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We present a method for the unsteady coupling of two distinct two-phase flow models
(namely the Homogeneous Relaxation Model, and the Homogeneous Equilibrium Model)
through a thin interface. The basic approach relies on recent works devoted to the inter-
facial coupling of CFD models, and thus requires to introduce an interface model. Many
numerical test cases enable to investigate the stability of the coupling method.

I. Introduction

We focus in this paper on the unsteady interfacial coupling of two distinct two-phase flow models that
are commonly used in order to simulate water-vapour flows in nuclear power plants. We emphasize that
we only deal with a steady coupling interface that separates the two codes. The main objective here is to
prescribe meaningful boundary conditions on each side of this coupling interface for both codes associated
with HEM and HRM models.

The Homogeneous Relaxation Model (denoted by the acronym HRM) is a four-equation model that is
widely used in two-phase flow simulations. Most industrial codes within the nuclear community - for instance
THYC (EDF) or FLICA (CEA) - rely on this model. This model requires computing approximations of
solutions of two mass balance equations, a total momentum equation and a governing equation for the total
energy balance of the mixture. Excluding source terms, this model is under conservative form. The only
non-zero source contribution is on the right hand side of the governing equation of the liquid mass fraction.
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This source tends to relax the current liquid mass fraction to the equilibrium mass fraction, which only
depends on the mean pressure and the mean density. The underlying time scale is highly variable, and in
practice it makes the source term very stiff, which may render the computation of the HRM model rather
uneasy. Actually, the Homogeneous Equilibrium Model (acronym HEM) precisely stands for the counterpart
of the HRM model when an equilibrium is achieved. It is thus a pure convective set of partial differential
equations which govern the motion of the total mass, the global momentum and the total energy of the whole
mixture. Both the HEM and the HRM models require defining appropriate equations of state (referred to as
the EOS in the following) in order to account for both the ”pure vapour” phase, the ”pure liquid” phase but
also the ”mixture” phase. These EOS are usually tabulated (see22,30,31), but we will focus here on simplified
analytical EOS. This is essentially motivated by the fact that we do not wish to mix numerical drawbacks
due to the use of realistic EOS and those connected with the formulation of the coupling techniques. In
other words, we want to be ”optimal” in some sense in terms of EOS in order to concentrate on the main
drawbacks of the coupling techniques.

In order to introduce the problem of the interfacial coupling of two existing codes, we need to define
governing equations:

∂t (W ) + ∂n (Fn,L(W )) = 0 (1)

for the left code (xn = x · n < 0, t > 0), respectively, for the right code (xn > 0, t > 0):

∂t (W ) + ∂n (Fn,R(W )) = 0, (2)

where n is the unit normal to the plane and steady coupling interface, which is located at xn = 0. Moreover,
we assume that the two systems on each side are hyperbolic and invariant under frame rotation.

Quite recently, some authors have proposed two approaches in order to tackle the unsteady interfacial
coupling of CFD models. Roughly speaking, the first approach favours the continuity of the conservative
variable W , by enforcing W (xn = 0−, t) = W (xn = 0+, t) in a weak sense (see18,20). This method has
been recently extended to the case of a generic variable Z(W ) (see2,4 and also3,10,13). The second one relies
on the basic paper by Greenberg and Leroux.21 It consists in introducing a colour function Y (x, t) where
Y (x, t) = 1, if xn = x · n < 0, and Y (x, t) = 0 if xn = x · n > 0. Since the interface is steady, the function
Y verifies ∂t (Y ) = 0. Defining Fn(W ) = Y Fn,L(W ) + (1 − Y )Fn,R(W ), the fluxes at the steady coupling
interface can be computed by solving the Riemann problem associated with:

∂t (W ) + ∂n (Fn(W )) = 0, (3)

This method, which introduces the ”father model” (3) obviously privileges the conservation law. It has been
used in.23,26

More recently, a third approach has been proposed (2,4). It combines the second method with the relax-
ation methods.5,6, 11 The coupling technique that is used herein makes use of the latter approach. Actually,
we want here to take advantage of the fact that the HRM model may be viewed as the ”father model” of
the HEM model. Another advantage of the third approach is that one may get rid of possible resonance
phenomena, as underlined in2,4 for instance. This phenomena may arise when using the second approach if
a genuinely non linear field overlaps the steady linearly degenerate field associated with the colour function
Y . Though it is not clear whether this has drastic consequences, it seems indeed much more reasonable to
avoid this problem that is not clearly understood (17) .

The paper is organized as follows:

• Sections II and III are devoted to the presentation of both HEM and HRM models, but also on some of
their properties (hyperbolicity, entropy inequality, positivity results for sufficiently smooth solutions).

• We then present the coupling method in section IV. Special attention will be paid to the numerical
treatment of the coupling interface, which relies on:
(i) an evolution step,
(ii) an instantaneous relaxation step,
(iii) a finite relaxation step in order to account for source terms.
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This section also includes a brief description of the Finite Volume methods that will be applied in order
to compute approximations of solutions in non coupled codes.

• Numerical results are displayed in section V. This includes basic test cases involving contact waves,
shock waves and rarefaction waves, but also a schematic representation of the flow in a part of the
primary coolant circuit in a nuclear power plant.

Throughout the paper, we will use the following notations: ρ stands for the density of the mixture,
τ = 1/ρ is its specific volume and U represents the mean velocity of the mixture. Moreover P , C, e,
h = e + P/ρ, E = e + U2/2 respectively stand for the pressure, the liquid mass fraction, the internal energy,
the enthalpy, and the total volumetric energy of the mixture. The subscripts v and l respectively refer to
the vapor and the liquid phases. The over-script s denotes saturated quantities.
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II. The Homogeneous Relaxation Model

This four-equation model can be derived from the six-equation two-fluid model. In the following we focus
on specific closure laws and we detail some properties connected with these choices.

A. Closure laws

We consider that the two fluids have the same mean velocity, that is Ul − Uv = Ur = 0. In order to take
into account the mass transfer between the two phases, a source term ρΓ stands on the right hand side in
the equation of the mass balance of the liquid phase. Thus the governing equations are:





∂t (ρC) + ∂x (ρCU) = ρΓ

∂t (ρ) + ∂x (ρU) = 0

∂t (ρU) + ∂x

(
ρU2 + P

)
= 0

∂t (ρEHRM ) + ∂x (U(ρEHRM + P )) = 0

(4)

with:

EHRM
def
= eHRM (P, ρ, C) +

U2

2
and eHRM (P, ρ, C)

def
= hHRM (P, ρ, C) − P

ρ
(5)

where the function hHRM (P, ρ, C) is the specific enthalpy that must be prescribed by the user. In practice
here, we will use the definition (10).

The set of physical relevant states for the system (4) is:

ΩHRM
def
= {(ρ, U, P,C) / ρ ≥ 0, C ∈ [0, 1], P ≥ 0} (6)

In order to close the system, we need to define hHRM and Γ.

• First, we write the enthalpy function hHRM . We choose the thermodynamic closures inspired by the
THYC and FLICA codes.22,31 They consider the medium as the mixing of two fluids: liquid water
and vapour. Moreover, the vapour is assumed to be in a saturation state, this implies that each
thermodynamic function relative to this fluid only depends on one variable, say the pressure P . The
two pure fluids are assumed to obey a usual γ closure law.

We note γv > 1 (respectively γl > 1) the adiabatic constant for the vapour (respectively the liquid),
and ev, hv, ρv and τv the internal specific energy, specific enthalpy, density and specific volume for the
vapour (respectively el, hl, ρl and τl the internal specific energy, specific enthalpy, density and specific
volume for the liquid).

We recall the following definitions:

ep(ρ, P )
def
=

P

(γp − 1)ρ
and hp(ρ, P )

def
= δpPτ with δp

def
= γp/(γp − 1) (7)

for p = l, v.

We will use standard values in order to account for liquid and gas respectively : γl = 1.001 and
γv = 1.4. Moreover, we assume that if the pressure P stays in [PMIN , PMAX ] the saturation curves
for the enthalpy and the volumetric fraction can be approached by the following functions:

– Saturated Vapor:

hs
v(P )

def
= AvP + Bv and τs

v (P )
def
=

hs
v(P )

δvP
(8)

– Saturated Liquid

hs
l (P )

def
= AlP + Bl and τs

l (P )
def
=

hs
l (P )

δlP
(9)
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Physically relevant saturation curves ensure that: τs
v (P ) > τs

l (P ) and hs
v(P ) > hs

l (P ). Typical values
of the coefficients PMIN , PMAX , Av < 0, Al, Bv and Bl related to nuclear cooling conditions can be
found at the beginning of Section V.

We can now define the total specific enthalpy of the mixture:

hHRM (P, ρ, C)
def
= Chl(P, ρl) + (1 − C)hs

v(P ), (10)

where

ρl = ρC
1

1 − ρ(1 − C)τs
v (P )

=
C

τ − (1 − C)τ s
v (P )

, (11)

This relation (11) is obtained by introducing the two void fractions αl and αv for the liquid and vapour
respectively, that are in agreement with αl +αv = 1. Using the standard definitions of the partial mass
for the liquid and the mean density of the mixture:

αlρl = ρC and: ρ = αlρl + αvρv

one may eliminate αl,v and inject ρv = ρs
v(P ), in order to obtain ρl in terms of P, ρ, C, that is the

above relation (11).

In the following, the HRM model will refer to the set of equations (4), (5), (10).

The enthalpy (10) of the model can be simplified, by using (7), (8).

ρhHRM (P, ρ, C) = δlP + ρ(1 − C)hs
v(P )(1 − δl

δv
) (12)

This simplified form of EOS will enable us to derive some technical results.

Remark 1:

With this thermodynamic closure, the domain of validity of the HRM model is:

DHRM
def
= {C ∈ [0, 1], P ∈ [PMIN , PMAX ], (1 − C)τ s

v (P ) ≤ τ ≤ τ s
v (P )} (13)

where we have used (6), (11) and the constraint τl ∈]0, τs
v (P )] to obtain the relation on the bounds of

τ .

• The source term Γ in the set of equations (4) allows the exchange of mass between the two phases.
It depends on the density ρ, the pressure P and the liquid mass fraction C. Its form arises from the
literature (see22,31):

Γ =
C(1 − C)

τ0
ρτs

v (P )
hs

l (P ) − hl(P, ρl)

hs
v(P ) − hs

l (P )
(14)

where τ0 is a time scale.

