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Abstract: In this paper we are interested in finding upper functions for a collection of random
variables

{∥∥ξh⃗∥∥p
, h⃗ ∈ H

}
, 1 ≤ p < ∞. Here ξh⃗(x), x ∈ (−b, b)d, d ≥ 1 is a kernel-type gaussian

random field and ∥ · ∥p stands for Lp-norm on (−b, b)d. The set H consists of d-variate vector-
functions defined on (−b, b)d and taking values in some countable net in Rd

+. We seek a

non-random family
{
Ψε

(
h⃗
)
, h⃗ ∈ H

}
such that E

{
suph⃗∈H

[∥∥ξh⃗∥∥p
− Ψε

(
h⃗
)]

+

}q ≤ εq, q ≥ 1,

where ε > 0 is prescribed level.

AMS 2000 subject classifications: Primary 60E15; secondary 62G07, 62G08.
Keywords and phrases: upper function, gaussian random field, metric entropy, Dudley’s
integral.

1. Introduction

Let Rd, d ≥ 1, be equipped with Borel σ-algebra B(Rd) and Lebesgue measure νd. Put B̃(Rd) ={
B ∈ B(Rd) : νd(B) <∞

}
and let

(
WB, B ∈ B̃(Rd)

)
be the white noise with intensity νd.

Throughout of the paper we will use the following notations. For any u, v ∈ Rd the operations
and relations u/v, uv, u∨ v,u∧ v, u < v, au, a ∈ R, are understood in coordinate-wise sense and |u|
stands for euclidian norm of u. All integrals are taken over Rd unless the domain of integration is
specified explicitly. For any real a its positive part is denoted by (a)+ and ⌊a⌋ is used for its integer
part. For any n = (n1, . . . , nd) ∈ Nd, d ≥ 1, |n| stands for

∑d
j=1 ni.

1.1. Collection of random variables.

Let 0 < h ≤ e−2 be fixed number and put H = {hs, s ∈ N}, where hs = e−sh. Denote by S(h) the
set of all measurable functions defined on (−b, b)d, b ∈ (0,∞), and taking values in H and introduce

Sd(h) =
{
h⃗ : (−b, b)d → Hd : h⃗(x) =

(
h1(x), . . . , hd(x)

)
, x ∈ (−b, b)d, hi ∈ S(H), i = 1, d

}
.

Let K : Rd → R be fixed. With any h⃗ ∈ Sd(h) we associate the function

K
h⃗
(t, x) = V −1

h⃗
(x)K

(
t− x

h⃗(x)

)
, V

h⃗
(x) =

d∏
i=1

hi(x), t ∈ Rd, x ∈ (−b, b)d.

Following the terminology used in the mathematical statistics we call the function K kernel and
the vector-function h⃗ multi-bandwidth. Moreover, if all coordinates of h⃗ are the same we will say
that corresponding collection is isotropic. Otherwise it is called anisotropic.

Let H be a given subset of Sd(h) and consider the family{
ξ
h⃗
(x) =

∫
K

h⃗
(t, x)W (dt), h⃗ ∈ H, x ∈ (−b, b)d

}
.
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We note that ξ
h⃗
is centered gaussian random field on (−b, b)d with the covariance function

V −1

h⃗
(x)V −1

h⃗
(y)

∫
K

(
t− x

h⃗(x)

)
K

(
t− y

h⃗(y)

)
νd(dt), x, y ∈ (−b, b)d.

Throughout the paper (ξ
h⃗
, h⃗ ∈ H) is supposed to be defined on the probability space (X,A,P) and

furthermore E denotes the expectation with respect to P. Moreover, without further mentioning we
will assume that b ≥ 1.

1.2. Objectives.

Our goal is to find an upper function for the collection of random variables

Λp (H) =
{∥∥ξ

h⃗

∥∥
p
, h⃗ ∈ H

}
, 1 ≤ p ≤ ∞,

where ∥ · ∥p stands for Lp-norm on (−b, b)d, that is

∥g∥p =
(∫

(−b,b)d
|g|pνd(dx)

) 1
p

, 1 ≤ p <∞, ∥g∥∞ = sup
x∈(−b,b)d

|g(x)|.

More precisely we seek for a non-random collection
{
Ψε

(
h⃗
)
, h⃗ ∈ H

}
such that

E
{
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
− cΨε

(
h⃗
)]

+

}q

≤ εq, q ≥ 1, (1.1)

where ε > 0 is a prescribed level and c > 0 is a numerical constant independent of ε.
Some remarks are in order.
1) Although the upper function as well as the inequality (1.1) can be looked for any level ε > 0

we will be obviously interested in small values of ε. In this context (1.1) can be replaced by

lim sup
ε→0

ε−qE
{
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
− cΨε

(
h⃗
)]

+

}q

<∞, q ≥ 1. (1.2)

2) We will see that the upper function
{
Ψε

(
h⃗
)
, h⃗ ∈ H

}
does not necessarily depend on ε, see, in

particular Theorems 2 and 3 below. Typically, in such cases the set H depends on ε or reciprocally
the level ε depends on assumptions imposed on the set H. In particular, since H ⊆ Sd(h) we relate
later on the level ε with the extra-parameter h. We will show that in some important cases ε = ε(h)
and ε(h) → 0 quite rapidly when h → 0. This issue is discussed more in detail in the paragraph
preceding Corollary 2.

We will say that the upper function Ψε(·) is sharp in order if (1.2) holds and for some c0 > 0

lim inf
ε→0

ε−qE
{
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
− c0Ψε

(
h⃗
)]

+

}q

= ∞, q ≥ 1. (1.3)

It is worth mentioning that uniform probability and moment bounds for [supθ∈ΘΥ(χθ)] in the
case where χθ is empirical or gaussian process and Υ is a positive functional are a subject of vast
literature, see, e.g., Alexander (1984), Talagrand (1994, 2005), Lifshits (1995), van der Vaart and
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Wellner (1996), van de Geer (2000), Massart (2000), Bousquet (2002), Giné and Koltchinskii (2006)
among many others. Such bounds play an important role in establishing the laws of iterative loga-
rithm and central limit theorems [see, e.g., Alexander (1984) and Giné and Zinn (1984)]. However
much less attention was paid to the finding of upper functions. Some asymptotical results can be
found in Kalinauskăite (1966), Qualls and Watanabe (1972), Bobkov (1988), Shiryaev et al. (2002)
and references therein. The inequalities similar to (1.1) was obtained by Egishyants and Ostrovskii
(1996), Goldenshluger and Lepski (2011a) and Lepski (2013a,b,c).

The upper functions for Lp-norm of ”kernel-type” empirical and gaussian processes was studied in
recent papers Goldenshluger and Lepski (2011a) and Lepski (2013a). However the results obtained
there allow to study only a bandwidth’s collection consisting of constant functions, see discussions
after Theorems 1–3 below. To the best of our knowledge the problem of constructing upper functions
for the collection parameterized by bandwidths being multivariate (univariate) functions was not
studied in the literature.

1.3. Relation to the adaptive estimation.

The evaluation of upper functions has become an important technical tool in different areas of
mathematical statistics in particular in the minimax and adaptive minimax estimation. Indeed, all
known to the author constructions of adaptive estimators e.g. Lepskii (1991), Barron et al. (1999),
Cavalier and Golubev (2006), Goldenshluger and Lepski (2009, 2011b) involve the computation of
upper functions for stochastic objects of different kinds. We provide below an explicit expression
of the functional Ψε that allows, in particular, to use our results for constructing data-driven
procedures in multivariate function estimation. It is important to emphasize that the the collection{
Ψε

(
h⃗
)
, h⃗ ∈ H

}
satisfying (1.1) is not unique and obviously we seek for at least sharp in order

upper functions. The latter means that some lower bound results (1.3) should be added to the
inequality (1.1), see next paragraph and the discussion after Theorem 1. Note however that the
theory of adaptive estimation is equipped with very developed criteria of optimality Lepskii (1991),
Tsybakov (1998), Kluchnikoff (2005). Hence, we might expect that the corresponding upper function
is sharp in order if its use leads to the construction of optimally adaptive estimators.

1.4. Preliminary observations.

This paragraph is devoted to the discussion about what kind of results we expect to obtain. We
provide with upper functions and the inequality (1.1) in some simple cases. We present also a
universal lower bound for an upper function and discuss its attainability. Although the proofs of all
presented results are straightforward and relatively simple for an interested reader we put them in
Section 4.4 of Appendix. Moreover, without further mentioning we will consider here only p < ∞
and later on γp denotes p-th absolute moment of standard gaussian distribution.

Introductive example. Denote by Sconst(h) =
{
h⃗ : h⃗(x) = h⃗ ∈ Hd, ∀x ∈ (−b, b)d

}
. Thus,

Sconst(h) consists of bandwidths which are constants. Put also Sconst
isotr (h) =

{
h⃗ ∈ Sconst(h) : h⃗ =

(h, . . . , h), h ∈ H
}
(isotropic case).

For any p ≥ 2, using the results obtained in Lepski (2013a), Theorem 1, we can assert that (1.1)
is satisfied with H = Sconst

isotr (h) and

Ψε

(
h⃗
)
= Ψ

(
h⃗
)
:= A1h

−d/2, ε = ε(h) = A2(q)h
qd(2−p)

2p exp
{
−2−3/2h−2d/p

}
. (1.4)
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Here A1 et A2(q) are constants completely determined by K, d, b and p. Note also that Theorem 1
in Lepski (2013a) is proved under condition imposed on the kernelK which is similar to Assumption
3 below.

Remark that h−d/2 = (2b)
− 1

p
∥∥V − 1

2

h⃗

∥∥
p
for any h⃗ ∈ Sconst

isotr (h) and p ∈ [1,∞]. The following question
naturally arises in this context.

How is the upper function on an arbitrary subset of Sd(h) related to the functional
∥∥V − 1

2

h⃗

∥∥
p
?

Universal lower bound. Our first goal is to show that an upper function on H can not be ”better”

in order than
∥∥V − 1

2

h⃗

∥∥
p
whenever H ⊂ Sd(h) is considered.

Denote S∗
d,p(h) =

{
h⃗ ∈ Sd(h) :

∥∥V − 1
2

h⃗

∥∥
p
<∞

}
. The following assertion is true: for any p ≥ 1

E
{[∥∥ξ

h⃗

∥∥
p
− 2−4(γp)

1
p ∥K∥2

∥∥V − 1
2

h⃗

∥∥
p

]
+

}q
≥ B1h

− dq
2 ≥ B1e

dq, ∀h⃗ ∈ S∗
d,p(h), (1.5)

where B1 depends only on K, d, b, q and p and its explicit expression can be found in Section 4.4.

Combining (1.4) and (1.5) we can assert that Ψ
(
h⃗
)
= h−d/2 is sharp in order on Sconst

isotr (h) if

h → 0 and p ≥ 2. More generally, we will show that
∏d

j=1 h
− 1

2
j is a sharp in order upper function

on Sconst(h), see discussion after Corollary 1.

”Pointwise” upper bound and its trivial consequence. Let H = {h⃗}, where h⃗ ∈ S∗
d,p(h) is a given

multi-bandwidth. Introduce

σ2p
(
h⃗
)
= sup

ϑ∈Bs,d

∫
Rd

(∫
(−b,b)d

ϑ(x)K
h⃗
(t, x)νd(dx)

)2

νd(dt),

where, Bs,d = {ϑ : (−b, b)d → R : ∥ϑ∥s ≤ 1} and 1/s = 1− 1/p.

