M), as µ→ 0
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Proof of Proposition 5.1: We claim that (c) holds. We first prove that BMp,µ is

uniformly bounded in H2
k(M). Indeed,

∑
α≤k

∫
M

(
∆α/2
g BMp,µ

)2

dvg ≤
∑
α≤k

∫
Bp(ιg/5)

(
∆α/2
g BMp,µ

)2

dvg

≤ C
∑
l≤k

∫
B0(ιg/5)

∣∣∇l BMp,µ ◦ expp
∣∣2 dx

≤
∑
l≤k

∫
B0(ιg/5)

∣∣∣∣∣∇l
(

µ

µ2 + |x|2

)n−2k
2

∣∣∣∣∣
2

dx

≤
∑
l≤k

∫
B0(ιg/(5µ))

µ2(k−l)
∣∣∣∣∇l (1 + |x|2

)−n−2k
2

∣∣∣∣2 dx.
As one checks, the right-hand-side is uniformly bounded wrt µ → 0, so (BMp,µ) is
uniformly bounded wrt p and µ → 0. Moreover, the above computations yield∫
M

(BMp,µ)2 dvg → 0 as µ→ 0. Therefore, BMp,µ ⇀ 0 as µ→ 0 uniformly wrt p ∈M .
This proves the claim.

The space H2
k(M) is compactly embedded in H2

k−1(M). Therefore BMp,µ → 0 in

H2
k−1(M) as µ→ 0. Hence

lim
µ→0

k−1∑
l=0

∫
M

Al(g)(∇lBMp,µ,∇lBMp,µ) dvg

 = 0.(82)

Now we estimate the term
∫
M

| BMp,µ|2
]
k dvg. We claim that

lim
R→+∞

lim
µ→0

∫
M\Bp(µR)

| BMp,µ|2
]
k dvg = 0.(83)

We fix R. Now for µ sufficiently small∫
M\Bp(µR)

| BMp,µ|2
]
k dvg =

∫
Bp(ιg)\Bp(µR)

| BMp,µ|2
]
k dvg

=

∫
B0(ιg)\B0(µR)

| BMp,µ(expp(y))|2
]
k

√
|g(expp(y))| dy

≤
∫

B0(
ιg
µ )\B0(R)

|B0,1(y)|2
]
k

√
|g(expp(µy))| dy.(84)

Since B0,1 ∈ L2]k(Rn), this yields the claim.
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Similarly, for µ sufficiently small∫
Bp(µR)

| BMp,µ|2
]
k dvg =

∫
B0(µR)

| BMp,µ(expp(y))|2
]
k

√
|g(expp(y))| dy(85)

=

∫
B0(R)

| B0,1|2
]
k

√
|g(expp(µy))| dy(86)

=

∫
B0(R)

| B0,1|2
]
k dy + o

(
‖B0,1‖

L2
]
k

)
as µ→ 0(87)

Therefore

lim
µ→0

∫
M

| BMp,µ|2
]
k dvg =

∫
Rn

| B0,1|2
]
k dvg.(88)

So we have (b).

Finally we estimate the term
∫
M

(∆
k/2
g BMp,µ)2 dvg. We fix R > 0. By calculating in

terms of the local coordinates given by expp, we get for µ sufficiently small∫
Bp(µR)

(∆k/2
g BMp,µ)2 dvg =

∫
B0(R)

(∆k/2B0,1)2 dy + o (1) as µ→ 0.(89)

We claim that

lim
R→+∞

lim
µ→0

∫
M\Bp(µR)

(∆k/2
g BMp,µ)2 dvg = 0.(90)

We prove the claim. Indeed, via the exponential map at p, we have that∫
M\Bp(µR)

(∆k/2
g BMp,µ)2 dvg =

∫
Bp(ιg)\Bp(µR)

(∆k/2
g BMp,µ)2 dvg(91)

=

∫
B0(ιg)\B0(µR)

(∆
k/2
exp∗pg

B0,µ)2 dvexp∗pg(92)

≤ C
k∑
|α|=0

∫
B0(ιg)\B0(µR)

|Dα(η̃ ιg
10
B0,µ)|2 dx(93)

Since B0,µ → 0 strongly in H2
k−1,loc(Rn), then, as µ→ 0, we have that∫

M\Bp(µR)

(∆k/2
g BMp,µ)2 dvg ≤ C

∫
B0(ιg)\B0(µR)

η̃2
ιg
10

|DkB0,µ|2 dx+ o(1)(94)

≤ C
∫

B0(ιg/µ)\B0(R)

|DkB0,1|2 dx+ o(1) ≤ C
∫

Rn\B0(R)

|DkB0,1|2 dx+ o(1).(95)

Since DkB0,1 ∈ L2(Rn), this yields (90). This proves the claim.

Equations (89) and (90) yield (a) and (b) of Proposition 5.1 for any fixed p ∈ M .
Since the manifold M is compact, we note that in the above calculations there is no
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dependence on the point p of the closed manifold M . So the convergence is uniform
for all points p ∈M . This ends the proof of Proposition 5.1. 2

Fix some θ such that 1
K0(n,k) + 4θ < 22k/n 1

K0(n,k) . Then from (5.1) it follows that,

there exists µ0 small, such that for all µ ∈ (0, ιgµ0) and for all p ∈M we have

JP (BMp,µ) ≤ 1

K0(n, k)
+ θ.(96)

We fix x0 ∈ M , and we assimilate isometrically Tx0
M to Rn, and we define the

sphere Sn−1 := {x ∈ Rn/ ‖x‖ = 1}. For (σ, t) ∈ Sn−1 × [0, ιg/2), we define
σMt := expx0

(tσ) and

uσt (x) = αn,kησMt (x)

[
µ0(ιg/2− t)

(µ0(ιg/2− t))2
+ dg(σMt , x)

2

]n−2k
2

= BMσMt ,µ0(ιg/2−t)(97)

It then follows from our previous step and the choice of µ0 in (96)

JP (uσt ) ≤ 1

K0(n, k)
+ θ ∀(σ, t) ∈ Sn−1 × [0, ιg/2).(98)

Let η ∈ C∞c (Rn) be a smooth, nonnegative, cut-off function such that η(x) = 1 for
|x| ≥ 1/2 and η(x) = 0 for |x| < 1/4. For R ≥ 1, let ηR be a smooth, nonnegative,
cut-off function, such that

ηR(x) =

{
1 if dg(x0, x) ≥ ιg

10R

η
(

10R
ιg
exp−1

x0
(x)
)

if dg(x0, x) <
ιg

10R

(99)

Then the functions ηR are such that ηR(x) = 1 if dg(x0, x) ≥ ιg
20R and ηR(x) = 0 if

dg(x0, x) <
ιg

40R . We define

(100) vσt,R(x) := ηR(x) uσt (x) for all x ∈M.