For regular solutions, system ((4), (5)) can be written:





∂t (C) + U∂x (C) = Γ

∂t (ρ) + U∂x (ρ) + ρ∂x (U) = 0

∂t (U) + U∂x (U) + 1
ρ∂x (P ) = 0

∂t (P ) + U∂x (P ) + γ̂HRMP∂x (U) = −Γ∂C(eHRM )
∂P (eHRM ) .

(15)

with:

γ̂HRM
def
= (P∂P (eHRM ))−1

(
P

ρ
− ρ∂ρ (eHRM )

)

We will use this form to highlight some of its properties.
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B. Hyperbolicity of the HRM model

In order to study the hyperbolicity of the HRM model, we focus on the convective part of (15) complemented
with (5). Then the non-conservative equations on ρ, U , P and C are:

∂t




C

ρ

U

P


 +




U 0 0 0

0 U ρ 0

0 0 U τ

0 0 γ̂HRMP U


 ∂x




C

ρ

U

P


 =




0

0

0

0


 (16)

The following result is classic:

Property 1

The system (16) is hyperbolic if and only if γ̂HRMP > 0. Its eigenvalues and right eigenvectors are recalled
below:

λ1 = U − aHRM ; r>1 = (0, ρ,−aHRM , ρa2
HRM )

λ2 = U ; r>2 = (1, 0, 0, 0)

λ3 = U ; r>3 = (0, 1, 0, 0)

λ4 = U + aHRM ; r>4 = (0, ρ,+aHRM , ρa2
HRM )

where we define the sound velocity aHRM by:

aHRM
def
= (γ̂HRMP/ρ)1/2 (17)

Property 2

If we assume that :
1 < γl < γv and Av < 0

the system (16) is hyperbolic for all P ∈ [PMIN , PMAX ], ρ > 0, C ∈ [0, 1].

We insist that this is not a necessary condition.

Proof
Using the definition (12) of hHRM together with the relation ρeHRM = ρhHRM − P we obtain:

(
P

ρ
− ρ∂ρ (eHRM )

)
=

δlP

ρ

∂P (eHRM ) = τ(δl − 1) + (1 − C)(1 − δl

δv
)

d

dP
hs

v(P )

The term δlP
ρ is always positive, and a sufficient condition for ∂P (eHRM ) to be positive is:

(1 − δl

δv
)

d

dP
hs

v(P ) > 0

Thanks to (8), we have: d
dP hs

v(P ) = Av, and Av is negative. Obviously, 1 < γl < γv implies: δv < δl. Thus,
γ̂HRMP is positive, which concludes the proof.

We remark that the numerical values in section V, equation (42), are such that Av < 0, and that γl,v

fulfill the condition above.

C. Some positivity results for the HRM model

Remark 2:

We have introduced the source term Γ in (14). We can rewrite it in a form which will appear to be more
convenient. We set :

G2(P, ρ)
def
= ρτs

v δlP
τs
v (P ) − τs

l (P )

hs
v(P ) − hs

l (P )
and C̄

def
=

τs
v (P ) − τ

τs
v (P ) − τs

l (P )
(18)
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Since the saturation functions ensure that both τs
v (P ) > τs

l (P ) and hs
v(P ) > hs

l (P ), we know that G2 > 0 if
P ∈ [PMIN , PMAX ], and if ρ > 0. The source term may thus be rewritten:

Γ = (1 − C)
(
C̄ − C

) G2(P, ρ)

τ0
(19)

The ODE
∂t (C) = Γ(P, ρ, C)

has two poles. The pole C = 1 is repulsive and the pole C = C̄ is attractive. The expression of the second
pole will make sense for the HEM model. This remark will be used for numerical purposes (see system (39)
and associated Appendix 2).

Positivity results:

We now want to highlight some properties of positivity of the regular solutions of ((4)-(5), (10), (14)), or
alternatively (15), (14). The demonstration of the following results can be found in Appendix 4 (section A).

If we assume that U ∈ L∞(Ω × [0, T ]) and ∂x (U) ∈ L∞(Ω × [0, T ]) then,

ρ ≥ 0

Moreover if we assume that ρ ∈ L∞(Ω × [0, T ]) and that P remains in [PMIN , PMAX ],

C ≤ 1

and if the additional condition C̄ ≥ 0 is fulfilled then:

C ≥ 0

Nonetheless nothing ensures that C̄ remains in [0, 1], nothing ensures that P remains in [PMIN , PMAX ], and
nothing ensures that ρl will remain positive.

Remark 3:

An analytical solution of the HRM model can go out of the domain DHRM (13). It is thus possible for a
”consistent and stable numerical approximation” to go out of DHRM . In practice, if a numerical solution
does not remain in this domain the computations will be stopped.

D. Entropy and source terms

In this section we wonder whether the source term Γ may contribute to the entropy dissipation.

We consider the functions SHRM : (P, ρ, C) 7→ SHRM (P, ρ, C) that are in agreement with:

a2
HRM∂P (SHRM ) + ∂ρ (SHRM ) = 0 (20)

We introduce the entropy-entropy flux pair: (ηHRM , FHRM
η )

ηHRM = −ρ ln(SHRM )

FHRM
η = UηHRM

Using a classical approach - that is: introducing a viscous contribution in governing equations, deriving the
evolution equation of the entropy in that framework, and then passing to the limit by enforcing a vanishing
viscosity (see19 for instance )- we know that smooth solutions of (4) agree with the entropy inequality :

∂t (ηHRM ) + ∂x

(
FHRM

η

)
≤ 0 (21)

when no source term Γ is present in (4).
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We now focus on the smooth solutions of the HRM model with the zero-order source term (4). These
are such that (see Appendix 4, section B):

∂t (ηHRM ) + ∂x

(
FHRM

η

)
= Γη

with:

Γη = Γ
ρ

SHRM
∂P (SHRM )

[
∂C (SHRM )

∂P (SHRM )
− ∂C (eHRM )

∂P (eHRM )

]

Thus, in order to comply with the entropy inequality (21), the source term Γ should agree with the relation:

Γη ≤ 0

In order to specify conditions on Γ, we introduce the physical entropy:

SHRM = Pf(ρ,C)

with:
f(ρ,C) = f0(C)((1 + ρAv(1 − δl/δv)(1 − C)/(δl − 1))/ρ)γl

where the positive function f0(C) should fulfill: f0(1) = 1. Hence the above condition turns out to be :

Γ

[
∂C (SHRM )

∂P (SHRM )
− ∂C (eHRM )

∂P (eHRM )

]
< 0

Using the expression of SHRM = Pf(ρ,C) above, one can check that the form of the source term Γ does
not necessarily satisfy the constraint. This may be easily explained: the source term Γ has been picked up
from the standard two-phase flow literature, whatever the EOS of the mean fluid is, which may result in a
potential conflict. In practice, if one retains f0(C) = 1, the agreement will occur if and only if the source
term Γ is positive.
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III. The Homogeneous Equilibrium Model

A. Governing equations

The Homogeneous Equilibrium Model is governed by a set of three equations in order to account for total
mass, total momentum and total energy balances. These read:





∂t (ρ) + ∂x (ρU) = 0

∂t (ρU) + ∂x

(
ρU2 + P

)
= 0

∂t (ρEHEM ) + ∂x (U(ρEHEM + P )) = 0

(22)

with:

EHEM
def
= eHEM (P, ρ) +

U2

2
and eHEM (P, ρ)

def
= hHEM (P, ρ) − P

ρ
(23)

where, again, the function hHEM (P, ρ) is the specific enthalpy, and must be prescribed by the user.

We want to ensure the compatibility of this thermodynamic closure with the HRM one, in a sense to be
precised later. For this reason, we can restrain the domain of validity of system (22) to:

DHEM =
{
(ρ, P )/P ∈ [PMIN , PMAX ], ρ > (τs

v (P ))−1
}

(24)

Moreover, the thermodynamic relations for the liquid and the vapour (7), (8), (9) still hold.
First we set:

Ceq(P, ρ)
def
=

τs
v (P ) − τ

τs
v (P ) − τs

l (P )
(25)

We also need to introduce two subdomains:

• the pure liquid domain Dl = {τ < τ s
l (P ), P ∈ [PMIN , PMAX ]}

• the two-phase region D2φ = {τs
l (P ) ≤ τ ≤ τ s

v (P ), P ∈ [PMIN , PMAX ]}.

In order to complete (22), (23), we define the specific enthalpy hHEM (P, ρ) on the pure liquid domain
and on the two-phase domain:

• Pure liquid domain Dl: if Ceq > 1 or equivalently τ < τ s
l (P ) :

hHEM (P, ρ)
def
= hl(P, ρ)

• Two-phase domain D2φ : if 0 ≤ Ceq ≤ 1 or equivalently τs
l (P ) ≤ τ ≤ τ s

v (P ) :

hHEM (P, ρ)
def
= Ceqhl(P, ρl(P, ρ, Ceq)) + (1 − Ceq)h

s
v(P )

Using (11) and (25), we get: ρl(P, ρ, C = Ceq) = 1/τs
l (P ). Hence the enthalpy of the HEM model in the

two-phase domain D2φ, simply reads :

hHEM (P, ρ) = Ceqh
s
l (P ) + (1 − Ceq)h

s
v(P ) (26)

The enthalpy hHEM is continuous at the boundary between the two domains D2φ and Dl (i.e. continuous
at Ceq = 1). Nevertheless, its derivatives are not continuous.

In the following, the HEM model will refer to the set of equation (22), (23) with the above definitions
(26) of hHEM and the saturation curves.

Remark 4:

It is important to note that Ceq(P, ρ) = C̄. The relaxation source term (19) of the HRM model can now be
written:

Γ = (1 − C) (Ceq(P, ρ) − C)
G2(P, ρ)

τ0
(27)
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Then C = Ceq(P, ρ) is a curve for the equilibrium Γ = 0.