The following is true: for any h⃗ ∈ S∗
d,p(h) and any p ≥ 1

E
{[∥∥ξ

h⃗

∥∥
p
−

(
(γp)

1
p ∥K∥2 +

√
2
)∥∥V − 1

2

h⃗

∥∥
p

]
+

}q
≤ B2σ

q
p

(
h⃗
)
e
−σ−2

p

(
h⃗
)∥∥V − 1

2
h⃗

∥∥2

p , q ≥ 1, (1.6)

where B2 depends only on K, d, b, q and p and its explicit expression can be found in Section 4.4.
Let now p ∈ [1, 2]. Using the computations similar to whose led to the bound (3.53) in Section

3.3.4 one can assert that there exists B3 completely determined by K, d, b and p such that

σp
(
h⃗
)
≤ B3, ∀h⃗ ∈ Sd(h).

It yields together with (1.6)

E
{[∥∥ξ

h⃗

∥∥
p
−

(
(γp)

1
p ∥K∥2 +

√
2
)∥∥V − 1

2

h⃗

∥∥
p

]
+

}q
≤ B4e

−B5h−d/2
, q ≥ 1.

Let H be a finite set and suppose that εq(h) := card(H)B4e
−B5h−d/2 → 0, h → 0. Then, in view of

(1.5) we assert that
∥∥V − 1

2

h⃗

∥∥
p
is the sharp in order upper function with level ε(h) if p ∈ [1, 2].

Concluding remarks. Putting together (1.5) and the statement of Theorem 1 below we can assert
that any sharp in order upper function must satisfy∥∥∥V − 1

2

h⃗

∥∥∥
p
. Ψε

(
h⃗
)
.

∥∥∥√∣∣ ln (εV
h⃗

)∣∣V − 1
2

h⃗

∥∥∥
p
, h⃗ ∈ H, (1.7)
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whenever H ∈ Sd(h) is considered.

We present sufficient conditions imposed on H under which
∥∥V − 1

2

h⃗

∥∥
p
is the sharp in order upper

function, see Remarks 2 and 3 after Corollary 1 and Theorem 3 respectively. We will see that the
latter condition can be checked on rather huge subsets of Sd(h), Section 2.4. However the finding of
the necessary condition remains an open problem. The interesting question arising in this context is
the right side of the inequality (1.7) tight? The following assertion answers partially on this question.

One can construct H ⊂ Sd(h) such that

lim
c→0

lim
ε→0

ε−qE
{
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
− c

∥∥∥√∣∣ ln (εV
h⃗

)∣∣V − 1
2

h⃗

∥∥∥
p

}q

= ∞, q ≥ 1. (1.8)

We have no place here in order to prove this result since it takes tens pages. We only mention that
the proof of (1.8) is ”statistical”, cf. Section 1.3. In particular, the description of the set H can
be found in the recent paper Lepski (2014), Proposition 2, where it is used in order to prove the
optimality of the proposed adaptive procedure. It is important to emphasize that its construction is
similar to one of Section 2.4 below. The proof of (1.8) is also based on the lower bound for minimax
risks over anisotropic Nikolskii classes established in Kerkyacharian et al. (2008).

1.5. Organization of the paper.

In Section 2 we present three constructions of upper functions and prove for them an inequality of
type (1.1), Theorems 1–3. Moreover, in Subsection 2.4 we discuss the example of the bandwidth
collection satisfying the assumptions of Theorem 2. Section 3 contains proofs of Theorems 1–3;
proofs of auxiliary results are relegated to the Appendix.

2. Main results.

Throughout the paper we will consider the collections Λ(H) with K satisfying one of Assumptions
1– 3 indicated below. The parameters a ≥ 1 and L > 0 used there are supposed to be fixed.

2.1. Anisotropic case. First construction.

Assumption 1. supp(K) ⊂ [−a, a]d and

|K(s)−K(t)| ≤ L|s− t|, ∀s, t ∈ Rd.

Introduce Sd,p(h) =
{
h⃗ ∈ Sd(h) :

∥∥∥√∣∣ ln (V
h⃗

)∣∣V − 1
2

h⃗

∥∥∥
p
< ∞

}
. For any h⃗ ∈ Sd,p(h) and any

0 < ε ≤ e−2 define

ψε

(
h⃗
)
= C1

∥∥∥√∣∣ ln (εV
h⃗

)∣∣V − 1
2

h⃗

∥∥∥
p
,

where C1 = 2
(
q ∨

[
p1{p <∞}+ 1{p = ∞}

])
+ 2

√
2d

[√
π + ∥K∥2

(√∣∣ ln (4bL∥K∥1
)∣∣+ 1

)]
.

Theorem 1. Let q ≥ 1, p ∈ [1,∞], be fixed and let H be an arbitrary countable subset of Sd,p(h).
Suppose also that Assumption 1 is fulfilled. Then

E
{
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
− ψε(⃗h)

]
+

}q

≤
[
C3ε

]q
, ∀h, ε ∈

(
0, e−2

)
,
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where C3 = C3(q̃, p)1{p <∞}+ C3(q, 1)1{p = ∞}, q̃ = (q/p) ∨ 1 and

C3(a, b) = (4b)
d
b

[
2a

∫ ∞

0
za−1 exp

(
− z

2
b

8∥K∥22

)
dz

] 1
ab

, a, b ≥ 1.

Remark 1. We consider only countable subsets of Sd,p(h) in order not to discuss the measurability
issue. Actually the statement of the theorem remains valid for any subset providing the measurability
of the corresponding supremum. It explains why the upper function ψε as well as the constants C1

and C3 are independent of the choice of H.

The advantage of the result presented in Theorem 1 is that it is proved without any condition
imposed on the set of bandwidths. Moreover, as it follows from (1.8) this bound can not be improved
in order than an arbitrary H is considered. On the other hand for a particular choice of H the
obtained result can be essentially improved.

Indeed, let p ≥ 2 and consider H = Sconst
isotr (h). In this case, the found upper function is given by√

| ln(ε)|+ d| ln(h)| h−
d
2 >

√
| ln(ε)| h−

d
2 .

Choose for instance h =
(
4q| ln(ε)|

)− p
2d we deduce from (1.4) and (1.5) that h−

d
2 is the sharp in

order upper function. Thus, the upper function given in Theorem 1 is not optimal.
The problem we address now consists in finding subsets of Sd(h) for which upper functions, more

precise than one presented in Theorem 1, can be found.

2.2. Anisotropic case. Functional classes of bandwidths.

Put for any h⃗ ∈ Sd(h) and any multi-index s = (s1, . . . , sd) ∈ Nd

Λs

[⃗
h
]
= ∩d

j=1Λsj

[
hj
]
, Λsj

[
hj
]
=

{
x ∈ (−b, b)d : hj(x) = hsj

}
.

Let τ ∈ (0, 1) and L > 0 be given constants. Define

Hd(τ,L) =
{
h⃗ ∈ Sd(h) :

∑
s∈Nd

ντd

(
Λs

[⃗
h
])

≤ L
}
.

A simple example of the subset of Hd(τ,L) is Sconst(hε), since obviously Sconst(hε) ⊂ Hd(τ,L) for
any τ ∈ (0, 1) and L ≥ (2b)dτ . A quite sophisticated construction is postponed to Section 2.4.

Put N∗
p =

{
[p] + 1, [p] + 2, . . .

}
and introduce for any A ≥ h−

d
2

B(A) =
∪
r∈N∗

p

Br(A), Br(A) =

{
h⃗ ∈ Sd(h) :

∥∥∥V − 1
2

h⃗

∥∥∥
rp
r−p

≤ A
}
.

Note that introduced in the previous section Sd,p(h) ⊂ B(A) for any A. The following notations

related to the functional class B(A) will be exploited in the sequel. For any h⃗ ∈ B(A) define

N∗
p

(
h⃗,A

)
= N∗

p ∩
[
rA(⃗h),∞

)
, rA(⃗h) = inf

{
r ∈ N∗

p : h⃗ ∈ Br(A)
}
. (2.1)

Obviously rA
(
h⃗
)
<∞ for any h⃗ ∈ B(A).

In this section we will be interested in finding an upper function when H is an arbitrary subset
of Hd(τ,L,A) := Hd(τ,L) ∩ B(A).
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The following relation between the parameters h,A and τ is supposed to be held throughout of
this section.

d ln ln(A) ≤ 2
√

2(1− τ)| ln(h)| − d ln(4). (2.2)

For any h⃗ ∈ B(A) define

ψ
(
h⃗
)
= inf

r∈N∗
p (⃗h)

C2(r, τ,L)
∥∥∥V − 1

2

h⃗

∥∥∥
rp
r−p

,

where, N∗
p(⃗h) is defined in (2.1) and the quantity C2(r, τ,L), τ ∈ (0, 1), L > 0, is given in Section

3.2.2. Its expression is rather cumbersome and it is why we do not present it right now. Here we
only mentioned that C2(r, τ,L) is finite for any given r but limr→∞C2(r, τ,L) = ∞.

Note also that the condition h⃗ ∈ B(A) guarantees the ψ
(
h⃗
)
<∞ for any h⃗.

Assumption 2. There exists K : R → R such that supp(K) ⊂ [−a, a] and

(i) |K(s)−K(t)| ≤ L|s− t|, ∀s, t ∈ R;

(ii) K(x) =

d∏
i=1

K(xi), ∀x = (x1, . . . , xd) ∈ Rd.

Theorem 2. Let q ≥ 1, 1 ≤ p < ∞, τ ∈ (0, 1), L > 0 and A ≥ h−
d
2 be fixed and let H be an

arbitrary countable subset of Hd

(
τ,L,A

)
.

Then for any A, h and τ satisfying (2.2) and K satisfying Assumption 2,

E
{
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
− ψ(⃗h)

]
+

}q

≤
[
C4Ae−e2

√
2d| ln(h)|

]q
, ∀h ∈

(
0, e−2

)
,

where C4 depends on K, p, q, b and d only and its explicit expression can be found in Section 3.2.2.

The statement of the theorem remains valid for any subset providing the measurability of the
corresponding supremum. It explains, in particular, why the upper function ψ

(
h⃗
)
is independent

of the choice of H and completely determined by the parameters τ , L and A. It is worth noting
that unlike Theorem 1 whose proof is relatively standard the proof of Theorem 2 is rather long and
tricky.

Considering classes Hd

(
τ,L,A

)
we are obviously interested in large values of A since the larger

A is the weaker restriction on the class is imposed. In this context the parameters h and A should
be somehow related. Let us discuss one of possible choices of these parameters.

Choose h = hε := e−
√

| ln(ε)|, A = Aε := eln
2(ε). This yields

lim
ε→0

ε−aAεe
−e2

√
2d| ln(hε)|

= 0, ∀a > 0,

and moreover, for any τ ∈ (0, 1) there exist ε0(τ) such that for all ε ≤ ε0(τ) the relation (2.2) is
fulfilled. In view of these remarks we come to the following corollary of Theorem 2.

Corollary 1. Let the assumptions of Theorem 2 hold and let h = hε and A = Aε Then for any
τ ∈ (0, 1) and any q ≥ 1 one can find ε(τ, q) such that for any ε ≤ ε(τ, q)

E
{
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
− ψ

(
h⃗
)]

+

}q

≤
{
(C3 + C4)ε

}q
.
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The assertion of the corollary can be of course obtained for another choice of the parameters A
and h. Our choice is dictated by the following reason: hε tends to zero rather slowly (slower than
polynomial decay) while Aε increases to infinity faster than polynomially in ε. The both restrictions
are heavily exploited for the construction of adaptive statistical procedures.