Then we have

Proposition 5.2.

lim
R→+∞

vσt,R = uσt in H2
k(M) uniformly ∀(σ, t) ∈ Sn−1 × [0, ιg/2).(101)

Proof of Proposition 5.2: We first note that for all (σ, t) ∈ Sn−1 × [0, ιg/2) the
functions uσt are uniformly bounded in C2k-norm in the ball Bx0

(
ιg
20 ) ⊂ M . And

for any nonnegative integer α, one has |∇αg ηR|g ≤ CRα. Therefore

∥∥vσt,R − uσt ∥∥2

H2
k

=

k∑
α=0

∫
M

(∆α/2
g (vσt,R − uσt ))2 dvg(102)

=

k∑
α=0

∫
Bx0 (

ιg
20R )

(∆α/2
g (vσt,R − uσt ))2 dvg(103)

=

k∑
α=0

∫
Bx0 (

ιg
20R )

(∆α/2
g ((ηR − 1)uσt ))2 dvg = O

(
1

R

)
( as n ≥ 2k + 1 )(104)
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The above convergence is uniform w.r.t (σ, t) ∈ Sn−1 × [0, ιg/2). This proves
Proposition 5.2. 2

So it follows that, there exists R0 > 0, large, such that for all R ≥ R0 one has

JP (vσt,R) ≤ JP (uσt ) + 2θ < 22k/n 1

K0(n, k)
∀ (σ, t) ∈ Sn−1 × [0, ιg/2).(105)

As one checks for any (σ, t) ∈ Sn−1× [0, ιg/2), the functions vσt,R0
6= 0, and has sup-

port in M\Bx0(ιg/40R0). Let ε0 > 0 be such that M\Bx0(ιg/40R0) ⊂M\Bx0(ε0)
and we define

(106) Ωε0 := M\Bx0
(ε0).

Then for any (σ, t) ∈ Sn−1 × [0, ιg/2) the functions vσt,R0
∈ H2

k,0(Ωε0)\{0}. Propo-
sitions 5.1 and 5.2 yield

lim
t→ιg/2

JP (vσt,R0
) =

1

K0(n, k)
uniformly for all σ ∈ Sn−1.(107)

Also vσ0,R0
is a fixed function independent of σ and

vσt,R0
⇀ δexpx0 (

ιg
2 σ) weakly in the sense of measures as t→ ιg/2.(108)

We define Sk := K0(n, k)−1. For any c ∈ R, we define the sublevel sets of the
functional IP on Nε0

Ic := {u ∈ Nε0 : IP (u) < c}.(109)

where Nε0 := {u ∈ H2
k,0(Ωε0)/ ‖u‖2]k = 1}.

Proposition 5.3. Suppose IP (u) > 1
K0(n,k) for all u ∈ Nε0 , then there exists

σ0 > 0 for which there exists a continuous map

Γ : ISk+σ0
−→ Ωε0(110)

such that if (ui) ∈ ISk+σ0
is a sequence such that |ui|2

]
k dvg ⇀ δp0 weakly in the

sense of measures, for some point p0 ∈ Ωε0 , then

lim
i→+∞

Γ(ui) = p0.(111)

Proof of Proposition 5.3: By the Whitney embedding theorem, the manifold M
admits a smooth embedding into R2n+1. If we denote this embedding by F : M →
R2n+1, then M is diffeomorphic to F(M) where F(M) is an embedded submanifold
of R2n+1. For u ∈ Nε0 , we define

Γ̃(u) :=

∫
ΩM

F(x) |u(x)|2
]
k dvg(x).(112)

Then Γ̃ : Nε0 → R2n+1 is continuous. Next we claim that for every ε > 0 there
exists a σ > 0 such that

u ∈ ISk+σ ⇒ dist
(

Γ̃(u),F(Ωε0)
)
< ε.(113)
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Suppose that the claim is not true, then there exists an ε′ > 0 and a sequence (ui) ∈
Nε0 , such that lim

i→+∞
IP (ui) = Sk and dist

(
Γ̃(u),F(Ωε0)

)
≥ ε′. Since there is no

minimizer for IP on Nε0 , it follows from Lemma 3.1 that for such a sequence (ui)

there exists a point p0 ∈ Ωε0 such that |ui|2
]
kdvg ⇀ δp0 weakly in the sense of measures.

So Γ̃(ui)→ F(p0), a contradiction since dist
(

Γ̃(u),F(Ωε0)
)
≥ ε′. This proves our

claim.