Remark 5:

There is a compatibility of the EOS of the HEM model with the EOS of the HRM model. The relation

ρl(P, ρ, C = Ceq) =
1

τs
l (P )

implies that:
hHEM (P, ρ) = hHRM (P, ρ, C = Ceq)

In section IV, we study the coupling of these HEM and HRM models. The previous choice on compatible
EOS will allow us to focus on the main differences between models rather than on discrepancies linked with
inhomogeneities of EOS. The latter problem is addressed in.4,10

B. Hyperbolicity

In order to study the hyperbolicity of the HEM model, we focus on (22). Then the non-conservative equations
on ρ, U and P are:

∂t




ρ

U

P


 +




U ρ 0

0 U τ

0 γ̂HEMP U


 ∂x




ρ

U

P


 =




0

0

0


 (28)

with:

γ̂HEM = (P∂P (eHEM ))−1

(
P

ρ
− ρ∂ρ (eHEM )

)

Property 3

The system (28) is hyperbolic if and only if γ̂HEMP > 0. Its eigenvalues and right eigenvectors are recalled
below:

λ1 = U − aHEM ; r>1 = (ρ,−aHEM , ρa2
HEM )

λ2 = U ; r>2 = (1, 0, 0)

λ3 = U + aHEM ; r>3 = (ρ,+aHEM , ρa2
HEM )

where the sound velocity aHEM is defined by:

aHEM
def
= (γ̂HEMP/ρ)1/2 (29)

Since the derivatives of eHEM are not defined in the whole domain DHEM , γ̂HEM is only defined inside
the subdomains Dl and D2Φ.

Property 4

The HEM model is hyperbolic inside the pure liquid domain and inside the two-phase domain.

Proof
The sound speed reads:

• In the pure liquid domain: aHEM =
√

γlPτ =
√

δl

δl−1Pτ ∀(τ, P ) ∈
◦

Dl

• In the two-phase domain the formulas are cumbersome and no sufficient condition clearly appears to

ensure the positivity of a2
HEM . For all couple (τ, P ) in

◦

D2Φ, we have:

a2
HEM =

(
P
ρ − ρ∂ρ (e)

)

ρ∂P (e)
(30)

with: (
P

ρ
− ρ∂ρ (e)

)
= ρ∂ρ (Ceq) (hs

v − hs
l )
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∂P (e) = −τ + ∂P (Ceq) (hs
l − hs

v) + Ceq
d

dP
hs

l + (1 − Ceq)
d

dP
hs

v

Nonetheless it can be shown that, with our choices for the saturation curves and for the chosen perfect
gas coefficients, P

ρ − ρ∂ρ (e) and ∂P (e) remain positive inside the two-phase domain D2Φ.

C. Some positivity results for the HEM model

Again, if we consider smooth solutions of the HEM model (28), with positive initial conditions and -inlet-
boundary conditions for ρ and P , we are ensured that the mean density will remain positive, and also that
the mean pressure P will remain positive for (x, t) ∈ Ω × [0, T ] provided that U , γ̂HEM and ∂x (U) lie in
L∞(Ω × [0, T ]) (for more details, see Appendix 4).

However, nothing guarantees that for smooth solutions, ρ will agree with ρ > (τs
v (P ))−1 and P will

remain in [PMIN , PMAX ]. In practice, the computation is stopped if one of these events occurs.
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IV. A method to couple HEM and HRM models

We want to couple an ”HEM” code and an ”HRM” code through an interface x = 0. The HEM domain
will correspond to x < 0, and the HRM domain to x > 0 (see figure 1) .

One of the main difficulties which arise when one aims at coupling the HRM and HEM models is due to
the fact that the liquid mass fraction C is governed by a PDE in the HRM, and issues from a local constraint
C = Ceq(P, ρ) in the HEM model. We propose to couple both models using a ”father interface model”
with an instantaneous relaxation process at the interface. In26 , a similar approach was used to couple a
one dimensional code and a two dimensional code, following ideas from21 . In the present approach, we
rather choose to proceed as in2,4 . The main advantage is that one can get rid of the possible resonance
phenomenon, since the set of right eigenvectors of the model we propose spans the whole phase space.

A. The interface model

We first rewrite the HEM set of equations. This is achieved introducing a PDE with a source term containing
an instantaneous relaxation term:

∂t (ρC) + ∂x (ρUC) = µρ(Ceq(P, ρ) − C)

The set of equations for the HEM model (using the confusing notation E instead of EHEM on purpose) thus
writes (for x ∈ R− and t ∈ R+) :





∂t (ρC) + ∂x (ρUC) = µρ(Ceq(P, ρ) − C)

∂t (ρ) + ∂x (ρU) = 0

∂t (ρU) + ∂x

(
ρU2 + P

)
= 0

∂t (ρE) + ∂x (U(ρE + P )) = 0

(31)

with the parameter µ > 0. We also recall that the governing equations for (x, t) ∈ R+ × R+ are given by
the HRM model (4), (5), (10).

We may now introduce the ”father model”. For that purpose we define a new variable Y (x, t) depending
on time and space, which is usually called the ”color variable”. The ”father model” is governed by the
following set of equations (for x ∈ R and t ∈ R+):





∂t (ρC) + ∂x (ρCU) = ρT

∂t (ρ) + ∂x (ρU) = 0

∂t (ρU) + ∂x

(
ρU2 + P

)
= 0

∂t (ρE) + ∂x (U(ρE + P )) = 0

∂t (ρY ) + ∂x (ρUY ) = λ(Y0 − Y )

(32)

with:

E = Y eHRM (P, ρ, C) + (1 − Y )eHEM (P, ρ) +
u2

2

and
T = Y Γ + (1 − Y )µ(Ceq − C)

At the time t = 0 we initialize Y (x, 0) = Y0(x) such that Y0(x) = 1 if x is in the HRM domain and Y0(x) = 0
if x is in the HEM domain. In the following the parameters λ and µ will formally be set to +∞ (instanta-
neous relaxation).

We may define a sound speed a for this interface model, which reads:

a2 =
a2

HRMY ∂P (eHRM ) + a2
HEM (1 − Y )∂P (eHEM )

Y ∂P (eHRM ) + (1 − Y )∂P (eHEM )
(33)

Property 5

The convective part of system (32) is hyperbolic if (C, ρ, P ) ∈ DHRM and (ρ, P ) ∈ DHEM .
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Proof
Starting from (32), and focusing on regular solutions, the convective part of the first three equations and
the fifth equation may be rewritten as follows:





∂t (C) + U∂x (C) = 0

∂t (ρ) + U∂x (ρ) + ρ∂x (U) = 0

∂t (U) + U∂x (U) + τ∂x (P ) = 0

∂t (Y ) + U∂x (Y ) = 0

(34)

Meanwhile, the total energy equation is equivalent to:

{
(Y ∂P (eHRM ) + (1 − Y )∂P (eHEM ))(∂t (P ) + U∂x (P ))

+(Y ∂ρ (eHRM ) + (1 − Y )∂ρ (eHEM ))(∂t (ρ) + U∂x (ρ)) + (P/ρ)∂x (U) = 0
(35)

Thus, using definitions of aHRM and aHEM from (17) and (29), the definition of a given by (33) and applying
(34) enables to derive the governing equation for the mean pressure as:

∂t (P ) + U∂x (P ) + ρa2∂x (U) = 0

We know from the study of the HEM and HRM models that ∂P (eHRM ), a2
HRM are positive if (C, ρ, P ) is in

the domain DHRM , and that ∂P (eHEM ), and a2
HEM are positive if (ρ, P ) lie in DHEM . Furthermore, the

system (32) ensures that if Y0 is in [0, 1], Y remains in [0, 1]. Hence a2 is positive. Therefore, a straightforward
and classic calculation enables to exhibit eigenvalues:

λ1,2,3 = U, λ4 = U − a, λ5 = U + a

One may easily check that the associated right eigenvectors span R5. We may then conclude that the
convective part of system (32) is hyperbolic if (C, ρ, P ) ∈ DHRM and (ρ, P ) ∈ DHEM .

B. Numerical scheme

All methods described herein rely on the Finite Volume method (12,19) . We restrict here to the so-called
”first-order” schemes. As an approximate Godunov scheme, we will apply VFRoe-ncv using the non con-
servative variable (ρ, U, P ) for the HEM system and (ρ, U, P,C) for the HRM system (see7,15 for details on
these approximate Godunov schemes). The coupling interface model which has been introduced above will
be used to compute ”fluxes” at the interface between the two domains.

HEM HRM

Interface Model

−1/2−5/2 −3/2 3/2 5/21/2

x=0

x
∆x

......

Figure 1. Notations and models.

Let us introduce a fixed uniform mesh space ∆x and a time step ∆t in agreement with a CFL condition.
We set for all integers j and n ,

xj+1/2 = (j +
1

2
)∆x, xj = j∆x, tn = n∆t

The cell j + 1/2 is delimited by the interface j located in xj and the interface j + 1 located in xj+1, and its
center is denoted by xj+1/2. The interface j = 0 is the coupling interface. The variable Wn

j+1/2 stands for
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the variable W at the time tn in the cell j + 1/2. The HEM domain (and the HRM domain respectively) is
composed of all the cells j +1/2 < 0 (respectively of all the cells j +1/2 > 0, see figure 1). The conservative
variables will be denoted by WHEM = (ρ, ρU, ρEHEM )> in the HEM domain, WHRM = (ρC, ρ, ρU, ρEHRM )>

in the HRM domain and by WINT = (ρC, ρ, ρU, ρE, ρY )> for the interface model.

We assume that Y n
j+1/2 = 0 for all j + 1/2 < 0 and Y n

j+1/2 = 1 for all j + 1/2 > 0 at a discrete time

tn. The numerical scheme which is used to compute the variable at time step tn+1 = tn + ∆t contains three
steps:

1) A convection step, tn → tñ.

2) An instantaneous relaxation on Y , tñ → tn̂.

3) A finite relaxation step, tn̂ → tn+1.

1. The convection step, tn → tñ

This step of the scheme does not take into account the different source terms. The fluxes are computed at
each interface j.

(i) For all interface j ≤ −1 (HEM domain) we apply the VFRoe-ncv scheme using the variable (ρ, U, P )>

on the convective part of the system (22). The flux is denoted Fn
HEM,j .

(ii) For all interface j ≥ 1 (HRM domain) we apply VFRoe-ncv scheme using the variable (C, ρ, U, P )> on
the convective part of the system (4). The flux is denoted Fn

HRM,j .

(iii) At j = 0 (the coupling interface) the flux is built with a modified VFRoe-ncv scheme which uses the
variable (C, ρ, U, P, Y )> in order to compute approximate interface states in the solution of the one-
dimensional Riemann problem associated with the system (32). The left state in the initial condition
of the Riemann problem is

((ρCeq(P, ρ))n
−1/2, ρ

n
−1/2, (ρU)n

−1/2, (ρEHEM )n
−1/2, (ρY )n

−1/2)
>

and the right state in the initial condition is

((ρC)n
1/2, ρ

n
1/2, (ρU)n

1/2, (ρEHRM )n
1/2, (ρY )n

1/2)
>

The flux is denoted Fn
INT . Details on the computation of Fn

INT are given in Appendix 1.