Remark 2. Let H ⊂ Hd

(
τ,L,Aε

)
be such that there exists a constant Υ > 0 independent on ε for

which

sup
h⃗∈H

ψ(⃗h)
∥∥∥V − 1

2

h⃗

∥∥∥−1

p
≤ Υ. (2.3)

Taking together the statement of Corollary 1, (1.5) and (2.3) we can assert that
∥∥V − 1

2

h⃗

∥∥
p
is the

sharp in order upper function.

Let H ⊂ Sconst(hε) . Since obviously Sconst(hε) ⊂ Hd(τ,L) for any τ ∈ (0, 1) and L ≥ (2b)dτ we
first assert that H ⊂ Hd(τ,L). Next, suppose that

V
h⃗
≥ (2b)

d
pA−2

ε , ∀h⃗ ∈ H. (2.4)

Then, H ∈ B(Aε) and N∗
p

(
h⃗,Aε

)
= N∗

p for any h⃗ ∈ H. It yields

ψ(h⃗) = V
− 1

2

h⃗
(2b)

d
p inf
r∈N∗

p

C2(r, τ,L), h⃗ ∈ H.

We conclude that (2.3) is fulfilled and, therefore, V
− 1

2

h⃗
is the sharp in order upper function for any

choice of H satisfying (2.4).
Another interesting question concerns the ”sharpness” of the upper function ψ(⃗h) when H does

not satisfy (2.3). The following result, similar (1.8), can be deduced from recent results obtained
in Lepski (2014), Proposition 2. One can construct H ⊂ Hd

(
τ,L,Aε

)
such that

lim
c→0

lim
ε→0

ε−qE
{
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
− cψ(⃗h)

}q

= ∞, q ≥ 1. (2.5)

It is impossible to compare upper functions found in Theorems 1 and 2 when an arbitrary subset
of Hd(τ,L,A) is considered. However they can be easily combined in such a way that the obtained
upper function is smaller that both of them. Indeed, set Ψε

(
h⃗
)
= ψε

(
h⃗
)
∧ ψ

(
h⃗
)
. We have{

sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
−Ψε(⃗h)

]
+

}q

≤
{
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
− ψε(⃗h)

]
+

}q

+

{
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
− ψ(⃗h)

]
+

}q

.

Corollary 2. Let the assumptions of Theorem 2 hold and let h = hε and A = Aε Then for any
τ ∈ (0, 1) and any q ≥ 1 one can find ε(τ, q) such that for any ε ≤ ε(τ, q)

E
{
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
−Ψε

(
h⃗
)]

+

}q

≤
{
(C3 + C4)ε

}q
.

2.3. Isotropic case.

In this section we will suppose that h⃗(·) =
(
h(·), . . . , h(·)

)
and consider the case p ∈ [1, 2]. We will

show that under these restrictions the result similar to the one of in Theorem 2 can be proved
without any condition imposed on the set of bandwidths.
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Note that in the isotropic case V
h⃗
(·) = hd(·) and introduce the following notations.

Set Sisotr
d,p (h) = ∪r∈N∗,r>d

{
h⃗ ∈ Sd(h) :

∥∥h− d
2

∥∥
p+ 1

r
<∞

}
and define

ψ∗(h⃗) = inf
r∈N∗,r>d

C∗
2 (r)

∥∥∥h− d
2

∥∥∥
p+ 1

r

, h⃗ ∈ Sisotr
d,p (h),

where the explicit expression of C∗
2 (r) is given in Section 3.3.1.

Assumption 3. supp(K) ⊂ [−a, a]d and for any n ∈ N such that |n| ≤ ⌊d/2⌋+ 1

|DnK(s)−DnK(t)| ≤ L|s− t|, ∀s, t ∈ Rd, Dn =
∂|n|

∂yn1
1 · · · ∂ynd

k

.

Theorem 3. Let q ≥ 1, p ∈ [1, 2], be fixed and suppose that Assumption 3 is fulfilled.
Let H be an arbitrary countable subset of Sisotr

d,p (h). Then,

E
{
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
− ψ∗(h⃗)]

+

}q

≤
(
C5e

h−
d
2
)q
, ∀h ≤ e−2,

where C5 depends on K, p, q, b and d only and its explicit expression can be found in Section 3.3.1.

Coming back to the example of H consisting of constant functions we conclude that Theorem
3 generalizes the result given by Theorem 2 when p ∈ [1, 2]. Indeed, we do not require here the
finiteness of the set in which the bandwidth takes its values.

Although the proof of the theorem is based upon the same approach, which is applied for proving
Theorem 2, it requires to use quite different arguments. Both assumptions isotropy and p ∈ [1, 2]
are crucial for deriving the statement of Theorem 3, see Section 3.3.3 for details.

Remark 3. In view of (1.5), the condition

sup
h⃗∈H

ψ∗(⃗h)
∥∥∥h− d

2

∥∥∥−1

p
≤ Υ

with some Υ > 0 independent of h, guarantees that
∥∥h− d

2

∥∥
p
is the sharp in order upper function on

H ⊂ Sisotr
d,p (h) when h → 0.

Also, combining the results of Theorems 1 and 3 we arrive to the following assertion.

Corollary 3. Let assumptions of Theorem 3 hold and choose h = hε Then,

E
{
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
− ψε

(
h⃗
)
∧ ψ∗(h⃗)]

+

}q

≤
(
[C3 + C5]ε

)q
, ∀ε ∈

(
0, e−2

]
.

2.4. Example of the functional class Hd(τ,L,A).

Le (e1, . . . , ed) denote the canonical basis of Rd. For function g : Rd → R1 and real number u ∈ R
define the first order difference operator with step size u in direction of the variable xj by

∆u,jg(x) = g(x+ uej)− g(x), j = 1, . . . , d.

By induction, the k-th order difference operator with step size u in direction of the variable xj is
defined as

∆k
u,jg(x) = ∆u,j∆

k−1
u,j g(x) =

k∑
l=1

(−1)l+k

(
k

l

)
∆ul,jg(x). (2.6)
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Definition 1. For given vectors r⃗ = (r1, . . . , rd), rj ∈ [1,∞], β⃗ = (β1, . . . , βd), βj > 0, and

L⃗ = (L1, . . . , Ld), Lj > 0, j = 1, . . . , d, we say that function g : Rd → R1 belongs to the anisotropic

Nikolskii class Nd

(
β⃗, r⃗, L⃗

)
if

(i) ∥g∥rj ,Rd ≤ Lj for all j = 1, . . . , d;

(ii) for every j = 1, . . . , d there exists natural number kj > βj such that∥∥∥∆kj
u,jg

∥∥∥
rj ,Rd

≤ Lj |u|βj , ∀u ∈ R, ∀j = 1, . . . , d. (2.7)

Let ℓ be an arbitrary integer number, and let w : R → R be a compactly supported function
satisfying w ∈ C1(R). Put

wℓ(y) =

ℓ∑
i=1

(
ℓ

i

)
(−1)i+1 1

i
w
(y
i

)
, K(t) =

d∏
j=1

wℓ(tj), t = (t1, . . . , td).

Although it will not be important for our considerations here we note nevertheless that K satisfies
Assumption 2 with K = wℓ.

Let ε, h ∈
(
0, e−2

]
be fixed and set 1

β =
∑d

i=1
1
βi
, 1

υ =
∑d

i=1
1

riβi
. For any j = 1, . . . , d let

Sε(j) ∈ N∗ be defined from the relation

e−1ε
2β

(2β+1)βj < he−Sε(j) ≤ ε
2β

(2β+1)βj . (2.8)

Without loss of generality we will assume that ε is sufficiently small in order to provide the existence
of Sε(j) for any j. Put also

H(j)
ε = {hs = he−s, s ∈ N, s ≥ Sε(j)}, Hε = H(1)

ε × · · · × H(d)
ε

and introduce for any x ∈ (−b, b)d and any f ∈ Nd(β⃗, r⃗, L⃗)

h⃗f (x) = arg inf
h⃗∈Hε

[∣∣∣ ∫ K
h⃗
(t− x)f(t)dt− f(x)

∣∣∣+ εV
− 1

2

h⃗

]
, V

h⃗
=

d∏
i=1

hi.

Define finally H =
{
h⃗f , f ∈ Nd(β⃗, r⃗, L⃗)

}
.

Proposition 1. Let β⃗ ∈ (0, ℓ]d, r⃗ ∈ [1, p]d and L⃗ ∈ (0,∞)d be given.
1) For any τ ∈ (0, 1) there exists L > 0 such that{

h⃗f , f ∈ Nd(β⃗, r⃗, L⃗)
}
⊂ Hd(τ,L).

2) If additionally υ(2 + 1/β) > p then there exists C > 0 such that{
h⃗f , f ∈ Nd(β⃗, r⃗, L⃗)

}
⊂ B

(
Cε

− 1
2β+1

)
.

The explicit expression for the constants L and C can be found in the proof of the proposition
which is postponed to Appendix.

The condition υ(2 + 1/β) > p appeared in the second assertion of the proposition is known as
the dense zone in adaptive minimax estimation over the collection of anisotropic classes of smooth
functions on Rd, see Goldenshluger and Lepski (2014).
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3. Proof of Theorems 1–3

The proofs of these theorems are based on several auxiliary results, which for the citation conve-
nience are formulated in Lemmas 1 and 2 below.

Furthermore, for any totaly bounded metric space (T, ϱ) we denote by Eϱ,T(δ), δ > 0, the δ-
entropy of T measured in ϱ, i.e. the logarithm of the minimal number of ϱ-balls of radius δ > 0
needed to cover T.

10. The results formulated in Lemma 1 can be found in Talagrand (1994), Proposition 2.2, and
Lifshits (1995), Theorems 14.1 and 15.2.

Lemma 1. Let (Zt, t ∈ T) be a centered, bounded on T, gaussian random function.
I) For any u > 0

P
{
sup
t∈T

Zt ≥ E
(
sup
t∈T

Zt

)
+ u

}
≤ e−

u2

2σ2 ,

where σ2 = supt∈T E
(
Z2
t

)
.

II) Let T be equipped with intrinsic semi-metric ρ2(t, t′) := E (Zt − Zt′)
2 , t, t′ ∈ T. Then

E
(
sup
t∈T

Zt

)
≤ DT,ρ := 4

√
2

∫ σ/2

0

√
Eρ,T(δ)dδ.

III) If DT,ρ <∞ then the (Zt, t ∈ T) is bounded and uniformly continuous almost surely.

20. The result formulated in Lemma 2 below is a particular case of Theorem 5.2 in Birman and
Solomjak (1967).

Let γ > 0, γ /∈ N∗, m ≥ 1 and R > 0 be fixed numbers and let ∆k ⊂ Rk, k ≥ 1, be a given cube
with the sides parallel to the axis. Recall that |y| denotes the euclidian norm of y ∈ Rk and ⌊γ⌋ is

the integer part of γ. Set also Dn = ∂|n|

∂y
n1
1 ···∂ynk

k

, n = (n1, . . . , nk) ∈ Nk.

Denote by Sγm
(
∆k

)
the Sobolev-Slobodetskii space, i.e. the set of functions F : ∆k → R equipped

with the norm

∥F∥γ,m =

(∫
∆k

∣∣F (y)∣∣mdy

) 1
m

+

( ∑
|n|=⌊γ⌋

∫
∆k

∫
∆k

∣∣DnF (y)−DnF (z)
∣∣m

|y − z|k+m(γ−⌊γ⌋) dydz

) 1
m

.