By the Tubular Neighbourhood Theorem, the embedded submanifold F(M) has a
tubular neighbourhood U in R2n+1 and there exists a smooth retraction

π : U −→ F(M).(114)

Choose an ε0 > 0 small so that {y ∈ R2n+1 : dist (y,F(M)) < ε0} ⊂ U . Then from
our previous claim it follows that, there exists σ0 > 0 such that

u ∈ ISk+σ0
⇒ Γ̃(u) ∈ U .(115)

We define

ΓM (u) = F−1 ◦ π

 ∫
M

F(x) |u(x)|2
]
k dvg(x)

 .(116)

Then the map ΓM : ISk+σ0
→M is continuous. Similarly as in our previous claim

we have: for every ε > 0 small there exists δ > 0 such that

u ∈ ISk+δ ⇒ dg
(
ΓM (u),Ωε0

)
< ε.(117)

Let πΩε0 : M\Bx0
(ε0/2) −→ Ωε0be a retraction. Choose an ε′ > 0 small so that

{p ∈ M : dg
(
p,Ωε0

)
< ε′} ⊂ M\Bx0

(ε0/2) . Then from our claim it follows that
there exists a δ0 > 0 such that ΓM (u) ∈ M\Bx0

(ε0/2) for all u ∈ ISk+δ0 . So for

u ∈ ISk+δ0 we define Γ(u) := πΩε0 ◦ΓM (u). Then the map Γ satisfies the hypothesis
of the proposition. This proves Proposition 5.3. This proposition is in the spirit of
Proposition 4.4 of [25] 2

Now we proceed to prove the first part of Theorem 1. By the regularity result
obtained in Theorem 8.3, it is sufficient to show the existence of a non-trivial
H2
k,0(Ωε0) weak solution to the equation (see (145) for the definition){

Pu = |u|2
]
k−2

u in ΩM
Dαu = 0 on ∂ΩM for |α| ≤ k − 1

(118)

Suppose on the contrary the above equation only admits trivial solutions, we will
show that this leads to a contradiction.

Now suppose that the functional IP has no critical point in Nε0 , that is there is not
weak solution to (118). This is equivalent to the assertion that the functional

(119) FP (u) =
1

2

∫
Ωε0

uP (u) dvg −
1

2]k

∫
Ωε0

|u|2
]
k dvg.

does not admit a nontrivial critical point in H2
k,0(Ωε0).

Proposition 5.4. If equation (118) admits only the trivial solution u ≡ 0, then

the functional IP satisfies the (P.S)c condition for c ∈ (Sk, 2
2k
n Sk).
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Proof of Proposition 5.4: Let (vi) ∈ Nε0 be a Palais-Smale sequence for the

functional IP such that lim
i→+∞

IP (vi) = c ∈ (Sk, 2
2k
n Sk), if this exists. Define

ui := (IP (vi))
1

2
]
k
−2 vi. Then (ui) is a Palais-Smale sequence for the functional FP

on the space H2
k,0(Ωε0) such that lim

i→+∞
FP (ui) ∈ ( knS

n/2k
k , 2k

n S
n/2k
k ). Since there is

no nontrivial solution to (118), it follows from the Struwe-decomposition for poly-
harmonic operators by the author [26] that there exists d ∈ N non-trivial functions
uj ∈ Dk,2(Rn), j = 1, . . . , d, such that upto a subsequence the following holds

FP (ui) =

d∑
j=1

E(uj) + o(1) as i→ +∞(120)

where E(u) := 1
2

∫
Rn

(∆k/2u)2dx − 1

2]k

∫
Rn
|u|2

]
kdx. The uj ’s are nontrivial solutions

in Dk,2(Rn) to ∆ku = |u|2
]
k−2u on Rn or on {x ∈ Rn/ x1 < 0} with Dirichlet

boundary condition (we refer to [26] for details). It then follows from Lemma 3
and 5 of Ge-Wei-Zhou [17] that for any j, either uj has fixed sign and E(u) =
k
nS

n/2k
k , or uj changes sign and E(u) ≥ 2k

n S
n/2k
k , contradicting lim

i→+∞
FP (ui) ∈

( knS
n/2k
k , 2k

n S
n/2k
k ). Therefore the Palais-Smale condition holds at level c ∈ (Sk, 2

2k
n Sk).

More precisely, there is even no Palais-Smale sequence at this level. This ends the
proof of Proposition 5.4. 2

Proof of Theorem 1: By the Deformation Lemma (see Theorem II.3.11 and Remark
II.3.12 in the monograph by Struwe [31]), there exists an retraction β : ISk+4θ −→
IkSk+σ0

, where σ0 is as given in Proposition 5.3. Let rNε0 : H2
k,0(Ωε0)\{0} → Nε0 be

the projection given by u 7→ u
‖u‖

L
2
]
k

. Consider the map h : Sn−1 × [0, ιg/2] → Ωε0

given by

h(σ, t) :=

{
Γ ◦ β(rNε0 (vσt,R0

)) for t < ιg/2

σMιg/2 for t = ιg/2
(121)

where σMt := expx0
(tσ). This map is well defined and continuous by Proposition

5.3 and there exists p0 ∈ Ωε0 such that

h(σ, t) =

{
p0 for t = 0
expx0

(
ιg
2 σ) for t = ιg/2

(122)

So we obtain a homotopy of the embedded (n−1)− dimensional sphere {expx0
(
ιg
2 σ) :

σ ∈ Sn−1}to a point in Ωε0 , which is a contradiction to our topological assumption.
This proves Theorem 1 for potentially sign-changing solutions.

6. Positive solutions

This section is devoted to the second part of Theorem 1, that is the existence
of positive solutions. The proof is very similar to the proof of Theorem 1 with
no restriction on the sign. We just stress on the specificities and refer to the
proof of Theorem 1 everytime it is possible. We let ΩM ⊂ M be any smooth

n−dimensional submanifold of M , possibly with boundary. In the sequel, we will
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either take ΩM = M , orM\Bx0(ε0). For u ∈ H2
k,0(ΩM ), we define u+ := max{u, 0},

u− := max{−u, 0} and

N+ := {u ∈ H2
k,0(ΩM ) :

∫
ΩM

(u+)2]k dvg = 1}.(123)

which is a codimension 1 submanifold ofH2
k,0(ΩM ). Any critical point u ∈ H2

k,0(ΩM )
of Ig on N+ is a weak solution to

(124) Pu = u
2]k−1
+ in ΩM ; Dαu = 0 on ∂ΩM for |α| ≤ k − 1.