Once the fluxes have been computed for all interfaces, the value of the cell is updated using the formula:

• If j + 1/2 ≤ −3/2

W ñ
HEM,j+1/2 − Wn

HEM,j+1/2 +
∆t

∆x

(
Fn

HEM,j − Fn
HEM,j−1

)
= 0

• If j + 1/2 ≥ 3/2

W ñ
HRM,j+1/2 − Wn

HRM,j+1/2 +
∆t

∆x

(
Fn

HRM,j − Fn
HRM,j−1

)
= 0

• If j + 1/2 = −1/2
(

WHEM

ρY

)ñ

−1/2

−
(

WHEM

ρY

)n

−1/2

+
∆t

∆x

(
(F2−5)

n
INT −

(
Fn

HEM,−1

(ρUY )n
HEM,−1

))
= 0

The flux (F2−5)
n
INT is composed of the second, third, fourth and fifth components of Fn

INT

• If j + 1/2 = 1/2
(

WHRM

ρY

)ñ

1/2

−
(

WHRM

ρY

)n

1/2

+
∆t

∆x

((
Fn

HRM,1

(ρUY )n
HRM,1

)
− Fn

INT

)
= 0

An important point to underline is that: Y ñ
j+1/2 = Y n

j+1/2 in all the cells, except in the cell j = 1/2 if

Un
INT > 0 and in the cell j = −1/2 if Un

INT < 0.
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2. Instantaneous relaxation step, tñ → tn̂

For this step we consider the ODE system on the whole domain (x ∈ R):





∂t (ρC) = 0

∂t (ρ) = 0

∂t (ρU) = 0

∂t (ρE) = 0

∂t (ρY ) = λ(Y0 − Y ) with λ = +∞

⇐⇒





∂t (ρC) = 0

∂t (ρ) = 0

∂t (ρU) = 0

∂t (ρE) = 0

Y = Y0

(36)

This can be rewritten in terms of discrete variables (for all k) as:





(ρC)n̂
k = (ρC)ñ

k

ρn̂
k = ρñ

k

(ρU)n̂
k = (ρU)ñ

k

(ρE)n̂
k = (ρE)ñ

k

Y n̂
k = Y 0

k

and thus





Cn̂
k = Cñ

k

ρn̂
k = ρñ

k

U n̂
k = U ñ

k

en̂
k = eñ

k

Y n̂
k = Y 0

k

(37)

This step is totally transparent with respect to physical conservative variables. Let us call k the cell j + 1/2
for which Y ñ

j+1/2 6= Y n
j+1/2, for all the other cells we have Y ñ

j+1/2 = Y 0
j+1/2. The fourth equation of (37)

implies that the pressure changes in the cell k during the current step. Indeed equations (37) imply:

e(P n̂
k , ρñ

k , Cñ
k , Y n̂

k ) = e(P ñ
k , ρñ

k , Cñ
k , Y ñ

k ) (38)

Thus Y n̂
k 6= Y ñ

k implies that P n̂
k 6= P ñ

k .

3. The finite time relaxation step, tn̂ → tn+1

In this final step we compute the source term T . In the HEM domain (that is: x < 0), this simply corresponds
to the following update:

Cn+1 = Ceq(P
n̂, ρn̂)

In the HRM domain (that is: x > 0), it urges to find approximations of





∂t (ρC) = ρΓ

∂t (ρ) = 0

∂t (ρU) = 0

∂t (ρE) = 0

(39)

In terms of the non-conservative variables (C, ρ, U, P ), and restricting to regular solutions, (39) is equivalent
to: 




∂t (C) = Γ

∂t (ρ) = 0

∂t (U) = 0

∂t (P ) = −(∂P (eHRM ))−1∂C (eHRM ) Γ

(40)

The time scheme which is used to discretize (40) is detailed in Appendix 2. It provides Cn+1 and Pn+1,
while we get ρn+1 = ρn̂ and Un+1 = U n̂. The final update of conservative variables is achieved through:





(ρC)n+1 = ρn̂Cn+1

ρn+1 = ρn̂

(ρU)n+1 = (ρU)n̂

(ρE)n+1 = ρn̂
(
eHRM (Pn+1, ρn̂, Cn+1, Y n̂) + (U n̂)2

2

)

(ρY )n+1 = (ρY )n̂

(41)
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C. Remark 6:

• The convection step (thanks to the VFRoe-ncv scheme and the respect of the CFL condition) and
the instantaneous relaxation step maintain the discrete liquid mass fraction Cn̂ in [0, 1]. Moreover, if
the discrete values of the equilibrium liquid mass fraction Ceq remain in [0, 1] during the finite time
relaxation computation, Cn+1 will remain in [0, 1] (see Appendix 2).

• The introduction of the fictitious variable Y does not lead to any modification of the left and right
codes. Actually, the convection step implicitly provides boundary conditions on both sides of the
coupling interface.
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V. Numerical results

Many test cases involving single waves, and in particular contact waves enable us to check that numerical
methods used within each code are well-suited. More precisely, the exact analytical form of the internal
energy, for both the HEM and the HRM models, is such that the approximate Godunov scheme VFRoe-ncv
(using variables U,P, ρ and U,P, ρ, C for HEM and HRM models respectively) perfectly preserves these pure
contact waves on coarse and fine meshes (see14). This is still true for the coupled HEM/HRM model, for
similar reasons (see Appendix 3).

The different parameters will be set as follows:

PMIN = 0.1 105 Pa and PMAX = 200 105 Pa

γl = 1.001 and γv = 1.4

The form of the saturation curves is obtained using the following numerical values:

hs
l = AlP + Bl hs

v = AvP + Bv

with the coefficients:

Al = 8.18 10−2 Bl = 1.91 105 Av = −8.32 10−3 Bv = 2.58 106 (42)

The whole data correspond to nuclear cooling conditions.

We successively consider two different test cases which correspond to:

• the computation of Riemann problems including shock waves, contact waves and rarefaction waves,

• a schematic computation of the flow in the coolant circuit of a nuclear power plant.

A. Riemann problems

We consider in this section a computational domain : x ∈ [−1, 1] which is discretized using a uniform mesh.
We will compare for different mesh sizes, the results obtained with:

• The Homogeneous Equilibrium Model over the whole computational domain,

• The Homogeneous Relaxation Model over the whole computational domain,

• The coupling configuration in which HEM is used for x < 0, HRM is used for x > 0, and the coupling
technique described in section IV is applied for x = 0.

Hence, we will be able to compare the results of the coupled case with those obtained with a ”reference
solution”, which will correspond with either the HRM results (or the HEM results) computed on a very fine
mesh. In the nuclear community, the most widely used reference is the HRM model.

We focus here on test cases that are based on Riemann problems, where the initial discontinuity will be
located either in the HEM code (x = −0.25), or in the HRM code ( x = +0.25), as described in figures 2 and
3. The main goal here is to observe the behavior of transmitted and reflected waves through the interface
x = 0, and the numerical pollution due to the coupling scheme.

We emphasize that :

• Three different meshes will be used. An ”industrial” mesh with 100 cells (fifty cells within each code),
a medium size mesh with 500 cells, and a fine mesh including 10000 cells that will provide ”almost
converged” solutions.

• Rarefaction waves will be investigated, with special emphasis on the reflected and transmitted waves
through the coupling interface. The counterpart including the propagation of shock waves through the
coupling interface is reported in27 . Rarefaction waves are of special interest in the nuclear framework,
since the smooth solution corresponds to the Loss Of Coolant Accident (LOCA).
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Figure 2. First configuration for initial data, the initial discontinuity is in the HEM domain
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Figure 3. Second configuration for initial data, the initial discontinuity is in the HRM domain

• The time relaxation parameter τ0 = 10−3 will be used. (similar tests with a different time scale τ0 = 1
are reported in27) . In fact, when τ0 decreases, the similarity in the behaviour of the HRM and the
HEM models improves.

In each case, two series of results are shown:

• We have gathered computations for the HEM model, HRM model and the HEM/HRM simulation on
coarse meshes in order to highlight the influence of the coupling in industrial configuration (see figures
4 and 6).

• Fine mesh computations for the HEM model and HRM model have been performed. They are plotted
together with the results of the HEM/HRM simulation for all the meshes on the figure 5 and 7.

Hence, results include (see figures 4, 6):

• a computation of the HEM model on the whole domain, using a mesh with 100 cells (circles);

• a computation of the HRM model on the whole domain, using a mesh with 100 cells (triangles);

• a computation of the coupled case HEM (x < 0)-HRM (x > 0), using a mesh with 100 cells (plain
line).

.
A comparison is also made between results for (see figures 5,7):

• the ”converged” HEM model on the whole domain, using a mesh with 10000 cells (circles);

• the ”converged” HRM model on the whole domain, using a mesh with 10000 cells (triangles);
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• the ”converged” coupled case HEM (x < 0)-HRM (x > 0), using a mesh with 10000 cells (plain line);

• the coupled case HEM (x < 0)-HRM (x > 0), using coarse meshes with 100, 500 cells ( dotted line,
dashed line).

.
In each case we plot numerical results before the contact discontinuity hits the coupling interface x = 0.

The time step agrees with the classical CFL condition . The implicit treatment of source terms implies no
additional constraint. Numerical experiments include:

• a rarefaction wave travelling from the HEM code to the HRM code;

• a rarefaction wave travelling from the HRM code to the HEM code

The dual case of shock waves is investigated in27 , and the last industrial test case contains such a configu-
ration.
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1. Test 1 : A rarefaction wave traveling from HEM domain to HRM domain

Initial conditions are :

domain : HEM HEM HRM

U 0 0 0

P 158e5 160e5 160e5

ρ 990 1000 1000

C none none 0.979212418

Ceq 0.979261526 0.979212418 0.979212418

The initial discontinuity has been set at x = −0.25, that is inside the HEM domain. A rarefaction wave trav-
els towards the right and goes through the coupling interface (x = 0), a shock wave travels to the left, and is
followed by a left-going contact discontinuity. Results have been plotted at time t = 0.025. We notice that for
the HEM computation, the whole right-going rarefaction wave has passed the coupling interface at that time.