Denote by Sγm
(
∆k, R

)
= {F : ∆k → R : ∥F∥γ,m ≤ R} the ball of radius R in this space and set

λk
(
γ,m,R,∆k

)
= inf

{
c : sup

δ∈(0,R]
δk/γE

∥·∥2,Sγm
(
∆k,R

)(δ) ≤ c

}
.

Lemma 2. λk
(
γ,m, 1,∆k

)
<∞ for any bounded ∆k and γ,m, k satisfying γ > k/m− k/2.

In view of the obvious relation E
∥·∥2,Sγm

(
∆k,R

)(δ) = E
∥·∥2,Sγm

(
∆k,1

)(δ/R) one has for any R > 0

λk
(
γ,m,R,∆k

)
= Rk/γλ

(
γ,m, 1,∆k

)
. (3.1)
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3.1. Proof of Theorem 1

For any multi-index s ∈ Nd set h⃗s =
(
hs1 , . . . , hsd

)
, Vs =

∏d
j=1 hsj and introduce

υs(x) =
(
Vs

)− 1
2

∫
K

h⃗s
(t− x)W (dt), ηs =

(∣∣ ln (εVs)∣∣)− 1
2

sup
x∈(−b,b)d

∣∣υs(x)∣∣.
Note that for any h⃗ ∈ H and any s ∈ Nd we obviously have∣∣ξ

h⃗
(x)

∣∣ ≤ ηsV
− 1

2
s

√∣∣ ln (εVs)∣∣, ∀x ∈ Λs

[⃗
h
]
, (3.2)

and consider separately two cases.

Case p <∞. We have in view of (3.2)

∥∥ξ
h⃗

∥∥p
p
≤

∑
s∈Nd

ηps

(∣∣ ln (εVs)∣∣V −1
s

) p
2
νd
(
Λs

[⃗
h
])
.

Since ∥∥∥V − 1
2

h⃗

√∣∣ ln (εV
h⃗

)∣∣∥∥∥p
p
=

∑
s∈Nd

(∣∣ ln (εVs)∣∣V −1
s

) p
2
νd
(
Λs

[⃗
h
])
,

using the obvious inequality
(
y1/p−z1/p

)
+
≤

[
(y−z)+

]1/p
, y, z ≥ 0, p ≥ 1, we obtain for any h⃗ ∈ H

(∥∥ξ
h⃗

∥∥
p
− ψε(⃗h)

)
+
≤ (2b)

d
p

[ ∑
s∈Nd

(∣∣ ln (εVs)∣∣V −1
s

) p
2 (
ηps − C1

)
+

] 1
p

.

Noting that the right hand side of the latter inequality is independent of h⃗ and denoting q̃ = (q/p)∨1
we obtain using Jensen and triangle inequalities

E
{
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
− ψε(⃗h)

]
+

}q

≤ (2b)
dq
p

[ ∑
s∈Nd

(∣∣ ln (εVs)∣∣V −1
s

) p
2
{
E
(
ηps − C1

)q̃
+

} 1
q̃

] q
p

. (3.3)

Let s ∈ Nd be fixed. We have

E
(
ηps − C1

)q̃
+

= q̃

∫ ∞

0
zq̃−1P

{
ηps ≥ C1 + z

}
dz

= q̃

∫ ∞

0
zq̃−1P

{
sup

x∈(−b,b)d

∣∣υs(x)∣∣ ≥ [
C1 + z

] 1
p

√∣∣ ln (εVs)∣∣}dz. (3.4)

Set z =
[
C1 + z

] 1
p

√∣∣ ln (εVs)∣∣ and prove that

P
{

sup
x∈(−b,b)d

∣∣υs(x)∣∣ ≥ z
}
≤ 2

(
εVs

)2(q∨p)
exp

(
− z

2
p

8∥K∥2d2

)
, ∀z ≥ 0. (3.5)
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Since υs(·) is a zero mean gaussian random field in view of the obvious relation supx |υs(x)| =
[supx υs(x)] ∨ [supx{−υs(x)}] we get

P
{

sup
x∈(−b,b)d

∣∣υs(x)∣∣ ≥ z

}
≤ 2P

{
sup

x∈(−b,b)d
υs(x) ≥ z

}
. (3.6)

Let ρ denote the intrinsic semi-metric of υs(·) on (−b, b)d.
We have for any x, x′ ∈ (−b, b)d in view of Assumption 1

ρ2
(
x, x′

)
≤

∫ [
K(u)−K

(
h⃗−1
s (x− x′) + u

)]2
du

= 2∥K∥22 − 2

∫
[−a,a]d

K(u)K
(
h⃗−1
s (x− x′) + u

)
du

= −2

∫
[−a,a]d

K(u)
[
K
(
h⃗−1
s (x− x′) + u

)
−K(u)

]
du

≤ 2L∥K∥1
∣∣⃗h−1

s (x− x′)
∣∣ ≤ 2L∥K∥1V −1

s

∣∣x− x′
∣∣. (3.7)

Recall that Eρ,(−b,b)d(δ), δ > 0, denotes the δ-entropy of (−b, b)d measured in ρ.

Putting c1 =
∣∣ ln (4bL∥K∥1

)∣∣, we deduce from (3.7) for any δ > 0

Eρ,(−b,b)d(δ) ≤ dc1 + d
∣∣ ln (Vs)∣∣+ 2d

[
ln(1/δ)

]
+
. (3.8)

Note that σ2 := supx∈(−b,b)d E
(
η2s(x)

)
= ∥K∥22 and, therefore,

D(−b,b)d,ρ ≤
√
d

(
c2 + 2

√
2∥K∥2

√∣∣ ln (Vs)∣∣) , (3.9)

where c2 = 2∥K∥2
√
2c1 + 4

√
2
∫ 2−1∥K∥2
0

√[
ln(1/δ)]+dδ.

Thus, using the second assertion of Lemma 1 we have

E := E
(

sup
x∈(−b,b)d

υs(x)
)
≤ 2

√
2dπ + 2

√
2dc1∥K∥2 + 2

√
2d∥K∥2

√∣∣ ln (Vs)∣∣.
Here we have used that 4

√
2
∫ 2−1∥K∥2
0

√[
ln(1/δ)]+dδ ≤ 2

√
2π.

Note that in view of the definition of C1

z−E ≥ 2−1C
1
p

1

√∣∣ ln (εVs)∣∣−E+ 2−1z
1
p ≥ 2

√
(q ∨ p)∥K∥2

√∣∣ ln (εVs)∣∣+ 2−1z
1
p .

Remark that the third assertion of Lemma 1 and (3.9) implies that the first assertion of Lemma 1
is applicable with T = (−b, b)d and Zt = υs(x) and we get for any s ∈ Nd

P
{

sup
x∈(−b,b)d

υs(x) ≥ z

}
≤

(
εVs

)2(q∨p)
exp

(
− z

2
p

8∥K∥22

)
.

Thus, the inequality (3.5) follows now from (3.6). We obtain from (3.4) and (3.5)

E
(
ηps − C1

)q̃
+
≤ 2q̃

(
εVs

)2(q∨p) ∫ ∞

0
zq̃−1 exp

(
− z

2
p

8∥K∥22

)
dz =: c3

(
εVs

)2(q∨p)
. (3.10)
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Taking into account that
∣∣ ln (εVs)∣∣ ≤ ∣∣ ln (ε)∣∣V −1

s , since ε, h ≤ e−2, we deduce from (3.3) and (3.10)
that

E
{
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
− ψε(⃗h)

]
+

}q

≤ (2b)
dq
p (c3)

q
q̃p εq

[ ∑
s∈Nd

V p
s

] q
p

≤ (4b)
dq
p (c3)

q
q̃p εq = (C3ε)

q.

Case p = ∞. We have in view of (3.2)∥∥ξ
h⃗

∥∥
∞ = sup

s∈Nd

sup
x∈Λs

[
h⃗
] ∣∣ξh⃗(x)∣∣ ≤ sup

s∈Nd

(
ηs

√∣∣ ln (εVs)∣∣V − 1
2

s

)
.

Since, obviously ∥∥∥V − 1
2

h⃗

√∣∣ ln (εV
h⃗

)∣∣∥∥∥
∞

= sup
s∈Nd

(√∣∣ ln (εVs)∣∣V − 1
2

s

)
,

we obtain for any h⃗ ∈ H(∥∥ξ
h⃗

∥∥
∞ − ψε(⃗h)

)
+
≤

[
sup
s∈Nd

(
ηs

√∣∣ ln (εVs)∣∣V − 1
2

s

)
− C1 sup

s∈Nd

(√∣∣ ln (εVs)∣∣V − 1
2

s

)]
+

.

Since
(
supκ aκ−supκ bκ

)
+
≤ supκ

(
aκ−bκ

)
+
for arbitrary collections {aκ}κ and {bκ}κ of positives

numbers, we obtain for any q ≥ 1(∥∥ξ
h⃗

∥∥
∞ − ψε(⃗h)

)q

+

≤ sup
s∈Nd

(√∣∣ ln (εVs)∣∣V − 1
2

s

)q(
ηs − C1

)q
+

≤
∑
s∈Nd

(√∣∣ ln (εVs)∣∣V − 1
2

s

)q(
ηs − C1

)q
+

Taking into account that the right hand side of the latter inequality is independent of h⃗ we obtain

E
{
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
∞ − ψε(⃗h)

]
+

}q

≤
∑
s∈Nd

(√∣∣ ln (εVs)∣∣V − 1
2

s

)q
E
(
ηs − C1

)q
+

(3.11)

Note also that inequality (3.10) is proved for arbitrary p, q̃ ≥ 1. Applying it formally with p = 1
and q̃ = q we obtain

E
(
ηs − C1

)q
+
≤ 2q

(
εVs

)2q ∫ ∞

0
zq−1 exp

(
− z2

8∥K∥22

)
dz (3.12)

and the assertion of the theorem for p = ∞ follows from (3.11) and (3.12).

3.2. Proof of Theorem 2

3.2.1. Auxiliary lemma

Set λ∗(γ,m) = λ1
(
γ,m, 1, [−a− b, a+ b]

)
, where we recall the number a > 0 is involved in Assump-

tion 2 and λk(·, ·, ·, ·), k ∈ Nd is defined in Lemma 2.
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If d ≥ 2 write x = (x2, . . . , xd) and define for any η⃗ ∈ H and any x ∈ (−b, b)d−1

λη⃗,s(x) =

[ ∫ b

−b
1Λs[η⃗](x)ν1

(
dx1

)] τ
r

.

Later on for any x ∈ (−b, b)d we will use the following notation x = (x1, x). If d = 1 the dependence

of x should be omitted in all formulas. In particular, if d = 1 then λη1,s1 =
{
ν1
(
Λs1 [η1]

)} τ
r
.

For any x ∈ (−b, b)d−1 and s ∈ Nd introduce the set of functions Q : R → R

Qx,s =

{
Q(·) = λ−1

η⃗,s(x)

∫ b

−b
h−1/2
s1 K

(
· − x1
hs1

)
ℓ(x1)1Λs[η⃗](x1, x)ν1(dx1), ℓ ∈ Bq, η⃗ ∈ H

}
.

where Bq =
{
ℓ : (−b, b) → R :

∫ b
−b |ℓ(x1)|

qν(dx1) ≤ 1
}
, 1/q = 1− 1/r.