Consider the Green’s function GP associated to the operator P with Dirichlet
boundary condition on the smooth domain ΩM ( M , which is a function GP :
ΩM × ΩM\{(x, x) : x ∈ ΩM} −→ R such that

(i) For any x ∈ ΩM , the function GP (x, ·) ∈ L1(ΩM )

(ii) For any ϕ ∈ C∞(ΩM ) such that Dαϕ = 0 on ∂ΩM for all |α| ≤ k − 1, we
have that

ϕ(x) =

∫
ΩM

GP (x, y) Pϕ(y) dvg(y).(125)

Lemma 6.1. Let (ui) ∈ N+ be a minimizing sequence for Ikg on N+. Then

(i) Either there exists u0 ∈ N+ such that ui → u0 strongly in H2
k,0(ΩM ), and

u0 is a minimizer of IP on N+

(ii) Or there exists x0 ∈ ΩM such that |ui|2
]
k dvg ⇀ δx0 as i→ +∞ in the sense

of measures. Moreover, inf
u∈N+

IP (u) = 1
K0(n,k) .

Proof of Lemma 6.1: As the functional Ig is coercive so the sequence (ui) is bounded
in H2

k,0(ΩM ). We let u0 ∈ H2
k,0(ΩM ) such that, up to a subsequence, ui ⇀ u0

weakly in H2
k,0(ΩM ) as i → +∞, and ui(x) → u0(x) as i → +∞ for a.e. x ∈ ΩM .

As the sequences (u+
i ), (u−i ) is bounded in L2]k(ΩM ) and u+

i (x)→ u+
0 (x), u−i (x)→

u−0 (x) for a.e. x ∈ ΩM , integration theory yields

(126) u+
i ⇀ u+

0 and u−i ⇀ u−0 weakly in L2]k(ΩM ) as i→ +∞.

Therefore,∥∥u+
0

∥∥2]k

L2
]
k

≤ lim inf
i→+∞

∥∥u+
i

∥∥2]k

L2
]
k

= 1 and
∥∥u−0 ∥∥2]k

L2
]
k

≤ lim inf
ı→+∞

∥∥u−i ∥∥2]k

L2
]
k

.(127)

We claim that

(128) u−i → u−0 strongly in L2]k(ΩM ).

We prove the claim. We define vi := ui − u0. Up to extracting a subsequence, we
have that (vi)i → 0 in H2

k−1(M). Therefore, as i→ +∞,

IP (ui) =

∫
ΩM

(∆k/2
g vi)

2 dvg + IP (u0) + o(1).(129)
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And then, letting α := inf
u∈N+

IP (u), we have that

α = IP (ui) + o(1) ≥
∫

ΩM

(∆k/2
g vi)

2 dvg + α
∥∥u+

0

∥∥2

L2
]
k

+ o(1)

and then

(130) α
(

1−
∥∥u+

0

∥∥2

L2
]
k

)
≥
∫

ΩM

(∆k/2
g vi)

2 dvg + o(1)

as i → +∞. We fix ε > 0. It then follows from (11) and (vi)i → 0 in H2
k−1(M)

that

α (K0(n, k) + ε)
(

1−
∥∥u+

0

∥∥2

L2
]
k

)
≥ ‖vi‖2

L2
]
k

+ o(1).(131)

Since 1− a2]k/2 ≥ (1− a2)2]k/2 for 1 ≥ a ≥ 0, we get that

(α (K0(n, k) + ε))
2]k/2

(
1−

∥∥u+
0

∥∥2]k

L2
]
k

)
≥ ‖vi‖

2]k

L2
]
k

+ o(1).(132)

Integration theory yields ‖ui‖
2]k

L2
]
k

= ‖vi‖
2]k

L2
]
k

+‖u0‖
2]k

L2
]
k

+o(1) as i→ +∞. Therefore

(α (K0(n, k) + ε))
2]k/2

(
1−

∥∥u+
0

∥∥2]k

L2
]
k

)
+ o(1) ≥ ‖ui‖

2]k

L2
]
k

− ‖u0‖
2]k

L2
]
k

=
∥∥u+

i

∥∥2]k
2]k
−
∥∥u+

0

∥∥2]k
2]k

+
∥∥u−i ∥∥2]k

2]k
−
∥∥u−0 ∥∥2]k

2]k
= 1−

∥∥u+
0

∥∥2]k
2]k

+
∥∥u−i ∥∥2]k

2]k
−
∥∥u−0 ∥∥2]k

2]k

Then
∥∥u−i ∥∥2]k

L2
]
k

=
∥∥u−i − u−0 ∥∥2]k

L2
]
k

+
∥∥u−0 ∥∥2]k

L2
]
k

+ o(1) as i→ +∞ yields

(
(µ (K0(n, k) + ε))

2]k/2 − 1
)(

1−
∥∥u+

0

∥∥2]k

L2
]
k

)
+ o(1) ≥

∥∥u−i ∥∥2]k

L2
]
k

−
∥∥u−0 ∥∥2]k

L2
]
k

(133)

=
∥∥u−i − u−0 ∥∥2]k

L2
]
k

+ o(1).(134)

Since αK0(n, k) ≤ 1 and ε > 0 is arbitrary small, we get (128). This proves the
claim.

We define µi := (∆
k/2
g ui)

2 dvg and νi = |ui|2
]
k dvg for all i. Up to a subsequence,

we denote respectively by µ and ν their limits in the sense of measures. It follows
from the concentration-compactness Theorem 4 that,

(135) ν = |u0|2
]
k dvg +

∑
j∈J

αjδxj and µ ≥ (∆k/2
g u0)2 dvg +

∑
j∈I

βjδxi

where J ⊂ N is at most countable, (xj)j∈J ∈M is a family of points, and (αj)j∈J ∈
R≥0, (βj)j∈J ∈ R≥0 are such that α

2/2]k
j ≤ K0(n, k) βj for all j ∈ J . Since u−i → u−0

strongly in L2]k(M), we then get that

(136) |u+
i |

2]k dvg ⇀ |u+
0 |2

]
k dvg +

∑
j∈J

αjδxj

as i→ +∞ in the sense of measures. The sequel is similar to the proof of Lemma
3.1. We omit the details. This completes the proof of Lemma 6.1. 2
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Lemma 6.2. We assume that there is no nontrivial solution to (124). Then the

functional IP satisfies the (P.S)c condition on N+ for c ∈ (Sk, 2
2k
n Sk) if the equa-

tion.