Associated results for the sole HRM model are indeed rather close to the solutions computed with the
sole HEM model. Turning then to the coupled situation, we note that the rarefaction wave coming from
the HEM code does not introduce too much pollution when passing through the coupling interface, though
one can notice a sharp behaviour of the pressure field around x = 0, when the mesh is too coarse (100
cells, corresponding to the plain line on figure 4). In the coupled computation, the approximate solution in
the HRM domain (respectively in the HEM domain) tends to stick immediately to the pure HRM solution
(respectively to the pure HEM solution).

Another point seems worth being underlined. On the coarser mesh, one can notice (see figure 4 and 5
for instance) a sharp variation on velocity and density profiles which is located around the steady interface
x = 0 . This pollution tends to decrease and clearly moves away from this interface when the mesh is refined.
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Figure 4. Test 1. Constant time scale τ0 = 10−3. Circles=HEM 100 cells, triangles=HRM 100 cells,
line=HEM/HRM 100 cells, dashed line=HEM/HRM 500 cells.
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Figure 5. Test 1. Constant time scale τ0 = 10−3. Circles=HEM 10000 cells, triangles=HRM 10000 cells,
line=HEM/HRM 10000 cells, dashed line=HEM/HRM 500 cells, dot line=HEM/HRM 100 cells.
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2. Test 2 : A rarefaction wave traveling from HRM domain to HEM domain

Initial conditions are now the following:

domain : HEM HRM HRM

U 0 0 0

P 160e5 160e5 158e5

ρ 1000 1000 990

C none 0.979212418 0.979261526

Ceq 0.979212418 0.979212418 0.979261526

The initial discontinuity is now in the HRM domain, and is located at x = 0.25. A rarefaction wave travels
to the left and goes through the coupling interface (x = 0). Meanwhile a shock wave travels to the right
boundary, and is followed by a contact discontinuity that travels towards the right. Results are still plotted
at time t = 0.025. At that time, the left-going rarefaction wave is entirely in the HEM domain in the sole
HEM computation.

Remarks pertaining to the previous test case still hold. The mesh refinement helps much to improve
the accuracy of the approximate solution in each subdomain. In the coupled simulation, the approximate
solution is much more monotone around the coupling interface when the mesh is refined (see figure 7).
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Figure 6. Test 2. Constant time scale τ0 = 10−3. Circles=HEM 100 cells, triangles=HRM 100 cells,
line=HEM/HRM 100 cells, dashed line=HEM/HRM 500 cells.
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Figure 7. Test 2. Constant time scale τ0 = 10−3. Circles=HEM 10000 cells, triangles=HRM 10000 cells,
line=HEM/HRM 10000 cells, dashed line=HEM/HRM 500 cells, dot line=HEM/HRM 100 cells.

23 of 40

A method to couple HEM and HRM two-phase flow models



B. Test 3 : A test case in a nuclear power plant

The next test case corresponds to the schematic one dimensional flow in a nuclear power plant. The length
of the pipes is 80 m. It includes a part of the coolant circuit containing the core on the left side of the
coupling interface (i.e. −40 < x < 0) where the governing set of equations is the HEM model. The core is
located in the interval [−22,−18]. The total length of the core is the true core length (buoyancy effects can
be neglected). The core section is equal to 3.5 m2. The HRM model is used on the right side of the coupling
interface (i.e. 0 < x < 40). Before the beginning of the computation, the velocity, density and pressure
profiles are uniform and equal to: U = 10 ms−1, ρ = 700 kgm−3, P = 150 105 Pa ; moreover C = Ceq(P, ρ)
in the HRM part of the coolant circuit. The fluid is not heated before the beginning of the computation,
and the core is suddenly plugged in the coolant circuit at that time. Then the heat source Φ(x, t > 0) is
equal to 0 outside the core. Within the core region (x ∈ [−22,−18]), and for t > 0, the uniform local heat
source is Φ(x, t) = Φ0 = 300.106/4. Thus, within the core region, the total heat power is 300 × 106W .

In this particular test case the constants Av, Bv, Al, and Bl have been estimated with PMIN = 140 105 Pa
and PMAX = 160 105 Pa using the Thetis software30 . The uniform mesh contains 500 nodes. The governing
set of equations in the left part is the set of equations of the HEM model (22) with an equation for the total
energy which takes the heat source into account:

∂t (ρE) + ∂x (U(ρE + P )) = Φ(x, t)

Results have been plotted at four distinct instants.

• At t = T1, the right-going shock wave, which is coming from the right side of the core, and which is
due to the sudden heating in the core region, has not hit the coupling interface yet (dashed line on
figure 8).

• At t = T2, the same right-going shock wave has already moved through the coupling interface (plain line
on figure 8). One can easily observe at t = T2 the reflected wave in the interval [−10, 0], either focusing
on the pressure profile, the density profile or the velocity profile. The amplitude of this reflected wave
is small compared with the one of the associated shock wave.

• At t = T3, the right-going contact wave has not passed the coupling interface yet (dashed line on figure
9). This contact wave is of course characterized by locally uniform pressure and velocity profiles. At
that time, the right going shock wave has not reached the right exit. The behaviour of the coupling
interface seems almost perfect, which is in agreement with test cases involving a contact wave travelling
from the HEM domain towards the HRM domain (see27) .

• At t = T4, the contact wave is on the right side of the coupling interface (x = 0) (plain line on figure
9). Once again, everything is correct around the coupling interface (x = 0). At that time t = T4, the
right-going shock wave has gone outside the computational domain. One can notice the influence of
the right exit boundary which generates a reflected wave in the computational domain. This is due to
the fact that crude ”Neumann-type” boundary conditions have been imposed in this test case.
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Figure 8. Test 3. Interaction of the shock wave with the coupling interface. Dashed line (t = T1): the shock
wave has not hit the coupling interface. Plain line (t = T2) : the shock wave has passed the coupling interface.
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Figure 9. Test 3. Interaction of the contact wave with the coupling interface. Dashed line (t = T3): the contact
wave has not hit the coupling interface. Plain line (t = T4) : the contact wave has passed the coupling interface.
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VI. Conclusion

In this paper, we study the coupling of two different codes that provide numerical approximations of
HEM and HRM models when applying industrial closure laws. It may be seen as a companion work of2

in which different coupling techniques are proposed - including the state coupling and the flux coupling
approaches - and compared in an idealized thermodynamic frame. Here, we analyze one of these methods
when the thermodynamic closures mimick the ones used in industrial codes. The two models HEM and HRM
have been recalled, together with closure laws including EOS. We have chosen here a coupling method, that
makes use of relaxation techniques. It is essentially different from the one that has been investigated in,26

which basically relies on ideas introduced by Greenberg and Le Roux (21) . Its simplicity is appealing, and
it enables us to circumvent the tough problem of resonance at the coupling interface.

Some properties of both models, and the main properties of algorithms involved in associated codes have
been given or recalled. Some properties of the coupling method have also been detailed. One may say
that the whole approach is rather efficient, and we would like to emphasize the rather nice behaviour of
the coupled approach when contact waves travel through the coupling interface. The reader must be aware
that some numerical properties deeply rely on the approximate Godunov schemes (14) which are used in
both codes. The coupling approach preserves the conservative form of mass, momentum and total energy
equations. It also seems worth emphasizing the following features:

• If one restricts to coarse meshes, which is obviously the correct framework for industrial applications,
it also occurs that incompatibilities between formulations may be smoothed with this formulation,
owing to the dissipative nature of upwinding techniques which have been applied inside codes and at
the coupling interface. This is indeed flagrant if one focuses on relaxation time scales. Some of the
numerical results presented in27 confirm that one can cope with decorrelated signals (owing to very
large relaxation times in the HRM model) on coarse meshes, but that this no longer holds when refining
the mesh. This is much in favour of the present coupling approach, since it may be understood as a
tool which automatically checks whether both models on each side of the interface are in agreement or
not.

• A much deeper insight on thermodynamics is actually deserved. On the basis of4 , we know that small
discrepancies among EOS may result in rather high differences in results. Special emphasis should be
given on the respective saturation curves for the liquid phase and the vapour phase. Some comments
may be picked up in this manuscript, which might perhaps help improving the global formulation (see
Appendix 4). The reader is also referred to.8,28

• In this work, we have focused on compatible closure laws for the HEM and HRM models, and this
results in a rather good behaviour in the coupling of both models. We recall that the case of the
interfacial coupling of models involving different thermodynamics has been examined in4 and.10 It
clearly suggests that it would be a better idea to use the same thermodynamic tables in both codes.

• Another problem concerns the formulation of mass transfer terms. The one which has been considered
here relies on: Γ = K(1 − C)C(hs

l (P ) − hl(P, ρl)). Alternative formulations that preserve entropic
properties should actually be preferred (see for instance8,9, 28).

• Eventually, we would like to emphasize that the underlying ideas of the present work have been used
in order to couple a six-equation two-phase flow model together with the HRM model (see24,25).
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VII. Appendix 1: The VFRoe-ncv scheme and its modified version

A. The VFRoe-ncv scheme

We define herein the basic first order approximate Godunov scheme and restrict to regular meshes of size
∆x such that: ∆x = xi+ 1

2
− xi− 1

2
, i ∈ Z. We denote ∆t the time step, where ∆t = tn+1 − tn, n ∈ N. In

order to approximate solutions of the exact solution W ∈ R
p of the conservative hyperbolic system:

{
∂t (W ) + ∂x (F (W )) = 0

W (x, 0) = W0(x)

with F (W ) in R
p. Let Wn

i be the approximate value of
1

∆x

∫ x
i+ 1

2

x
i−

1
2

W (x, tn)dx. Integrating over [xi− 1
2
;xi+ 1

2
]×

[tn; tn+1] provides:

Wn+1
i = Wn

i − ∆t

∆x

(
φn

i+ 1
2

− φn
i− 1

2

)

The numerical flux φn
i+ 1

2

through the interface {xi+ 1
2
} × [tn; tn+1] is defined below. The time step must

agree with a CFL condition detailed below. The flux φn
i+ 1

2

depends on Wn
i and Wn

i+1 when restricting to

first order schemes. The approximate Godunov flux φ(WL,WR) is obtained by solving exactly the following
linear 1D Riemann problem: 




∂t (Y ) + B(Ŷ )∂x (Y ) = 0

Y (x, 0) =

{
YL if x < 0

YR otherwise

(43)

and initial condition: YL = Y (Wi) and YR = Y (Wi+1). The matrix B is defined as:

B(Y ) = (W,Y (Y ))−1A(W (Y )) W,Y (Y )

where A(W ) is the Jacobian matrix of flux F (W )). Once the exact solution Y ∗(x
t ;YL, YR) of this approximate

linear problem (43) is obtained, the numerical flux is defined as:

φ(WL,WR) = F (W (Y ∗(0;YL, YR)))

Let us set l̃k, λ̃k and r̃k, k = 1, ..., p, left eigenvectors, eigenvalues and right eigenvectors of matrix B(Ŷ )
respectively. The solution Y ∗(x

t ;YL, YR) of the linear Riemann problem is defined everywhere (except along
x
t = λ̃k):

Y ∗
(x

t
;YL, YR

)
= YL +

∑

x

t
>fλk

(t l̃k.(YR − YL))r̃k

= YR −
∑

x

t
<fλk

(t l̃k.(YR − YL))r̃k

The only remaining unknown is the mean Ŷ which must comply with the condition:

Ŷ (Yl = Y0, Yr = Y0) = Y0

The standard average which is used is:

Ŷ (YL, YR) = (YL + YR)/2

The explicit form of the approximate Godunov scheme will be:

Wn+1
i − Wn

i +
∆t

∆x

(
F (W (Y ∗(0;Y n

i , Y n
i+1))) − F (W (Y ∗(0;Y n

i−1, Y
n
i )))

)
= 0
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Remark. A different prediction is obtained using instead:

Ŷ (YL, YR) = Y ∗(0;YL, YR)

where the approximate value at the interface Y ∗(0;YL, YR) is obtained solving (43) with:

Ŷ (YL, YR) = (YL + YR)/2

This correspond to the WFRoe-ncv scheme.

B. The classical VFRoe-ncv scheme for the interface model

We present here the VFRoe-ncv scheme for the system (32) using the variable Z> = (C, ρ, U, P, Y ). We
denote by W the conservative variable, W> = (ρC, ρ, ρU, ρE, ρY ). The Jacobian matrix associated to the
flux F (Z)> = (ρUC, ρU, ρU2 + P,U(ρe(P, ρ, C, Y ) + ρU2/2 + P ), ρUY ) is equivalent to B(Z):

B(Z) =




U 0 0 0 0

0 U ρ 0 0

0 0 U 1/ρ 0

0 0 ρa2 U 0

0 0 0 0 U




where a is defined by the formula (33).

Remark. Owing to the block-diagonal structure of B(Z), it is easy to pick out information about the structure
of the Jacobian of the HRM system (4) with a2 defined by (17) or the HEM system (22) with a2 defined by
(29).

The eigenvalues λi and the corresponding right eigenvectors ri are:

λ1 = U − a; r>1 = (0, 1,−a/ρ, a2, 0)

λ2 = U ; r>2 = (1, 0, 0, 0, 0)

λ3 = U ; r>3 = (0, 1, 0, 0, 0)

λ4 = U ; r>4 = (0, 0, 0, 0, 1)

λ5 = U + a; r>5 = (0, 1,+a/ρ, a2, 0)

The matrix of the right eigenvectors is Ω = (r2, r3, r1, r5, r4) and:

Ω(Z) =




1 0 0 0 0

0 1 1 1 0

0 0 −a/ρ a/ρ 0

0 0 a2 a2 0

0 0 0 0 1




Ω(Z)−1 =
−ρ

2a3




−2a3/ρ 0 0 0 0

0 −2a3/ρ 0 2a/ρ 0

0 0 a2 −a/ρ 0

0 0 −a2 −a/ρ 0

0 0 0 0 −2a3/ρ




We define the vector α> = (α2, α3, α1, α5, α4) as:

α = Ω(Z̄)−1(ZR − ZL)

where ZR and ZL are the right and left states of the Riemann problem, and Z̄ = ZR+ZL

2 . The solution of
the linearized Riemann problem associated to J(Z̄) and the states (ZR, ZL) is (see figure (10)),

Z(x/t;ZL, ZR) = ZL +
∑

λ̄i<x/t

αir̄i = ZR −
∑

λ̄i>x/t

αir̄i (44)
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with:
λ̄i = λi(Z̄) and r̄i = ri(Z̄)

This can be written in a slightly different form:

Z(x/t;ZL, ZR) =





ZL if x/t < λ̄1

Z1 if λ̄1 < x/t < λ̄2

Z2 if λ̄2 < x/t < λ̄5

ZR if λ̄5 < x/t

x

t

Z2

Z1

ZL

Z R

x/t

λ

λ

λ1

2,3,4

5

−
−

−

Figure 10. The four different states of the solution of the linearized Riemann problem

We set ∆Φ = ΦR − ΦL. If we apply the formula (44) we find that the two intermediate states are:

Z1 =




CL

ρL + ∆P
2ā2 − ρ̄∆U

2ā

Ū − ∆P
2ρ̄ā

P̄ − ρ̄ā∆U
2

YL




Z2 =




CR

ρR − ∆P
2ā2 − ρ̄∆U

2ā

Ū − ∆P
2ρ̄ā

P̄ − ρ̄ā∆U
2

YR




In the above formulas ā is the sound speed calculated at the average state Z̄, that is ā = a(Z̄). The numerical
flux for the classical VFRoe-ncv scheme is computed using Z∗ = Z(x/t = 0;ZL, ZR) (for example in the
configuration of the figure (10) Z∗ = Z1).

Remark. • The classical VFRoe-ncv scheme using variables (ρ, U, P ) for the HEM model (22):
The linear Riemann Problem associated to the system (22) has two intermediate states as shown in
figure (10). The intermediate states are:

Z1 =




ρL + ∆P
2ā2

HEM

− ρ̄∆U
2āHEM

Ū − ∆P
2ρ̄āHEM

P̄ − ρ̄āHEM
∆U
2


 Z2 =




ρR − ∆P
2ā2

HEM

− ρ̄∆U
2āHEM

Ū − ∆P
2ρ̄āHEM

P̄ − ρ̄āHEM
∆U
2




• The classical VFRoe-ncv scheme using variables (C, ρ, U, P ) for the HRM model (4): The linear Rie-
mann Problem associated to the system (4) has two intermediate states as shown in figure (10). The
intermediate states are:

Z1 =




CL

ρL + ∆P
2ā2

HRM

− ρ̄∆U
2āHRM

Ū − ∆P
2ρ̄āHRM

P̄ − ρ̄āHRM
∆U
2




Z2 =




CR

ρR − ∆P
2ā2

HRM

− ρ̄∆U
2āHRM

Ū − ∆P
2ρ̄āHRM

P̄ − ρ̄āHRM
∆U
2



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C. A modified VFRoe-ncv scheme for the interface model

This modified VFRoe-ncv scheme for the interface model differs from the classical VFRoe-ncv scheme in the
choice of the average state which is not a classical average. We use here the ”average state”:

Z̃> = (C̄, ρ̄, Ū , P̄ , Ỹ ); Ỹ =

{
0 if Ū > 0

1 if Ū < 0

This implies that the sound speed ā = a(P̄ , ρ̄, C̄, Ȳ ) is replaced by,

ã =

{
aHEM (P̄ , ρ̄) if Ū > 0

aHRM (P̄ , ρ̄, C̄) if Ū < 0

This provides a new solution Z# (note that Y # = Ỹ ). If we then explicit the numerical flux we find:

F (Z#)> = ((ρUC)#, (ρU)#, (ρU2 + P )#, (U(ρe(P, ρ, C, Y ) + ρU2/2 + P ))#, (ρUY )#)

with,

e# =

{
eHEM (P#, ρ#) if Ū > 0

eHRM (P#, ρ#, C#) if Ū < 0

Eventually, if Ū > 0, this is equivalent to apply the VFRoe-ncv scheme to the HEM system (31) with in
addition the equations on Y and C of (32); if Ū < 0, this is equivalent to apply the VFRoe-ncv scheme to
the HRM system (4) with in addition the equation on Y of (32).
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VIII. Appendix 2: Computation of C
n+1 and P

n+1 for

the finite time relaxation step

In order to compute the finite relaxation step we need to explain how Cn+1 and Pn+1 are updated. They
are the solution at the time ∆t of the system (ODE) composed by the first and fourth equations of (40)
with the initial condition: C(t = 0) = Cn̂ and P (t = 0) = P n̂.

The main time step ∆t is cut into N small uniform time steps δt = ∆t/N. In the following Ci and Pi will
stand for the successive approximations of C and P at the successive times t = i × δt. Thus we will have:

C0 := Cn̂ and P0 := P n̂

Cn+1 := CN and Pn+1 := PN

The chain rule which provides (Ci+1, Pi+1) in terms of (Ci, Pi) is the following:

• Ci+1 is the exact solution at the time t = δt of the ODE system:

{
d
dtC(t) = Γ(Pi, ρ

n̂, C(t))

C(t = 0) = Ci

(45)

where we have,

Γ(Pi, ρ
n̂, C(t)) = (1 − C(t))

(
Ceq(Pi, ρ

n̂) − C(t)
) 1

Θ(Pi, ρn̂, τ0)

with the time scale,

Θ(P, ρ, τ0) =
τ0

G2(P, ρ)
(46)

where G2 defined by equation (18). We impose that the numerical approximation Ci+1 respects the
relations:

(Ci+1 − Ceq(Pi, ρ
n̂))(Ci − Ceq(Pi, ρ

n̂)) > 0 (47)

(1 − Ci+1)(1 − Ci) > 0 (48)

This relation corresponds to the fact that the analytical solution C(t) of (45) can not cross the poles
C = Ceq(Pi, ρ

n̂) and C = 1.

We get Ci+1 = Ci if Ci = 1 and if Ci 6= 1,

Ci+1 =
bi+1 + Ceq(Pi, ρ

n̂)

1 + bi+1
(49)

with:

bi+1 =
Ci − Ceq(Pi, ρ

n̂)

1 − Ci
e(ai+1δt) (50)

ai+1 = −(1 − Ceq(Pi, ρ
n̂))

G2(Pi, ρ
n̂)

τ0
(51)

• To compute Pi+1, we use the fourth equation of the system (40) in the form

∂t (P ) = −(∂P (eHRM ))−1∂C (eHRM ) ∂t (C)

and we make a rough integration:

Pi+1 = Pi + δt(∂t (P ))(Pi, ρ
n̂, Ci+1, Y

n̂)

that is:

Pi+1 = Pi − (Ci+1 − Ci)

(
∂C (eHRM )

∂P (eHRM )

)
(Pi, ρ

n̂, Ci+1, Y
n̂)
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A numerical maximum principle :

We assume that Ceq(Pi, ρ
n̂) remains in [0, 1].