If λη⃗,s(x) = 0 put by continuity Q ≡ 0. Let finally µ−1 = q−1 + τr−1 and note that 2 > µ > 1
since τ < 1 and r > 2.

Lemma 3. For any x ∈ (−b, b)d−1, s ∈ Nd and any ω ∈
(
1/µ− 1/2, 1

)
one has

E∥·∥2,Qx,s
(ϵ) ≤ λ∗

(
ω, µ

)
R

1
ω
µ h

1
2ω

−1
s1 ϵ−

1
ω ∀ϵ ∈

(
0, Rµ h

1
2
−ω

s1

]
,

where Rµ =
[{

2−1∥K∥ 2µ
3µ−2

}
∨
{
∥K∥1 + 2

[
5
{
4L(a+ 1)

}µ
+ 4

{
2∥K∥1

}µ
(2− µ)−1

] 1
µ

}]
.

3.2.2. Constants and expressions.

Introduce Ω =
{
{ω1, ω2} : ω1 < 1/2 < ω2, [ω1, ω2] ⊂ (1/µ− 1/2, 1)

}
and set

C2(r, τ,L) = [1 ∨ (2b)d−1
][
L

1
r + L

τ
r
(
1− e−

τp
4
) τ−1

r
][
C̃µ + Ĉ

]
+ er

√
2(1 + q)

(
r
√
e
)d∥K∥d2r

r+2

;

Ĉµ =

[
r

1− τ

∫ ∞

0

(
u+ C̃µ

) r+τ−1
1−τ exp

{
− u2

[
2|K∥d−1

2 ∥K∥ 2µ
3µ−2

]−1}
du

] 1−τ
r

;

C̃µ = Cµ + 4d
(√

2er +
√
8π

)
∥K∥d−1

2 ∥K∥ 2µ
3µ−2

;

Cµ = 4
√
2∥K∥d−1

2 inf
{ω1,ω2}∈Ω

[√
λ∗

(
ω2, µ

)(
1− [2ω2]

−1
)
R

1
2ω2
µ +

√
λ∗

(
ω1, µ

)(
[2ω1]

−1 − 1
)
R

1
2ω1
µ

]
.

C4 =

(
γq+1

√
(π/2)

[
1 ∨ (2b)qd

] ∑
r∈N∗

p

e−er
[(
r
√
e
)d∥K∥d2r

r+2

] q
2

) 1
q

3.2.3. Main steps in the proof of Theorem 2.

The goal of this paragraph is to explain the basic ideas and main ingredients of the proof of Theorem
2 which is rather long and tricky.
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Set for any r ∈ N∗
p and h⃗ ∈ H

ζ
h⃗
(r) =

∥∥∥V 1
2

h⃗
ξ
h⃗

∥∥∥
r
, ζ(r) = sup

h⃗∈H
ζ
h⃗
(r). (3.13)

Our basic idea is to prove that for any r ∈ N∗
p one can find a constant U(r) being the upper function

for ζ(r) whenever H ⊂ Hd(τ,L,A) is considered. Since U(r) is independent of h⃗ the initial problem
is reduced to the study of the deviation of the supremum of ζ

h⃗
(r) on H.

First part of the proof consists in the aforementioned reduction of the considered problem to the

study of the upper function for the Lr-norm of the normalized process V
1
2

h⃗
ξ
h⃗
(·). This part is rather

short and straightforward and the obtained reduction is given in (3.22).
Our next observation consists in the following. In view of duality arguments

ζ(r) = sup
h⃗∈H

ζ
h⃗
(r) = sup

h⃗∈H
sup

ϑ∈Bq,d

Υ
h⃗,ϑ
, Υ

h⃗,ϑ
:=

∫
(−b,b)d

V
1
2

h⃗
(x)ξ

h⃗
(x)ϑ(x)νd(dx),

where Bq,d = {ϑ : (−b, b)d → R : ∥ϑ∥q ≤ 1} and 1/q = 1−1/r. Obviously Υ
h⃗,ϑ

is centered gaussian

random function on H× Bq,d. Hence, if we show that for some 0 < V (r) <∞

E
{
ζ(r)

}
≤ V (r), (3.14)

then the first assertion of Lemma 1 with

σ2Υ := sup
h⃗∈H

sup
θ∈Bq,d

E
{
Υ

h⃗,ϑ

}2
(3.15)

will be applicable to the random variable ζ(r).
Second part of the proof consists in finding a suitable upper bound for σΥ. It is also short and

straightforward and the obtained bound is presented in (3.25).
Main part of the proof, that deals with establishing (3.14), is divided in several steps. Although

the proof is done in an arbitrary dimension some additional difficulties come from the consideration
of an anisotropic bandwidth collection. For this reason the explanations below are given in the case
d ≥ 2. Define for any s = (s1, . . . , sd) ∈ Nd and x ∈ (−b, b)d−1

ςs
(
Q, x

)
=

∫
Q(t1)Gs(t, x)W (dt), Q ∈ Qx,s. (3.16)

Here we have put t = (t2, . . . , td), denoted t = (t1, t) for any t ∈ Rd, and set

Gs(t, x) =

d∏
i=2

h
− 1

2
si K

(
(ti − xi)/hsi

)
, t ∈ Rd−1, x ∈ (−b, b)d−1.

Remind also that the set Qx,s is defined in Lemma 3 and hs = e−sh, s ∈ N.
The basic idea used in establishing (3.14) consists in bounding from above Eζ(r) by some quan-

tities related to the collection of random variables{
ςs(x) := sup

Q∈Qs,x

ςs
(
Q, x

)
, s ∈ Nd, x ∈ (−b, b)d−1

}
. (3.17)
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First step in the proof of (3.14) consists in the realization of the aforementioned idea. The main
ingredients for that are: duality arguments, product structure of the kernel (Assumption 2 (ii)) and
the fact that H ∈ Hd(τ,L,A). The required bound is given in (3.36) (d ≥ 2) and (3.37) (d = 1).

Second step in the proof of (3.14). Looking at the inequality (3.36) (or (3.37)) we remark that
one has to bound from above the quantities

sup
x∈(−b,b)d−1

E
(

sup
s∈Sd

ς
r

1−τ
s (x)

)
, sup

x∈(−b,b)d−1

sup
s∈Nd

E
(
ς

r
1−τ
s (x)

)
. (3.18)

It is important to note that Sd is the finite set and its cardinality is completely determined by the
parameters h and A.

Another important remark is that ςs(Q, x) is zero-mean gaussian random function onQs,x. Hence,
in order to compute the quantities given in (3.18) one can use the concentration inequality presented
in the first assertion of Lemma 1. The most tricky part of the realization of this program consists in
bounding from above Eςs, which, in its turn, is reduced to the bounding from above the Dudley’s
integral in view of the second assertion of Lemma 1. The required bound is given in (3.43).

The main technical tool here is Lemma 3 providing very precise estimates for the entropy of the
set Qs,x, which are possible because this set belongs to the intersection of balls in the Sobolev-
Slobodetskii space (proof of Lemma 3). The result obtained in Lemma 3 allows to use different
bounds for the entropy of Qs,x near and outside of the origin in the computation of the Dudley’s
integral.

Final step in the proof of (3.14) consists of routine computations related to the careful application
of the first assertion of Lemma 1.

3.2.4. Proof of Theorem 2.

Put for brevity C2(r) = C2(r, τ,L) and let

ψr (⃗h) = C2(r)
∥∥∥V − 1

2

h⃗

∥∥∥
rp
r−p

, r ∈ N∗
p.

For any h⃗ ∈ H define r∗
(
h⃗
)
= arg inf

r∈N∗
p (⃗h,A)

ψr (⃗h). Note that C2(r) <∞ for any r ∈ N∗
p and

ψr (⃗h) ≥ C2(r)h
−d → ∞, r → ∞,

and, therefore, r∗
(
h⃗
)
<∞ for any h⃗ ∈ B(A). The latter fact allows us to assert that

ψ(⃗h) = inf
r∈N∗

p (⃗h,A)
ψr (⃗h) = ψ

r∗
(
h⃗
)(⃗h) =: C2

(
r∗
(
h⃗
)
, τ,L

)∥∥∥V − 1
2

h⃗

∥∥∥
pr∗(h⃗)
r∗(h⃗)−p

, (3.19)

since N∗
p(⃗h,A) is a discrete set.

By definition r∗
(
h⃗
)
≥ rA

(
h⃗
)
, where recall rA

(
h⃗
)
is defined in (2.1). Hence we get from Hölder

inequality and the definition of rA
(
h⃗
)

∥∥∥V − 1
2

h⃗

∥∥∥
pr∗(h⃗)
r∗(h⃗)−p

≤
[
1 ∨ (2b)d

]∥∥∥V − 1
2

h⃗

∥∥∥ prA(h⃗)

rA(h⃗)−p

≤ A
[
1 ∨ (2b)d

]
. (3.20)
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Using the notations given in (3.13), we obtain for any h⃗ ∈ H, applying Hölder inequality∥∥∥ξh⃗∥∥∥p ≤ inf
r∈N∗

p

{
ζ(r)

∥∥∥V − 1
2

h⃗

∥∥∥
pr
r−p

}
≤ ζ

(
r∗
(
h⃗
))∥∥∥V − 1

2

h⃗

∥∥∥
pr∗(h⃗)
r∗(h⃗)−p

. (3.21)

We deduce from (3.19), (3.20) and (3.21) that for any h⃗ ∈ H[∥∥ξ
h⃗

∥∥
p
− ψ(⃗h)

]q
+
≤

∥∥∥V − 1
2

h⃗

∥∥∥q
pr∗(h⃗)
r∗(h⃗)−p

[
ζ
(
r∗
(
h⃗
))

− C2

(
r∗
(
h⃗
))]q

+

≤ Aq
[
1 ∨ (2b)qd

][
ζ
(
r∗
(
h⃗
))

− C2

(
r∗
(
h⃗
))]q

+

≤ Aq
[
1 ∨ (2b)qd

] ∑
r∈N∗

p

[
ζ(r)− C2(r)

]q
+
.

To get the last inequality we have used that r∗
(
h⃗
)
∈ N∗

p for any h⃗ ∈ H.

Taking into account that the right hand side of the latter inequality is independent of h⃗ we get

E
(
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
− ψ(⃗h)

]
+

)q

≤
[
1 ∨ (2b)qd

]
Aq

∑
r∈N∗

p

E
[
ζ(r)− C2(r)

]q
+
. (3.22)

Also we have for any r ∈ N∗
p

E
[
ζ(r)− C2(r)

]q
+
= q

∫ ∞

0
zq−1P

{
ζ(r) ≥ C2(r) + z

}
dz. (3.23)

10. Our goal now is to prove the following inequality: for any z ≥ 0 and r ∈ N∗
p

P
{
ζ(r) ≥ C2(r) + z

}
≤ e−ere−qe2

√
2d| ln(h)|

exp
{
−

(
2
(
r
√
e
)d∥K∥d2r

r+2

)−1
z2
}
. (3.24)

To do that we will realize the program discussed in Section 3.2.3 and consisting in the proof of
(3.14) and bounding from above σΥ given in (3.15).

10a. Let us bound from above σΥ. By definition

Υ
h⃗,ϑ

=

∫ [ ∫
(−b,b)d

V
− 1

2

h⃗
(x)K

(
t− x

h⃗(x)

)
ϑ(x)νd(dx)

]
W (dt)

and, therefore,

σΥ = sup
h⃗∈H

sup
ϑ∈Bq,d

[ ∫ [ ∫
(−b,b)d

V
− 1

2

h⃗
(x)K

(
t− x

h⃗(x)

)
ϑ(x)νd(dx)

]2
νd(dt)

] 1
2

.