Proof of Lemma 6.2: This is equivalent to prove that the functional

F+
P (u) =

1

2

∫
Ωε0

uP (u) dvg −
1

2]k

∫
Ωε0

(u+)2]k dvg.(137)

satisfies the (P.S)c condition on H2
k,0(Ωε0) for c ∈ ( knS

n/2k
k , 2k

n S
n/2k
k ). Let (ui) be

a Palais-Smale sequence for the functional F+
P on the space H2

k,0(Ωε0). Then, as

v ∈ H2
k,0(Ωε0) goes to 0,

(138)

∫
Ωε0

uiP
k
g (v) dvg −

∫
Ωε0

(u+
i )2]k−1v dvg = o

(
‖v‖H2

k

)
.

Without loss of generality we can assume that ui ∈ C∞c (Ωε0) for all i. Let ϕi ∈
C∞(Ωε0) be the unique solution of the equation{

P kg ϕi = (u+
i )2]k−1 in Ωε0

Dαϕi = 0 on ∂Ωε0 for |α| ≤ k − 1.
(139)

The existence of such ϕi is guaranteed by Theorem 8.2. It then follows from Green’s
representation formula that

ϕi(x) =

∫
ΩM

GP (x, y)(u+
i (y))2]k−1 dvg(y) ≥ 0.(140)

for all x ∈ ΩM . Note that the sequence (ϕi) is bounded in H2
k,0(Ωε0). It follows

from (138) that ϕi = ui + o(1), where o(1) → 0 in H2
k,0(Ωε0) as i → +∞. And

so (ϕi) is Palais-Smale sequences for the functional F+
P on the space H2

k,0(Ωε0).

Therefore, since ϕi ≥ 0, it is also a Palais-Smale sequence for FP defined in (119).
Since there is no nontrivial critical point for F+

P , using the Struwe decomposition
[26] as in the proof of Proposition 5.4, we then get that (ϕ)i is relatively compact
in H2

k,0(Ωε0), and so is (ui). This ends the proof of Lemma 6.1. 2

Proof of Theorem 1, positive solutions: this goes essentially as in the proof of Theo-
rem 1, the key remark being that the functions vσt,R defined in (100) are nonnegative.

We define N ε0
+ = {u ∈ H2

k,0(Ωε0) : ‖u+‖
L2
]
k

= 1}, where Ωε0 = M \ Bε0(x0) and

ε0 > 0 was defined in (106). For c ∈ R we define the sublevel sets of the functional
IP on N ε0

+ as I+
c := {u ∈ N ε0

+ : Ikg (u) < c}. Arguing as in the proof of Proposition
5.3, it follows from Lemma 6.1 that there exists a δ0 > 0 such that there exists
Γ : I+

Sk+δ0
→ Ωε0 a continous map such that: If (ui) ∈ I+

Sk+δ0
is a sequence such

that |u+
i |2

]
k dvg ⇀ δp0 weakly in the sense of measures, for some point p0 ∈ Ωε0 ,

then lim
i→+∞

Γ(ui) = p0.

Let rN ε0+
: H2

k,0(Ωε0)\{
∥∥u+

∥∥
L2
]
k

= 0} → N ε0
+ be the map given by u 7→ u

‖u+‖
L
2
]
k

.

Consider the map h : Sn−1 × [0, ιg/2]→ Ωε0 given by

h(σ, t) =

{
Γ ◦ β(rN ε0+

(vσt,R0
)) for t < ιg/2

σMιg/2 for t = ιg/2
(141)



POLYHARMONIC OPERATORS ON A COMPACT RIEMANNIAN MANIFOLD 27

where β : I+
Sk+4θ → I

+
Sk+δ0

is a retract (we have used Lemma 6.2) and σMt =

expx0
(tσ). Note here that we use that vσt,R0

≥ 0. As in the proof of Theorem 1, h is

an homotopy of the embedded (n−1)−dimensional sphere {expx0
(
ιg
2 σ) : σ ∈ Sn−1}

to a point in Ωε0 , which is a contradiction to our topological assumption. So there
exists a nontrivial critical point u for the functional IP on N ε0

+ , which yields a weak

solution to (124). It then follows from the regularity theorem 8.3 that u ∈ C∞(Ωε0),
u > 0, is a solution to (2). This ends the proof of Theorem 1 for positive solutions.
2

7. An Important Remark

We remark that the topological condition of Theorem 1 is in general a necessary
condition. Consider the n-dimensional unit sphere Sn endowed with its standard
round metric hr and let Phr be the conformally invariant GJMS operator on Sn.
By the stereographic projection it follows that Sn\{x0} is conformal to Rn. Also
one has that Sn\{x0} is contractible to a point. Let Ωε0 be the domain in Sn\{x0}
constructed as earlier in (1), and let u ∈ H2

k,0(Ωε0), u 6= 0 solve the equation{
Phru = (u+)2]k−1 in Ωε0
Dαu = 0 on ∂Ωε0 for |α| ≤ k − 1.

(142)

Then by the stereographic projection it follows that there exists a ball of radius R,
B0(R) such that there is a nontrivial solution v ∈ H2

k,0(B0(R)) to the equation{
∆kv = (v+)2]k−1 in B0(R)
Dαv = 0 on ∂B0(R) for |α| ≤ k − 1.

(143)

By a result of Boggio[6], the Green’s function for the Dirichlet problem above is
positive. Therefore, we get that v > 0 is a smooth classical solution to{

∆kv = v2]k−1 in B0(R)
Dαv = 0 on ∂B0(R) for |α| ≤ k − 1.