• We assume that 0 ≤ Ceq(Pi, ρ
n̂) ≤ Ci ≤ 1 :

This implies that bi+1 ≥ 0. Hence using the equation (49) we get:

0 ≤ Ci+1 ≤ 1

• We assume that 0 ≤ Ci ≤ Ceq(Pi, ρ
n̂) ≤ 1 :

This implies that bi+1 ≤ 0. We set,

H(b) =
b + Ceq(Pi, ρ

n̂)

1 + b
and J(b) = 1 − H(b)

Thus we have H(bi+1) = Ci+1 and J(bi+1) = 1 − Ci+1. When we examine the positivity of both H(b)
and J(b) we find that it is equivalent to the relation b ≥ −Ceq(Pi, ρ

n̂). This leads to the condition on
the time step δt:

δt ≥ 0

which is obviously fulfilled.

Hence we get for δt ≥ 0:
0 ≤ Ci+1 ≤ 1

We thus have the following property.

Property:

The following maximum principle holds for the finite time relaxation step.
If we assume that:

(i) the time step δt is positive,

(ii) the pole Ceq(Pi, ρ
n̂) of the ODE system (45) remains in [0, 1],

(iii) 0 ≤ Ci ≤ 1

Then we have 0 ≤ Ci+1 ≤ 1.

Remark. Actually, the only assumption is that Ceq(Pi, ρ
n̂) remains in [0, 1]. The finite time relaxation step

does not ensure that Ceq(Pi+1, ρ
n̂) will remain in [0, 1] (see appendix 4 for similar comments on Ceq).

32 of 40

A method to couple HEM and HRM two-phase flow models



IX. Appendix 3: On the discrete preservation of contact waves in HEM and

HRM models

A. HRM

This paragraph is strongly connected with the section dealing with the numerical schemes. It refers to the
work exposed in.14 We formally set Γ = 0 in the system (4). A pure contact solution is an analytical solution
of (4) (with Γ = 0) of the form: 




C(x, t) = C0(x − U0t)

ρ(x, t) = ρ0(x − U0t)

U(x, t) = U0

P (x, t) = P0

(52)

When the initial condition is such that the pressure and the velocity are uniform, the initial profiles of C and
density (i.e. C0(x) and ρ0(x)) are advected with speed U0. We say that the contact solution is preserved by
the conservative numerical scheme if the numerical approximations of the velocity and the pressure remain
constant in each cell of the discrete domain.

According to,14 the discrete contact solution is respected if two conditions are fulfilled:

(i) The internal energy must be of the form:

ρe = f1(P ) + ρf2(P ) + ρCf3(P ) (53)

(ii) The numerical flux involved in the conservative scheme preserves the contact solution.

Remark. The second point (ii) is achieved when using either the Godunov scheme or VFRoe-ncv scheme
with variables (C, ρ, U, P ).

The two conditions are necessary to preserve the discrete profiles of both U and P . If (i) is not fulfilled, the
contact solution will not be respected whatever the conservative numerical scheme is (even for the Godunov
scheme). We insist that whatever the continuous function defining the EOS (i.e. (P, ρ, C) 7→ eHRM (P, ρ, C))
for the HRM model is, the vector (52) is an analytical solution of the system (4) without any source term.

Rewriting (12) we find that the internal energy is of the form:

ρe = φ1(P ) + ρφ2(P ) + ρC(−φ2(P )) (54)

with:
φ1(P ) = (δl − 1)P

φ2(P ) =

[
(1 − δl

δv
)hs

v(P )

]

Hence this internal energy allows the discrete preservation of the contact wave since the condition (i) is
fulfilled. In our numerical tests the convective part of the HRM model will be computed using a VFRoe-ncv
scheme with variables (C, ρ, U, P ) that fulfills the condition (ii) (see14).

B. HEM

The internal energy of the HEM model takes the form:

ρe = φ4(P ) + ρφ5(P ) (55)

with:

• In the pure liquid domain Dl:

φ4(P ) = (δl − 1)P and φ5(P ) = 0
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• In the two-phase domain D2Φ:

φ4(P ) =

[
−P +

hs
v(P ) − hs

l (P )

τs
v (P ) − τs

l (P )

]

φ5(P ) =

[
τs
v (P )hs

l (P ) − τs
l (P )hs

v(P )

τs
v (P ) − τs

l (P )

]

Following,14 we conclude that this EOS allows the preservation of the discrete contact solution in the pure
HEM domain. Hence when the discrete contact solution evolves in a single domain (i.e. in the pure liquid or
in the two-phase domain), it is preserved provided that the numerical scheme preserves the contact solution.
This is no longer true when going through the boundary between the domains D2Φ and Dl (a numerical
example is available in27). Once again, we recall that the convective part of the HEM model is computed
using a VFRoe-ncv scheme with variables (ρ, U, P ). Hence, the condition (ii) is guaranteed (see14).

C. Contact waves travelling through the coupling interface

We know that the discrete contact solutions are preserved by the HEM and the HRM models. We examine
herein what happens when a contact wave hits the coupling interface (as described by figure (11)).

x

U
P

C (P ,    )ρL

ρL

eq

0

0

0

U

P
ρ
CR

R

0

0

= CL

x=0

HRMHEM

Figure 11. Initial data for a contact test case hitting the coupling interface

Remark. Thanks to the preservation of the contact wave for sole HEM and HRM models, we only need to
examine the discrete values of the variables in the two cells on each side of the coupling interface.

a ) U0 > 0

A problem may only occur in the first cell in the HRM domain. After one time step of our coupling
scheme involving VFRoe-ncv scheme and described above in appendix 1, we get in the first cell of the HRM
domain the values (ρ, U, P,C) defined by:

ρ − ρR + λ(ρRU0 − ρLU0) = 0 (56)

ρU − ρRU0 + λ(ρRU2
0 + P0 − ρLU2

0 − P0) = 0 (57)

ρEHRM − ρRER
HRM + λ(U0(ρRER

HRM + P0) − U0(ρLEL
HEM + P0)) = 0 (58)

ρC − ρRCR + λ(ρRU0CR − ρLU0C
L
eq) = 0 (59)

with λ = ∆t
∆x and:

EHRM = eHRM (P, ρ, C) +
U2

2

ER
HRM = eHRM (P0, ρR, CR) +

U2
0

2
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EL
HEM = eHEM (P0, ρL) +

U2
0

2
= eHRM (P0, ρL, CL

eq) +
U2

0

2

CL
eq = Ceq(P0, ρL)

Using the internal energy in the form (54), the system (56)-(59) provides:

ρ − ρR + λU0(ρR − ρL) = 0 (60)

U = U0 (61)

(Φ1(P ) − Φ1(P0)) + ρ(1 − C)(Φ2(P ) − Φ2(P0)) = 0 (62)

ρC − ρRCR + λ(ρRU0CR − ρLU0C
L
eq) = 0 (63)

The equation (62) implies that for any ρ ≥ 0 and for any ρ(1 − C) ≥ 0 defined by (60) and (63):

Φ1(P ) = Φ1(P0) and Φ2(P ) = Φ2(P0)

and thanks to the bijectivity of the applications P 7→ Φ1(P ) and P 7→ Φ2(P ) this leads to P = P0.
Thus the contact wave passing from the HEM model to the HRM model will be preserved.

b ) U0 < 0

A problem may only occur in the first cell in the HEM domain. One time step of the coupling described
above provides in the first cell of the HEM domain the values (ρ, U, P ) defined by:

ρ − ρL + λ(ρRU0 − ρLU0) = 0 (64)

ρU − ρLU0 + λ(ρRU2
0 + P0 − ρLU2

0 − P0) = 0 (65)

ρEHEM − ρLEL
HEM + λ(U0(ρRER

HRM + P0) − U0(ρLEL
HEM + P0)) = 0 (66)

with λ = ∆t
∆x and:

EHEM = eHEM (P, ρ) +
U2

2

ER
HRM = eHRM (P0, ρR, CR) +

U2
0

2

EL
HEM = eHEM (P0, ρL) +

U2
0

2

Using the internal energy in the form (55), the system (64)-(66) provides:

ρ − ρL + λ(ρRU0 − ρLU0) = 0 (67)

U = U0 (68)

Φ4(P ) − Φ4(P0) + ρ(Φ5(P ) − Φ5(P0)) + λU0ρR(eR
HRM − eR

HEM ) = 0 (69)

Hence if P = P0 , the equation (69) reads:

eHRM (P0, ρR, CR) = eHRM (P0, ρR, CR
eq)

which thanks to the bijectivity of C 7→ eHRM (P, ρ, C) implies that CR = CR
eq. Then a necessary condition

for the respect of the discrete contact solution is:

CR = Ceq(P0, ρR)

Let us now assume that CR = Ceq(P0, ρR). Thus eHRM (P0, ρR, CR) = eHRM (P0, ρR, CR
eq), and the pressure

P is a solution of the equation:

Φ4(P ) − Φ4(P0) + ρ(Φ5(P ) − Φ5(P0)) = 0 (70)
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where ρ is defined by the equation (67). The preceding equation must be fulfilled for any ρ. Thus it implies
that

Φ4(P ) = Φ4(P0) and Φ5(P ) = Φ5(P0) (71)

The two equations of (71) can be rewritten as second order polynomials with respect to the variable P .
Obviously P0 is one solution (hence the discriminants of the polynomials are non-negative). It can be shown
that the second solution of the second equation of (71) is greater than PMAX for all P0 in [PMIN , PMAX ].
Thus the second equation of (71) has a unique admissible solution P = P0. This implies that P = P0 is the
unique solution of the system (71). We can deduce that CR = Ceq(P0, ρR) is a sufficient condition for the
preservation of the contact wave.

Finally, the condition CR = Ceq(P0, ρR) is a necessary and sufficient condition to fulfill for the preservation
of the discrete contact wave when hitting the coupling interface.