In view of triangle inequality and Assumption 2 (ii)

σΥ ≤
∑
s∈Nd

d∏
j=1

h
− 1

2
sj sup

ϑ∈Bq,d

(∫ [∫
(−b,b)d

∣∣∣∣ d∏
j=1

K
(
tj − xj
hsj

)∣∣∣∣∣∣ϑ(x)∣∣νd(dx)]2νd(dt)) 1
2

.

Applying the Young inequality and taking into account that ϑ ∈ Bq,d we obtain

σΥ ≤ ∥K∥d2r
r+2

∑
s∈Nd

d∏
j=1

h
1
r
sj ≤

[
1− e−

1
r
]−d∥K∥d2r

r+2

h
d
r ≤

(
r
√
e
)d∥K∥d2r

r+2

h
d
r . (3.25)
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10b. Let us prove (3.14). Set for any s ∈ Nd, and h⃗ ∈ H

ξ
h⃗,s

(x) = 1
Λs

[
h⃗
](x)∫ [ d∏

i=1

h
− 1

2
si K

(
(ti − xi)/hsi

)]
W (dt), x ∈ (−b, b)d.

We obviously have for any h⃗ ∈ H

ζr
h⃗
(r) =

∥∥∥V 1
2

h⃗
ξ
h⃗

∥∥∥r
r
=

∑
s∈Nd

∥∥ξ
h⃗,s

∥∥r
r
. (3.26)

Moreover, note that
∣∣ξ

h⃗,s
(x)

∣∣ ≤ 1
Λs

[
h⃗
](x)∣∣ ln (εVs)∣∣ 12 ηs for any x ∈ (−b, b)d, where, recall, Vs and ηs

are defined in the beginning of the proof of Theorem 1. Since, we have proved that ηs is bounded
almost surely, one gets∫ b

−b

∣∣ξ
h⃗,s

(x)
∣∣rν1(dx1) ≤ λr

h⃗,s
(x)

∣∣ ln (εVs)∣∣ r2 ηrs = 0, if λ
h⃗,s

(x) = 0. (3.27)

On the other hand in view of duality arguments∫ b

−b

∣∣ξ
h⃗,s

(x)
∣∣rν1(dx1) = [

sup
ℓ∈Bq

∫ b

−b
ξ
h⃗,s

(x)ℓ(x1)ν1
(
dx1

)]r
, (3.28)

where, recall, Bq =
{
ℓ : (−b, b) → R :

∫ b
−b |ℓ(y)|

qν(dy) ≤ 1
}
, 1/q = 1− 1/r.

Let d ≥ 2. The following simple remark is crucial for all further consideration: in view of (3.27)
and (3.28) for any x ∈ (−b, b)d−1, s ∈ Nd and for any h⃗ ∈ H∫ b

−b

∣∣ξ
h⃗,s

(x1, x)
∣∣rν1(dx1) ≤ λr

h⃗,s
(x)ςrs (x). (3.29)

where ςs is defined in (3.17).
Indeed, if λ

h⃗,s
(x) = 0 (3.29) follows from (3.27). If λ

h⃗,s
(x) > 0 then∫ b

−b
ξ
h⃗,s

(x)ℓ(x1)ν1
(
dx1

)
= λ

h⃗,s
(x)

∫
Q(t1)Gs(t, x)W (dt),

with Q(·) = λ−1

h⃗,s
(x)

∫ b
−b h

−1/2
s1 K

(
·−x1
hs1

)
ℓ(x1)1Λs [⃗h]

(x1, x)ν1(dx1) ∈ Qx,s, where Qx,s is defined in

Lemma 3. Then, (3.29) follows from (3.28).
Below we will prove that ςs(x) := supQ∈Qs,x

ςs
(
Q, x

)
is a random variable. This is important

because its definition uses the supremum over Qs,x which is not countable.

We get from (3.29) for any h⃗ ∈ H and s ∈ Nd in view of Fubini theorem

∥∥ξ
h⃗,s

∥∥r
r

=

∫
(−b,b)d−1

∫ b

b

∣∣ξ
h⃗,s

(x1, x)
∣∣rν1(dx1)νd−1(dx) ≤

∫
(−b,b)d

λr
h⃗,s

(x)ςrs (x)νd−1(dx)

=

∫
(−b,b)d

ςrs (x)

[ ∫ b

−b
1
Λs

[
h⃗
](x)ν1(dx1)]τνd−1(dx).
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Taking into account that τ < 1 and applying Hölder inequality to the outer integral we get∥∥ξ
h⃗,s

∥∥r
r
≤ ντd

(
Λs

[⃗
h
]){∫

(−b,b)d
ς

r
1−τ
s (x)νd−1(dx)

}1−τ

, ∀s ∈ Nd. (3.30)

If d = 1 putting Gs(t, x) ≡ 1 in (3.16), we obtain using the same arguments∥∥ξh1,s1

∥∥r
r
≤ ντd

(
Λs1

[
h1

])
ςs1 , ςs1 = sup

Q∈Qs1

ςs1
(
Q
)
. (3.31)

10b1. Let us prove some bounds used in the sequel. Let S ∈ N be the number satisfying
e−1 < hde−SA4 ≤ 1, and set Sd = {0, 1, . . . S}d and S̄d = Nd \ Sd. If such S does not exist we will
assume that Sd = ∅ and later on the supremum over empty set is assumed to be 0.

Set also S∗
d = {s ∈ Nd : A4Vs ≤ 1}, where, recall, Vs =

∏d
j=1 hsj . Note that Vs ≤ hde−S ≤ A−4

for any s ∈ S̄d and, therefore,

S̄∗
d := Nd \ S∗

d ⊆ Sd. (3.32)

Putting for brevity r = rA(⃗h), we have for any s ∈ Nd and any h⃗ ∈ B(A)(
Vs
)− pr

2(r−p) νd

(
Λs

[⃗
h
])

≤
∑
k∈Nd

(
Vk

)− pr
2(r−p) νd

(
Λk

[⃗
h
])

=
∥∥∥V − 1

2

h⃗

∥∥∥ pr
r−p

pr
r−p

≤ A
pr
r−p .

The last inequality follows from the definition of rA(⃗h).
Taking into account that pr

r−p > p and that Vs < 1 we get in view of the definition of S∗
d

νd

(
Λs

[⃗
h
])

≤ V
p
4
s , ∀h⃗ ∈ B(A), ∀s ∈ S∗

d . (3.33)

10b2. Set ς(x) = sups∈Sd
ςs(x) and let d ≥ 2.

We have in view of (3.30) and (3.32) for any h⃗ ∈ H∑
s∈S̄∗

d

∥∥ξ
h⃗,s

∥∥r
r

≤
∑
s∈Sd

∥∥ξ
h⃗,s

∥∥r
r
≤

{∫
(−b,b)d−1

ς
r

1−τ (x)νd−1(dx)

}1−τ ∑
s∈Nd

ντd

(
Λs

[⃗
h
])

≤ L
{∫

(−b,b)d−1

ς
r

1−τ (x)νd−1(dx)

}1−τ

. (3.34)

To get the last inequality we have used that H ⊂ Hd(τ,L).
Writing τ = τ2 + τ(1− τ) and using the bound (3.33) we get in view of (3.30)∑

s∈S∗
d

∥∥ξ
h⃗,s

∥∥r
r

≤
∑
s∈S∗

d

ντ
2

d

(
Λs

[⃗
h
])
V

τ(1−τ)p
4

s

{∫
(−b,b)d−1

ς
r

1−τ
s (x)νd−1(dx)

}1−τ

.

Applying Hölder inequality with exponents 1/τ and 1/(1− τ) we get∑
s∈S∗

d

ντ
2

d

(
Λs

[⃗
h
])
V

τ(1−τ)p
4

s

{∫
(−b,b)d−1

ς
r

1−τ
s (x)νd−1(dx)

}1−τ

≤
[ ∑
s∈Nd

ντd

(
Λs

[⃗
h
])]τ[ ∑

s∈Nd

V
τp
4

s

∫
(−b,b)d−1

ς
r

1−τ
s (x)νd−1(dx)

]1−τ

≤ Lτ

[ ∑
s∈Nd

V
τp
4

s

∫
(−b,b)d−1

ς
r

1−τ
s (x)νd−1(dx)

]1−τ

. (3.35)
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To get the last inequality we have used once again that H ⊂ Hd(τ,L).
We deduce from (3.26), (3.34) and (3.35) that for any h⃗ ∈ H

ζr
h⃗
(r) ≤ L

{∫
(−b,b)d−1

ς
r

1−τ (x)νd−1(dx)

}1−τ

+ Lτ

[ ∑
s∈Nd

V
τp
4

s

∫
(−b,b)d−1

ς
r

1−τ
s (x)νd−1(dx)

]1−τ

.

Noting that the right hand side of the obtained inequality is independent of h⃗ we get

ζ(r) ≤ L
1
r

{∫
(−b,b)d−1

ς
r

1−τ (x)νd−1(dx)

} 1−τ
r

+ L
τ
r

[ ∑
s∈Nd

V
τp
4

s

∫
(−b,b)d−1

ς
r

1−τ
s (x)νd−1(dx)

] 1−τ
r

.

Hence, applying Jensen inequality and Fubini theorem one has for any d ≥ 2

E
{
ζ(r)

}
≤ L

1
r

{∫
(−b,b)d−1

E
(
ς

r
1−τ (x)

)
νd−1(dx)

} 1−τ
r

+ L
τ
r

[ ∑
s∈Nd

V
τp
4

s

∫
(−b,b)d−1

E
(
ς

r
1−τ
s (x)

)
νd−1(dx)

] 1−τ
r

≤ L
1
r
[
1 ∨ (2b)d−1

]
sup

x∈(−b,b)d−1

{
E
(
ς

r
1−τ (x)

)} 1−τ
r

+ L
τ
r
[
1 ∨ (2b)d−1

](
1− e−

τp
4
) τ−1

r sup
s∈Nd

sup
x∈(−b,b)d−1

{
E
(
ς

r
1−τ
s (x)

)} 1−τ
r

. (3.36)

Here we have also used that Vs ≤
∏d

j=1 e
−sj−2 and that (1− τ)/r < 1.

If d = 1 repeating previous computations we obtain from (3.26) and (3.31)

E
{
ζ(r)

}
≤ L

1
rEς + L

τ
r
(
1− e−

τp
4
) τ−1

r sup
s∈N

[
E
(
ς

r
1−τ
s

)] 1−τ
r
. (3.37)

In what follows x is assumed to be fixed that allows us not to separate cases d = 1 and d ≥ 2.

10b3. Let x ∈ (−b, b)d−1 be fixed. First let us bound from above

Eςs(x) := E
{

sup
Q∈Qs,x

ςs
(
Q, x

)}
, s ∈ Nd, Eς(x) := E

{
sup
s∈Sd

sup
Q∈Qs,x

ςs
(
Q, x

)}
Note that ςs

(
Q, x

)
is zero-mean gaussian random function on Qs,x. Our objective now is to show

that the assertion II of Lemma 1 is applicable with Zt = ςs
(
Q, x

)
, t = Q, and T = Qs,x.