(144)

This is impossible by Pohozaev identity, see Lemma 3 of Ge-Wei-Zhou [17].

8. Appendix: Regularity

Let f ∈ L1(ΩM ). We say that u ∈ H2
k,0(ΩM ) is a weak solution of the equation

Pu = f in ΩM and Dαu = 0 on ∂ΩM for |α| ≤ k − 1, if for all ϕ ∈ C∞c (ΩM )

(145)

∫
ΩM

∆k/2
g u∆k/2

g ϕ dvg +

k−1∑
α=0

∫
ΩM

Al(g)(∇lu,∇lϕ) dvg =

∫
ΩM

fϕ dvg.

Now let the operator P be coercive on the space H2
k,0(ΩM ), i.e there exists a

constant C > 0 such that for all u ∈ H2
k,0(ΩM )

(146)

∫
ΩM

uP (u) dvg ≥ C ‖u‖2H2
k,0(ΩM ) .

We then have
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Proposition 8.1 ((Hp
k -coercivity).

inf
u∈Hpk (ΩM )\{0}

‖Pu‖p
‖u‖Hpk

> 0.(147)

Proof of Proposition 8.1: We proceed by contradiction. If not, then there exists a
sequence (ui) ∈ C∞c (ΩM ) such that ‖ui‖Hpk = 1 and lim

i→+∞
‖Pui‖p = 0. It follows

from classical estimates (see Agmon-Douglis-Nirenberg [1]) that

‖ui‖Hp2k(ΩM ) ≤ Cp
(
‖Pui‖Lp + ‖ui‖Hpk

)
= O(1).(148)

So there exists u0 ∈ Hp
2k,0(ΩM ) such that upto a subsequence ui ⇀ u0 weakly in

Hp
2k,0(ΩM ). Then ui → u0 strongly in Hp

k,0(ΩM ) and so ‖u0‖Hpk = 1. Also u0

weakly solves the equation Pu0 = 0 in ΩM and Dαu0 = 0 on ∂ΩM for |α| ≤ k − 1.
It follows from standard elliptic estimates (see Agmon-Douglis-Nirenberg [1]) that
u0 ∈ C∞(ΩM ). Then, multiplying the equation by u0 and integrating over M ,
coercivity yields

C ‖u0‖2H2
k(ΩM ) ≤

∫
M

u0Pu0 dvg = 0.(149)

and hence u0 ≡ 0, a contradiction since we have also obtained that ‖u0‖Hpk = 1.

This proves Proposition 8.1. 2

Proposition 8.2 (Existence and Uniqueness). Let the operator P be coercive. Then
given any f ∈ Lp(ΩM ), 1 < p < +∞, there exists a unique weak solution u ∈
Hp
k,0(ΩM ) ∩Hp

2k(ΩM ) to{
Pu = f in ΩM
Dαu = 0 on ∂ΩM for |α| ≤ k − 1.

(150)

The proof is classical and we only sketch it here. For p = 2, existence and
uniqueness follows from the Riesz representation theorem in Hilbert spaces. For
arbitrary p > 1, we approximate f in Lp by smooth compactly supported function
on ΩM . For each of these smooth functions, there exists a solution to the pde with
the approximation as a right-hand-side. The coercivity and the Agmon-Douglis-
Nirenberg estimates yield convergence of these solutions to a solution of the original
equation. Coercivity yields uniqueness.

We now proceed to prove our regularity results. The proof is based on ideas de-
veloped by Van der Vorst [33], and also employed by Djadli-Hebey-Ledoux [12] for
the case k = 2.

Theorem 5. Let (M, g) be a smooth, compact Riemannian manifold of dimension
n and let k be a positve integer such that 2k < n. Let ΩM be a smooth domain in
M and suppose u ∈ H2

k,0(ΩM ) be a weak solution of the equation{
Pu = f(x, u) in ΩM
Dαu = 0 on ∂ΩM for |α| ≤ k − 1

(151)

where |f(x, u)| ≤ C|u|(1 + |u|2
]
k−2

) for some positive constant C, then

u ∈ Lp(ΩM ) for all 1 < p < +∞.(152)
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Proof of 5: We write f(x, u) = bu where |b| ≤ C(1 + |u|2
]
k−2

). Then b ∈ Ln/2k(ΩM )
and u solves weakly the equation{

Pu = bu in ΩM
Dαu = 0 on ∂ΩM for |α| ≤ k − 1.

(153)

Step 1: We claim that for any ε > 0 there exists qε ∈ Ln/2k(ΩM ) and fε ∈ L∞(ΩM )
such that

bu = qεu+ fε, ‖qε‖Ln/2k(ΩM ) < ε.(154)

Now lim
i→+∞

∫
{|u|≥i}

|b|n/2k dvg = 0, so given any ε > 0 we can choose i0 such that

∫
{|u|≥i0}

|b|n/2k dvg < εn/2k.

We define qε := χ{|u|≥i0}b and fε := (b − qε)u = χ{|u|<i0}b. Then, since |b| ≤
C(1 + |u|2

]
k−2

), we have that ‖qε‖Ln/2k(ΩM ) < ε and fε ∈ L∞(M). This proves our

claim and ends Step 1.

We rewrite (153) as{
Pu = qεu+ fε in ΩM
Dαu = 0 on ∂ΩM for |α| ≤ k − 1.

(155)

Let Hε be the operator defined formally as

Hεu = (P kg )−1(qεu).(156)

Then Pu = qεu+ fε becomes u−Hεu = (P kg )−1(fε).

Step 2: we claim that for any s > 1, Hε maps Ls(ΩM ) to Ls(ΩM ).