D. A contact wave solution of the HRM model which accounts for the source term

We provide here some simple analytical solution of the HRM model when the source term is present and
when the EOS is complex. For a given uniform velocity U0, this one is:

• For x < U0t:





ρ(x, t) = ρL

C(x, t) = CL(t)

U(x, t) = U0

P (x, t) = P0(t)

(72)

• For x > U0t:





ρ(x, t) = ρR

C(x, t) = CR(t)

U(x, t) = U0

P (x, t) = P0(t)

(73)

where ρL, ρR are some positive constants and CL(t), CR(t) and P0(t) should comply with :





∂t (P0) = −(∂C(eHRM )
∂P (eHRM )Γ)(ρL, P0(t), CL(t))

= −(∂C(eHRM )
∂P (eHRM )Γ)(ρR, P0(t), CR(t))

∂t (CL) = Γ(ρL, P0(t), CL(t))

∂t (CR) = Γ(ρR, P0(t), CR(t))

(74)

The stiff constraint which occurs in the governing equation of P0(t) guarantees that jump conditions are
fulfilled through the characteristic x/t = U0. This one becomes trivial when ∂C (eHRM ) = 0. In our case,
where ∂C (eHRM ) is non-zero, some exact solutions can be found when:

Γ(ρ, P,C) =
∂P (eHRM )

∂C (eHRM )
Γ0(P )
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X. Appendix 4: Some results for the HRM model

A. Positivity results

We begin by recalling a classical lemma (see16,29 for instance).

For any Ψ(x, t), we introduce the decomposition Ψ(x, t) = Ψ+(x, t)−Ψ−(x, t), so that both 0 ≤ Ψ−(x, t)
and 0 ≤ Ψ+(x, t).

Lemma:
Let Ω be a subset of R. Let Ψ, a, Π and U be some sufficiently regular applications, with
properties:

• Ψ : (Ω × [0, T ] → R, (x, t) → Ψ(x, t)).

• a : (Ω × [0, T ] → R, (x, t) → a(x, t)), a ∈ L∞(Ω × [0, T ]).

• Π : (Ω × [0, T ] → R, (x, t) → Π(x, t)), Π ≥ 0.

• U : (Ω× [0, T ] → R, (x, t) → U(x, t)), U ∈ L∞(Ω× [0, T ]) and ∂x (U) ∈ L∞(Ω× [0, T ]).

and such that:

∂t (Ψ(x, t)) + U∂x (Ψ(x, t)) = a(x, t)Ψ(x, t) + Π(x, t) (75)

Suppose that on ∂Ω, the boundary of Ω, Ψ−(x, t) = 0 if (U · n)(x, t) ≤ 0, where n is the
outward normal of Ω. With all these assumptions, if Ψ(x, t = 0) ≥ 0 then for all 0 ≤ t ≤ T ,
Ψ(x, t) ≥ 0.

In the following we will assume that:

U ∈ L∞(Ω × [0, T ]) and ∂x (U) ∈ L∞(Ω × [0, T ])

a) Evolution of the density ρ:
The lemma applies to the second equation of (15). It ensures the positivity of the total density ρ:

ρ ≥ 0

b) Evolution of the pressure P :
b.1) The fourth equation of (15) can take the form:

∂t (P ) + U∂x (P ) + γ̂P∂x (U) = PJ(P, ρ, C)

where the term J(P, ρ, C) is bounded if ρ is bounded and if ρ(1 − C) remains positive. The lemma thus
applies if γ̂ ∈ L∞(Ω × [0, T ]), and we get:

P > 0 if ρ is bounded and ρ(1 − C) > 0

b.2) The fourth equation of (15) does not ensure that P remains in [PMIN , PMAX ]. This equation can be
written:

∂t (P ) + U∂x (P ) + γ̂P∂x (U) = (1 − C)(C̄ − C)F (P, ρ)

where F is positive for P ∈ [PMIN , PMAX ] and ρ > 0. Hence if we choose P (x, t = 0) = PMIN , U(x, t =
0) = U0, ρ(x, t = 0) = ρ0 and C(x, t = 0) = C0 with the relation C̄(P0, ρ0) < C0 < 1, then:

∂t (P )|t=0 < 0

Thus, for 0 < ε ≤ ε0, where ε0 > 0 is small enough, we get: P (x, t = ε) < PMIN . We may also choose initial
conditions such that P (x, t = ε) > PMAX . In fact, this makes sense since the only physically relevant lower
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and upper bounds for the pressure are PMIN = 0, and PMAX = Pcritical. As discussed above, this particular
value of the lower bound will not lead to any problem. The problem is actually less obvious with the upper
bound since our governing equations probably no longer make sense around the critical point.

c) Evolution of the liquid mass fraction C:
We make the assumption that ρ is bounded and that P ∈ [PMIN , PMAX ]. It implies that G2 is bounded.
We set Ψ1 = 1 − C. Then the first equation of the system (15), gives:

∂t (Ψ1) + U∂x (Ψ1) = −Ψ1(x, t)(C̄ − C)
G2(P, ρ)

τ0

By applying the lemma mentioned above we find that C < 1.
We set now Ψ2 = C. Then the first equation of the system (15), gives:

∂t (Ψ2) + U∂x (Ψ2) = Ψ2(x, t)(C − 1)
G2(P, ρ)

τ0
+ Π

with Π = C̄(1−C)G2(P,ρ)
τ0

. If we make the assumption that C̄ > 0, the source term Π is always positive. By
applying the lemma we find that C > 0.

C < 1 if ρ is bounded and P ∈ [PMIN , PMAX ]
C > 0 if ρ is bounded, P ∈ [PMIN , PMAX ] and C̄ > 0

d) Evolution of the equilibrium liquid mass fraction C̄:
Owing to the latter result, we wonder whether C̄ remains in [0, 1]. We have the equivalence:

0 < C̄ < 1 ⇐⇒ τs
l (P ) < τ < τs

v (P )

We set Ψ3 = τs
v (P ) − τ and Ψ4 = τ − τ s

l (P ). The governing equations for Ψ3 and Ψ4 are:

∂t (Ψ3) + U∂x (Ψ3) − Ψ3∂x (U) + (γ̂P
d

dP
τs
v (P ) + τs

v (P ))∂x (U) = −∂C (eHRM )

∂P (eHRM )
Γ

d

dP
τs
v (P ) (76)

∂t (Ψ4) + U∂x (Ψ4) − Ψ4∂x (U) − (γ̂P
d

dP
τs
l (P ) + τs

l (P ))∂x (U) =
∂C (eHRM )

∂P (eHRM )
Γ

d

dP
τs
l (P ) (77)

Hence the lemma cannot be applied. Moreover we can choose initial data such that C̄ > 1 or C̄ < 0. For
example with P (x, t = 0) = P0, U(x, t = 0) = U0, ρ(x, t = 0) = 1/τs

v (P0) and C(x, t = 0) = C0 with
C0 ∈]C̄(P0, ρ0), 1[ the equation (76) gives:

∂t (Ψ3)|t=0 < 0

with Ψ3|t=0 = 0. Then Ψ3|t=0+ < 0 and C̄|t=0+ < 0. We may also choose initial conditions such that
C̄|t=0+ > 1.

Even when the products ∂C (eHRM ) Γ d
dP τs

v,l(P ) are null, we may wonder in which case C̄ may remain in
[0, 1]. Actually, a sufficient condition would be that :

{
γ̂P d

dP τs
v (P ) + τs

v (P ) = A(τs
v (P ) − τ)

γ̂P d
dP τs

l (P ) + τs
l (P ) = B(τ − τ s

l (P ))
(78)

where A,B should be bounded. The initial guess (A,B) = (0, 0) seems unlikely to be a physical solution,

since it would imply that ∂P

(
τs

v
(P )

τs
v
(P )

)
= 0, which is not guaranteed in our case for instance.

We refer to the work of Jaouen (28) and also to8 for similar discussions on problems that are connected
with thermodynamics for two-phase flow.
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e) Evolution of the liquid density ρl:
If we assume that C > 0, then:

ρl ≥ 0 ⇐⇒ τ ≥ τ s
v (P )(1 − C)

We set Ψ5 = τ − τ s
v (P )(1−C). The density ρl and the function Ψ5 have then the same sign. The governing

equation on Ψ5 is:

∂t (Ψ5) + U∂x (Ψ5) +

[
(1 − C)γ̂P

d

dP
τs
v (P ) − τ

]
∂x (U) = (1 − C)

∂C (eHRM )

∂P (eHRM )
Γ

d

dP
τs
v (P ) + Γτ s

v (P )

As in subsection d) or b), this equation allows Ψ5 to be positive or negative. Thus nothing ensures that ρl

remains positive.

B. Entropy inequality

We now account for viscous contribution, focusing on:





∂t (ρC) + ∂x (ρCU) = ρΓ

∂t (ρ) + ∂x (ρU) = 0

∂t (ρU) + ∂x

(
ρU2 + P

)
= ∂x (µ∂x (U))

∂t (ρEHRM ) + ∂x (U(ρEHRM + P )) = ∂x (µU∂x (U))

(79)

together with EHRM
def
= eHRM (P, ρ, C) + U2

2 . Restricting to regular solutions, and rewriting the latter
system in terms of (ρ, U, P,C), we get the following governing equations:





∂t (ρ) + U∂x (ρ) + ρ∂x (U) = 0

∂t (U) + U∂x (U) + 1
ρ∂x (P ) = 1

ρ∂x (µ∂x (U))

∂t (P ) + U∂x (P ) + γ̂HRMP∂x (U) = −Γ∂C(eHRM )
∂P (eHRM ) + µ

ρ (∂x (U))2

∂t (C) + U∂x (C) = Γ.

(80)

Thus, introducing the entropy-entropy flux pair (ηHRM , FHRM
η ) , where ηHRM = −ρ ln(SHRM ) and FHRM

η =
−ρU ln(SHRM ), and assuming SHRM agrees with (20), we get:

∂t (ηHRM ) + ∂x

(
FHRM

η

)
= − ρ

S
∂P (SHRM ) (

µ

ρ
(∂x (U))2 − ∂C (eHRM )

∂P (eHRM )
Γ) − ρ

S
∂C (SHRM ) Γ (81)

and thus:

∂t (ηHRM ) + ∂x

(
FHRM

η

)
− ρ

S
∂P (SHRM ) Γ(

∂C (eHRM )

∂P (eHRM )
− ∂C (SHRM )

∂P (SHRM )
) = − ρ

S
∂P (SHRM )

µ

ρ
(∂x (U))2 ≤ 0

(82)
Obviously, we retrieve the standard entropy inequality (21) when the mass transfer term Γ is not accounted
for.
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