Note that the intrinsic semi-metric of ςs
(
Q, x

)
is given by

ρ2
(
Q, Q̃

)
=

∫
G2

s

(
t, x

) [
Q(t1)− Q̃(t1)

]2
νd(dt), Q, Q̃ ∈ Qs,x.
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Noting that
∫
Rd−1 G

2
s

(
t, x

)
νd(dt) = ∥K∥2d−2

2 for any x ∈ (−b, b)d−1, we get

ρ
(
Q, Q̃

)
= ∥K∥d−1

2 ∥Q− Q̃∥2, ∀Q, Q̃ ∈ Qs,x.

Below we show that
(
Qs,x, ∥·∥2

)
is totally bounded metric space and, moreover, the corresponding

Dudley’s integral is finite. The latter fact allows us to assert that ςs(·, x) is almost surely continuous
on Qs,x that implies the measurability of ςs(x) as well as ς(x). We obviously have

Eρ,Qs,x(δ) ≤ E||·||2,Qs,x

(
∥K∥1−d

2 δ
)
, ∀δ > 0, (3.38)

and, therefore,

DQs,x,ρ := 4
√
2

∫ 2−1σs

0

√
Eρ,Qs,x(δ)dδ ≤ 4

√
2∥K∥d−1

2

∫ σ̃s

0

√
E||·||2,Qs,x

(δ)dδ, (3.39)

where σ̃s = 2−1σs∥K∥1−d
2 and

σs :=
[

sup
Q∈Qs,x

E
{
ς2s
(
Q, x

)}] 1
2
= ∥K∥d−1

2 sup
Q∈Qs,x

∥Q∥2.

We start with bounding from above the quantity σs.
Recall that µ−1 = q−1 + τr−1. Applying Young inequality we have

∥Q∥2 ≤ λ−1

h⃗,s
(x)h

1− 1
µ

s1

[ ∫ b

−b

∣∣ℓ(x1)∣∣µ1Λs

[
h⃗
](x1, x)ν1(dx1)] 1

µ

∥K∥ 2µ
3µ−2

.

Applying Hölder inequality to the integral in right hand side of the latter inequality and taking
into account that ℓ ∈ Bq we get[ ∫ b

−b

∣∣ℓ(x1)∣∣µ1Λs

[
h⃗
](x1, x)ν1(dx1)] 1

µ

≤
[ ∫ b

−b
1
Λs

[
h⃗
](x1, x)ν1(dx1)] 1

µ
− 1

q

= λ
h⃗,s

(x). (3.40)

Thus we obtain

σs ≤ ∥K∥d−1
2 ∥K∥ 2µ

3µ−2
h

1−τ
r

s1 . (3.41)

Putting σ∗s = 2−1∥K∥ 2µ
3µ−2

h
1−τ
r

s1 we deduce from (3.39) and (3.41)

DQs,x,ρ ≤ 4
√
2∥K∥d−1

2

∫ σ∗
s

0

√
E||·||2,Qs,x

(δ)dδ. (3.42)

Now let us bound from above E
{
supQ∈Qs,x

ςs
(
Q, x

)}
.

Recall that Ω =
{
{ω1, ω2} : ω1 < 1/2 < ω2, [ω1, ω2] ⊂ (1/µ−1/2, 1)

}
. Note that the condition

ω1 > 1/µ− 1/2 implies 1/2− ω1 < (1− τ)r−1 and, therefore

h
1−τ
r

s1 < h
1
2
−ω1

s1 < h
1
2
−ω2

s1

since hs1 ≤ h ≤ 1. It yields that
(
0, σ∗s

]
⊂

(
0, Rµ h

1
2
−ω1

s1

]
⊂

(
0, Rµ h

1
2
−ω2

s1

]
, since Rµ ≥ 2−1∥K∥ 2µ

3µ−2
.

Hence Lemma 3 is applicable to the computation of the integral in the right hand side of (3.42).

22



Recall that λ∗(·, ·) is defined in Section 3.2.1 and introduce the following notations: A2(ω) =

λ∗
(
ω, µ

)
R

1
ω
µ h

1
2ω

−1
s1 , δ0 = h

1
2
s1 and note that δ0 < σ∗s . We get in view of Lemma 3∫ σ∗

s

0

√
E||·||2,Qs,x

(δ)dδ =

∫ δ0

0

√
E||·||2,Qs,x

(δ)dδ +

∫ σ∗
s

δ0

√
E||·||2,Qs,x

(δ)dδ

≤ A(ω2)
(
1− [2ω2]

−1
)
δ
1− 1

2ω2
0 +A(ω1)

(
[2ω1]

−1 − 1
)
δ
1− 1

2ω1
0

=
√
λ∗

(
ω2, µ

)(
1− [2ω2]

−1
)
R

1
2ω2
µ +

√
λ∗

(
ω1, µ

)(
[2ω1]

−1 − 1
)
R

1
2ω1
µ .

It yields together with (3.42) DQs,x,ρ ≤ Cµ, where, recall,

Cµ = 4
√
2∥K∥d−1

2 inf
{ω1,ω2}∈Ω

[√
λ∗

(
ω2, µ

)(
1− [2ω2]

−1
)
R

1
2ω2
µ +

√
λ∗

(
ω1, µ

)(
[2ω1]

−1 − 1
)
R

1
2ω1
µ

]
.

Applying the assertion II of Lemma 1 we get

Eςs(x) = E
{

sup
Q∈Qs,x

ςs
(
Q, x

)}
≤ Cµ. (3.43)

We obtain from (3.41) that

σς := sup
s∈Sd

sup
Q∈Qs,x

√
Eς2s

(
Q, x

)
=: sup

s∈Sd

σs ≤ ∥K∥d−1
2 ∥K∥ 2µ

3µ−2
h

1−τ
r . (3.44)

Applying the assertion I of Lemma 1 we obtain in view of (3.43) for any z > 0

P
{
ςs(x) ≥ Cµ + z

}
≤ e

− z2

2σ2
s ≤ e

− z2

2σ2
ς . (3.45)

Set T = Cµ +
√
2er∥K∥d−1

2 ∥K∥ 2µ
3µ−2

we obtain using (3.45)

Eς(x) ≤ T +

∫ ∞

0
P
{
ς(x) ≥ T + y

}
dy ≤ T + (S + 1)d

∫ ∞

0
e
− (U−Cµ+y)2

2σ2
ς dy

≤ T +
√
8π∥K∥d−1

2 ∥K∥ 2µ
3µ−2

(S + 1)d exp
{
− erh

2(τ−1)
r

}
.

Taking into account that (S + 1)d ≤
[
4 ln(A)

]d
in view of the definition of S and that

inf
r>0

erh
2(τ−1)

r = e2
√

2(1−τ)| ln(h)|,

we obtain

Eς(x) ≤ T +
√
8π∥K∥d−1

2 ∥K∥ 2µ
3µ−2

[
4 ln(A)

]d
ee

−2
√

2(1−τ)| ln(h)|
.

≤ Cµ + 4d
(√

2er +
√
8π

)
∥K∥d−1

2 ∥K∥ 2µ
3µ−2

= C̃µ. (3.46)

The last inequality follows from the relation (2.2) and the definition of T .
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10b4. Applying the assertion I of Lemma 1 we obtain in view of (3.44) for any z > 0

P
{
ς(x) ≥ C̃µ + z

}
≤ e

− z2

2σ2
ς .

It yields together with (3.44)

E
(
ς

r
1−τ (x)

)
= C̃

r
1−τ
µ +

r

1− τ

∫ ∞

0

(
z + C̃µ

) r+τ−1
1−τ P

{
ς(x) ≥ z + C̃µ

}
dz

≤ C̃
r

1−τ
µ + Ĉ

r
1−τ
µ . (3.47)

Here recall

Ĉµ =

[
r

1− τ

∫ ∞

0

(
u+ C̃µ

) r+τ−1
1−τ exp

{
− u2

[
2|K∥d−1

2 ∥K∥ 2µ
3µ−2

]−1}
du

] 1−τ
r

.

Similarly we deduce from (3.44) and (3.45)

E
(
ς

r
1−τ
s (x)

)
≤ C

r
1−τ
µ + Ĉ

r
1−τ
µ ≤ C̃

r
1−τ
µ + Ĉ

r
1−τ
µ , ∀s ∈ Nd. (3.48)

Noting that the bounds in (3.47) and (3.48) are independent of x and s we get in view of (3.36)

E
{
ζ(r)

}
≤ [1 ∨ (2b)d−1

][
L

1
r + L

τ
r
(
1− e−

τp
4
) τ−1

r
][
C̃µ + Ĉµ

]
.

This proves (3.14) with V (r) = [1 ∨ (2b)d−1
][
L

1
r + L

τ
r

(
1− e−

τp
4

) τ−1
r
][
C̃µ + Ĉµ

]
.

10c. Remembering that C2(r) = T+er
√

2(1 + q)
(
r
√
e
)d∥K∥d2r

r+2

we obtain, applying the assertion

I of Lemma 1 available in view of (3.14) and (3.25)

P
{
ζ(r) ≥ C2(r) + z

}
≤ e−ere−qerh

2d
r exp

{
−

[
2
(
r
√
e
)d∥K∥d2r

r+2

]−1
z2
}
, ∀z ≥ 0.

Taking into account that erh
2d
r ≤ e2

√
2d| ln(h)| for any r > 0 we come to (3.24).

20. We deduce from (3.23) and (3.24) that

E
[
ζ(r)− C2(r)

]q
+
≤

√
(π/2)e−er

[(
r
√
e
)d∥K∥d2r

r+2

] q
2 e−qe2

√
2d| ln(h)|

γq+1,

where recall γq+1 is the (q+1)-th moment of the standard normal distribution. This yields together
with (3.22)

E
(
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
− ψr (⃗h)

]
+

)q

≤
[
C4Ae−e2

√
2d| ln(h)|

]q
,

and the assertion of the theorem follows.
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3.3. Proof of Theorem 3

3.3.1. Constants

Let c(d) be the constant appearing in (2, 2)-strong maximal inequality, see Folland (1999). Set

σ∗ =
√

2d+1ad∥K∥∞∥K∥1c(d)(2b)
d(p−1)

p ;

C5 =
[√

8πσq−1
∗ γq+1

] 1
q

∞∑
r=d+1

∞∑
l=1

e−2ler .

For any r ∈ N∗, r > d put γr =
d
2 + d

2pr and let D denote the unit disc in Rd. Set

T (r) =
[
σ∗/2

]
∨
[
(d/2 + 1)dT ∗(r) + ∥K∥d1(2b)1/p

]
;

T ∗(r) = 2−d+1

[
L(a+ 2)d

∫
z−d−γr+⌊γr⌋+11D(z)dz+ C(K)

∫
z−d−γr+⌊γr⌋1D(z)dz

]
,

where C(K) = sup|n|=⌊d/2⌋
∥∥DnK

∥∥
1
. Note that γr ̸= ⌊γr⌋ and, therefore, both integrals in the

definition of T ∗(r) are finite.

Let λ∗d(r) = λd
(
γr, 1, 1, [−a − b, a + b]d

)
, where the quantity λk(·, ·, ·, ·), k ∈ N∗, is defined in

Lemma 2. Set finally

C∗
2 (r) = 8

√
2λ∗d(r)

[
T (r)

]d/2γr(σ∗/2) 1
2pr + 4

√
qerσ∗.

3.3.2. Auxiliary lemma

For any l ∈ N∗ and any r ∈ N∗ satisfying r > d put

Hl,r =
{
h⃗ ∈ H : 2l−1h−

d
2 ≤

∥∥h− d
2

∥∥
p+ 1

r
< 2lh−

d
2

}
,

and introduce

Ql,r =

{
Q : Rd → R : Q(·) =

∫
(−b,b)d

K
h⃗
(· − x)ϑ(x)νd(dx), ϑ ∈ Bq,d, h⃗ ∈ Hl,r

}
,

where, Bq,d = {ϑ : (−b, b)d → R : ∥ϑ∥q ≤ 1} and 1/q = 1− 1/p.