We prove the claim. Let v ∈ Ls(ΩM ), s ≥ 2]k, then qεv ∈ Lŝ(ΩM ) where

ŝ =
ns

n+ 2ks
, and we have by Hölder inequality

‖qεv‖Lŝ(ΩM ) ≤ ‖qε‖Ln/2k(ΩM ) ‖v‖Ls(ΩM )(157)

Since ‖qε‖Ln/2k(ΩM ) < ε, so we have

‖qεv‖Lŝ(ΩM ) ≤ ε ‖v‖Ls(ΩM )(158)

From (8.2) it follows that there exists a unique vε ∈ H ŝ
2k(ΩM ) such that{

Pvε = qεv in ΩM
Dαvε = 0 on ∂ΩM for |α| ≤ k − 1

(159)

weakly. Further we have for a positive constant C(s)

‖vε‖H ŝ2k(ΩM ) ≤ C(s) ‖qεv‖Lŝ(ΩM )(160)

So we obtained that

‖vε‖H ŝ2k(ΩM ) ≤ C(s)ε ‖v‖Ls(ΩM ) .(161)
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By Sobolev embedding theorem H ŝ
2k(ΩM ) is continuously imbedded in Ls(ΩM ) so

vε ∈ Ls(ΩM ) and we have

‖vε‖Ls(ΩM ) ≤ C(s)ε ‖v‖Ls(ΩM ) .(162)

In other words, for any s ≥ 2]k the operator Hε acts from Ls(ΩM ) into Ls(ΩM ),
and its norm ‖Hε‖Ls→Ls ≤ C(s)ε. This proves the claim and ends Step 2.

Step 3: Now let s ≥ 2]k be given, then for ε > 0 sufficiently small one has

‖Hε‖Ls→Ls ≤
1

2
(163)

and so the operator I −Hε : Ls(ΩM ) −→ Ls(ΩM ) is invertible. We have

u−Hεu = (P kg )−1(fε)(164)

Since u ∈ L2]k(ΩM ) and fε ∈ L∞(ΩM ), so u ∈ Lp(ΩM ) for all 1 < p < +∞.

This ends the proof of Theorem 5. 2

Proposition 8.3. Let (M, g) be a smooth, compact Riemannian manifold of di-
mension n and let k be a positive integer such that 2k < n. Let f ∈ C0,θ(ΩM )
a Hölder continuous function. Let ΩM be a smooth domain in M and suppose
u ∈ H2

k,0(ΩM ) be a weak solution of the equation{
Pu = f |u|2

]
k−2

u or f(u+)2]k−1 in ΩM
Dαu = 0 on ∂ΩM for |α| ≤ k − 1.

(165)

Then u ∈ C2k(ΩM ), and is a classical solution of the above equation. Further if
u > 0 and f ∈ C∞(ΩM ), then u ∈ C∞(ΩM ).

Proof of Proposition 8.3: It follows from (5) that u ∈ Hp
2k(ΩM ) for all 1 < p < +∞.

By Sobolev imbedding theorem this implies u ∈ C2k−1,γ(ΩM ) for all 0 < γ < 1.

|u|2
]
k−2

u, (u+)2]k−1 ∈ C1(ΩM ). The Schauder estimates (here again, we refer to
Agmon-Douglis-Nirenberg [1]) then yield u ∈ C2k,γ(ΩM ) for all γ ∈ (0, 1), and u is
a classical solution.

If u > 0, then the right-hand-side is u2]k−1 and has the same regularity as u.
Therefore, iterating the Schauder estimates yields u ∈ C∞(ΩM ). This ends the
proof of Proposition 8.3. 2

9. Appendix: Local Comparison of the Riemannian norm with the
Euclidean norm

Let (M, g) be a smooth, compact Riemannian manifold of dimension n ≥ 1. For
any point p ∈ M there exists a local coordinate around p, ϕ−1

p : Ω ⊂ Rn → M ,
ϕ(p) = 0, such that in these local coordinates one has for all indices i, j, k = 1, . . . , n{

(1− ε)δij ≤ gij(x) ≤ (1 + ε)δij as bilinear forms.
|gij(x)− δij | ≤ ε

Here we have identified TpM ∼= Rn for any point p ∈ M . For example, one can
take the exponetial map at p : expp, which is normal at p. We will let ιg be the
injectivity radius of M . Using the above local comparison of the Riemannian metric
with the Euclidean metric one obtains
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Lemma 9.1. Let (M, g) be a smooth, compact Riemannian manifold of dimension
n and let k be positive integer such that 2k < n. We fix s ≥ 1. Let ϕ−1

p : Ω ⊂ Rn →
M , ϕ(p) = 0 be a local coordinate around p with the above mentioned properties.
Then given any ε0 > 0 there exists τ ∈ (0, ιg), such that for any point p ∈ M , and
u ∈ C∞c (B0(τ)) one has

(1− ε0)

∫
Rn

(∆k/2u)2 dx ≤
∫
M

(∆k/2
g (u ◦ ϕp))2 dvg ≤ (1 + ε0)

∫
Rn

(∆k/2u)2 dx(166)

and

(1− ε0)

∫
Rn

|u|s dx ≤
∫
M

|u ◦ ϕp|s dvg ≤ (1 + ε0)

∫
Rn

|u|s dx(167)

Proof of Lemma 9.1: In terms of the coordinate map ϕ−1
p : Ω ⊂ Rn → M , for any

f ∈ C2(M) we have

(168) ∆gf (x) = −gij(x)

(
∂2(f ◦ ϕ−1)

∂xi∂xj
(x)− Γkij(ϕ(x))

∂(f ◦ ϕ−1)

∂xk
(x)

)
.

Since the manifold M is compact, then given any ε > 0 there exists a τ ∈ (0, ιg)
depending only on (M, g), such that for any point p ∈M and for any x ∈ B0(τ) ⊂
Rn one has for all indices i, j, k = 1, . . . , n{

(1− ε)δij ≤ gij(x) ≤ (1 + ε)δij as bilinear forms.
|gij(x)− δij | ≤ ε

Without loss of generality we can assume that τ < 1. We let u ∈ C∞c (Rn) be
such that supp(u) ⊂ B0(τ). In the sequel, the constant C will denote any positive
constant depending only on (M, g) and τ : the same notation C may apply to
different constants from line to line, and even in the same line. All integrals below
are taken over B0(τ), and we will therefore omit to write the domain for the sake
of clearness.

Case 1: k is even. We then write k = 2m, m ≥ 1. Then calculating in terms of
local coordinates we obtain

(169)
∣∣∆m

g (u ◦ ϕp)(ϕ−1
p (x))−∆mu(x)

∣∣ ≤ ε ∣∣∇2mu(x)
∣∣+ C

2m−1∑
β=1

∣∣∣∇(2m−β)u(x)
∣∣∣

where Cg is a constant depending only on the metric g on M . Then we have∣∣∣∣ ∫ (∆m
g (u ◦ ϕp)(ϕ−1

p (x))
)2

dx−
∫

(∆mu)
2
dx

∣∣∣∣ ≤ 22ε2
∫ ∣∣∇2mu

∣∣2 dx+

C

2m−1∑
β=1

∫ ∣∣∣∇(2m−β)u
∣∣∣2 dx+ 2ε

∫ ∣∣∇2mu
∣∣ |∆mu| dx+ C

2m−1∑
β=1

∫
|∆mu|

∣∣∣∇(2m−β)u
∣∣∣ dx.

(170)

(171)

Now for any β such that β ≤ 2m − 1 we have ∇(2m−β)u ∈ Dβ,2(Rn) and by

Sobolev embedding theorem this implies that
∣∣∇(2m−β)u

∣∣2 ∈ L2]β/2(Rn). Applying
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the Hölder inequality we obtain

(172)

2m−1∑
β=1

∫ ∣∣∣∇(2m−β)u
∣∣∣2 dx ≤ C

2m−1∑
β=1

τ2β

(∫ ∣∣∣∇(2m−β)u
∣∣∣2]β dx)2/2]β

And then the Sobolev inequality gives us

(173)

(∫ ∣∣∣∇(2m−β)u
∣∣∣2]β dx)2/2]β

≤ C
∫ ∣∣∇2mu

∣∣2 dx.
Applying the integration by parts formula, we obtain

(174)

∫ ∣∣∇2mu
∣∣2 dx =

∫
(∆mu)

2
dx.

So we have, since τ < 1

2m−1∑
|β|=1

∫ ∣∣∇2m−βu
∣∣2 dx ≤ Cτ ∫ (∆mu)

2
dx.(175)

Therefore, we get that∣∣∣∣ ∫ (∆m
g (u ◦ ϕp)(ϕ−1

p (x))
)2

dx−
∫

(∆mu)
2
dx

∣∣∣∣ ≤ C (ε+ τ)

∫
(∆mu)

2
dx.(176)

Now in these local coordinates one has

(1− ε)n/2
∫ (

∆m
g (u ◦ ϕp)(ϕ−1

p (x))
)2

dx ≤
∫
M

(
∆m
g (u ◦ ϕp)

)2
dvg(177)

≤ (1 + ε)n/2
∫ (

∆m
g (u ◦ ϕp)(ϕ−1

p (x))
)2

dx.(178)

So given an ε0 > 0 small, we first choose ε small and then choose a sufficiently small
τ , so that for any u ∈ C∞c (B0(τ)) we have

∣∣∣∣ ∫ (∆m
g (u ◦ ϕp)

)2
dvg −

∫
(∆mu)

2
dx

∣∣∣∣ ≤ ε0 ∫ (∆mu)
2
dx.(179)

So we have the lemma for k even.

Case 2: k is odd. We then write k = 2m + 1 with m ≥ 0. Calculating in terms
of local coordinates, like in the even case, we obtain∣∣ |∇(∆m

g (u ◦ ϕp))|2(ϕ−1
p (x))− |∇(∆mu)|2(x)

∣∣ ≤ ε|∇(∆mu)|2(x)(180)

+Cε
∣∣∇2m+1u

∣∣2 (x) + C

2m∑
β=1

∣∣∣∇(2m+1−β)u
∣∣∣2 (x)(181)

+Cε
∣∣∇2m+1u

∣∣ (x) |∇(∆mu)|(x) + C

2m∑
β=1

∣∣∣∇(2m+1−β)u
∣∣∣ (x) |∇(∆mu)|(x)(182)
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for all x ∈ B0(τ). Therefore∣∣∣∣ ∫ |∇(∆m
g (u ◦ ϕp))|2(ϕ−1

p (x)) dx−
∫
|∇(∆mu)|2(x) dx

∣∣∣∣ ≤ ε∫ |∇(∆mu)|2 dx

+ Cε

∫ ∣∣∇2m+1u
∣∣2 dx+ C

2m∑
β=1

∫ ∣∣∣∇(2m+1−β)u
∣∣∣2 dx

+ Cε

∫ ∣∣∇2m+1u
∣∣ |∇(∆mu)| dx+ C

2m∑
β=1

∫ ∣∣∣∇(2m+1−β)u
∣∣∣ |∇(∆mu)| dx

(183)

And then by calculations similar to the even case, along with the integration by
parts formula, we obtain

∣∣∣∣ ∫ |∇(∆m
g (u ◦ ϕp))|2(ϕ−1

p (x)) dx−
∫
|∇(∆mu)|2(x) dx

∣∣∣∣ ≤ C̃g (ε+
√
τ
) ∫
|∇(∆mu)|2 dx.

(184)

Now given an ε0 > 0 small, we first choose ε small and then choose a sufficiently
small τ , so that for any u ∈ C∞c (B0(τ)) we have∣∣∣∣∣∣

∫
M

|∇(∆m
g (u ◦ ϕp))|2 dvg −

∫
|∇(∆mu)|2 dx

∣∣∣∣∣∣ ≤ ε0
∫
|∇(∆mu)|2 dx.(185)

Then one has the lemma for k odd. This ends the proof of Lemma 9.1. 2
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