Lemma 4. For any r, l ∈ N∗, r > d and any δ ∈
(
0, T (r)

(
2lh−

d
2

) 2γr
d

]
one has

EQl,r,∥·∥2(δ) ≤ λ∗d(r)
[
T (r)

]d/γr(2lh− d
2
)2
δ−d/γr .

3.3.3. Preliminary remarks on the proof of Theorem 3.

The goal of this paragraph is to discuss the main technical tools involved in the proof of the theorem.
In particular we explain the role of the isotropy and the condition p ∈ [1, 2] in our considerations.
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We proceed similarly to the proof of Theorem 2. Using duality arguments we have

sup
h⃗∈Hl,r

∥∥ξ
h⃗

∥∥
p
= sup

h⃗∈Hl,r

sup
ϑ∈Bq,d

∫
(−b,b)d

ξ
h⃗
(x)ϑ(x)νd(dx).

Noting that
∫
(−b,b)d ξh⃗(x)ϑ(x)νd(dx) =

∫ [ ∫
(−b,b)d h

−d(x)K
(
t−x
h(x)

)
ϑ(x)νd(dx)

]
W (dt) we obtain

sup
h⃗∈Hl,r

∥∥ξ
h⃗

∥∥
p
= sup

Q∈Ql,r

∫
Q(t)W (dt) =: sup

Q∈Ql,r

ζ(Q).

Remind that Hl,r and Ql,r are defined in Lemma 4. Using standard slicing device we reduce the
initial problem to the investigation of supQ∈Ql,r

ζ(Q), see (3.52). Obviously ζ(·) is centered gaussian
random function on Ql,r and our goal is to apply to it the assertion I of Lemma 1. To do this it
suffices to show that

E
{

sup
Q∈Ql,r

ζ(Q)
}
≤ Ul,r (3.49)

for some 0 < Ul,r <∞ and to compute

σ2l,r := sup
Q∈Ql,r

∫
Q2(t)νd(dt). (3.50)

We will see that this programm, being similar to those realized in the proof of Theorem 2, requires
completely different arguments. It is related to the fact that we consider the random field ξ

h⃗
itself

and not its ”normalized” version
√
V
h⃗
ξ
h⃗
.

First step consists in the finding an appropriated upper bound for σl,r. In distinction from the
similar problem related to the quantity σΥ appeared in the proof of Theorem 2 the computations
here are more involved. The proof of the bound obtained in (3.53) heavily exploits the condition
p ∈ [1, 2] and one can easily checked that (3.53) is not true in general if p > 2.

Second step consists in proving (3.49). As in the proof of Theorem 2 the main problem here is
to bound from above corresponding Dudley’y integral and Lemma 4 is the basic technical tool for
it. The aforementioned bound is presented in (3.54).

There is however a great difference between Lemmas 3 and 4. One of the main efforts made in
the proof of Theorem 2 is to reduce the considered problem to the study of supremum of gaussian
random function defined on Qs,x. The latter set consists of smooth univariate functions and this
fact is crucial for the proof of Lemma 3. Namely to make the aforementioned reduction possible the
original problem ”is replaced” by the study of the process

√
V
h⃗
ξ
h⃗
and functional classes Hd(τ,L,A)

are introduced. All of this is dictated by the consideration of anisotropic classes of bandwidths. It
turns out that it is not necessary when isotropic classes are studied. Although Ql,r is the class of
d-variate functions, its entropy admits very precise bound presented in Lemma 4, that in its turn
leads to the correct estimate in (3.49).

3.3.4. Proof of Theorem 3.

For any r > d, r ∈ N∗, set ψ∗
r (h) = C∗

2 (r)
∥∥h− d

2

∥∥
p+ 1

r
. We have

E
{
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
− inf

r∈N∗,r>d
ψ∗
r (⃗h)

]
+

}q

≤
∞∑

r=d+1

E
{
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
− ψ∗

r (⃗h)
]
+

}q

.
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Moreover, since H = ∪l≥1Hl,r for any r ∈ N∗, one has{
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
− ψ∗

r (⃗h)
]
+

}q

≤
∞∑
l=1

(
sup

h⃗∈Hl,r

∥∥ξ
h⃗

∥∥
p
− C∗

2 (r)2
l−1h−

d
2

)q

+

.

Thus,

E
{
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
− inf

r∈N∗,r>d
ψ∗
r (⃗h)

]
+

}q

≤
∞∑

r=d+1

∞∑
l=1

E
(

sup
h⃗∈Hl,r

∥∥ξ
h⃗

∥∥
p
− C∗

2 (r)2
l−1h−

d
2

)q

+

. (3.51)

Thus, we get from (3.51)

E
{
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
− inf

r∈N∗,r>d
ψ∗
r (⃗h)

]
+

}q

≤
∞∑

r=d+1

∞∑
l=1

E
(

sup
Q∈Ql,r

ζ(Q)− C∗
2 (r)2

l−1h−
d
2

)q

+

. (3.52)

10. We start with bounding the quantity σl,r given in (3.50). Putting for any x, y ∈ (−b, b)d

R(x, y) =

∫
K

(
t− x

h(x)

)
K

(
t− y

h(y)

)
νd(dt),

we obtain for any Q ∈ Ql,r∫
Q2(t)νd(dt) =

∫ [ ∫
(−b,b)d

h−d(x)K

(
t− x

h(x)

)
ϑ(x)νd(dx)

]2
νd(dt)

=

∫
(−b,b)d

∫
(−b,b)d

h−d(x)h−d(y)ϑ(x)ϑ(y)R(x, y)νd(dx)νd(dy).

Taking into account that supp(K) ⊆ [−a, a]d in view of Assumption 3 we get

|R(x, y)| ≤
[
h(x) ∧ h(y)

]
∥K∥∞∥K∥11[−2a,2a]d

(
x− y

h(x) ∨ h(y)

)
.

Hence, putting Υ = ∥K∥∞∥K∥1, we obtain∫
Q2(t)νd(dt)

≤ Υ

∫
(−b,b)d

∫
(−b,b)d

∣∣ϑ(x)ϑ(y)∣∣[h(x) ∨ h(y)]−d
1[−2a,2a]d

(
x− y

h(x) ∨ h(y)

)
νd(dx)νd(dy).

It remains to note [
h(x) ∨ h(y)

]−d
1[−2a,2a]d

(
x− y

h(x) ∨ h(y)

)
≤ h−d(x)1[−2a,2a]d

(
x− y

h(x)

)
+ h−d(y)1[−2a,2a]d

(
x− y

h(y)

)
and, therefore,∫

Q2(t)νd(dt) ≤ 2Υ

∫
(−b,b)d

|ϑ(v)|
[ ∫

(−b,b)d
h−d(v)1[−2a,2a]d

(
u− v

h(v)

)
|ϑ(u)|νd(du)

]
νd(dv)

≤ 2d+1adΥ

∫
|ϑ∗(v)| sup

λ>0
(2λ)−d

[ ∫
Rd

1[−λ,λ]d

(
u− v

λ

)
|ϑ∗(u)|νd(du)

]
νd(dv)

≤ 2d+1adΥ

∫
|ϑ∗(v)|M [|ϑ∗|](v)νd(dv).
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Here we have put ϑ∗(·) = 1(−b,b)d(·)ϑ(·) and M [|ϑ∗|] denotes the Hardy-Littlewood maximal oper-
ator applied to the function |ϑ∗|.

In view of (2, 2)-strong maximal inequality, Folland (1999), there exists c(d) such that∫
Rd

{
M [|ϑ∗|](v)

}2
νd(dv) ≤ c2(d)

∫
Rd

|ϑ∗(v)|2νd(dv).

Using the latter bound we obtain applying Cauchy-Schwartz inequality[ ∫
Q2(t)νd(dt)

] 1
2

≤
√

c(d)

[ ∫
(−b,b)d

|ϑ(v)|2νd(dv)
] 1

2

≤
√

2d+1adΥc(d)(2b)
d(p−1)

p .

To get the last inequality we applied the Hölder inequality and took into account that ϑ ∈ Bq,d and
q ≥ 2 since p ≤ 2.

Noting that the right hand side of the obtained inequality is independent of Q we get

σl,r ≤
√

2d+1ad∥K∥∞∥K∥1c(d)(2b)
d(p−1)

p := σ∗. (3.53)

We would like to emphasize that the condition p ≤ 2 is crucial in order to obtain the bound
presented in (3.53).

20. Let us now establish (3.50). The intrinsic semi-metric ρζ of ζ(·) is given by

ρζ(Q1, Q2) = ∥Q1 −Q2∥2, Q1, Q2 ∈ Ql,r.

Taking into account that d
2γr

= 2pr
2pr+1 < 1 and applying the second assertion of Lemma 1 and

Lemma 4 we obtain in view of (3.53)

DQl,r,ρζ = 4
√

2λ∗d(r)
[
T (r)

]d/2γr(2lh− d
2
) ∫ σl,r/2

0
δ−d/2γrdδ

= 4
√

2λ∗d(r)
[
T (r)

]d/2γr(2lh− d
2
)
(σl,r/2)

1
2pr

≤ 4
√

2λ∗d(r)
[
T (r)

]d/2γr(σ∗/2) 1
2pr

(
2lh−

d
2
)
.

We conclude that Dudley integral is finite and as it is proved in Lemma 4 Ql,r is a totally bounded
space with respect to the intrinsic semi-metric of ζ(·). It implies that ζ(·) is almost surely continuous
on Ql,r and, therefore, supQ∈Ql,r

ζ(Q) is a random variable.
Thus, in view of the second assertion of Lemma 1

E
{

sup
Q∈Ql,r

ζ(Q)
}

≤ 4
√
2λ∗d(r)

[
T (r)

]d/2γr(σ∗/2) 1
2pr

(
2lh−

d
2
)

(3.54)

and (3.50) is proved with Ul,r = 4
√

2λ∗d(r)
[
T (r)

]d/2γr(σ∗/2) 1
2pr

(
2lh−

d
2

)
.

Moreover, ζ(·) is almost surely bounded on Ql,r and, therefore, the first assertion of Lemma 1 is
applicable.

30. Hence, noting that C∗
2 (r) = 8

√
2λ∗d(r)

[
T (r)

]d/2γr(σ∗/2) 1
2pr + 4

√
qerσ∗ we obtain

P
{

sup
Q∈Ql,r

ζ(Q) ≥ 2l−1h−
d
2C∗

2 (r) + z
}
≤ exp

{
− 2l+1qh−

d
2 er

}
e
− z2

2σ2∗ , ∀z > 0.
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It yields for any q ≥ 1

E
(

sup
Q∈Ql,r

ζ(Q)− C∗
2 (r)2

l−1h−
d
2

)q

+

= q

∫ ∞

0
zq−1P

{
sup

Q∈Ql,r

ζ(Q) ≥ 2l−1h−
d
2C∗

2 (r) + z
}

≤
√
8πσq−1

∗ γq+1 exp
{
− 2l+1qh−

d
2 er

}
. (3.55)

We deduce from (3.52) and (3.55)

E
{
sup
h⃗∈H

[∥∥ξ
h⃗

∥∥
p
− inf

r∈N∗,r>d
ψ∗
r (⃗h)

]}q

+

≤
(
C5e

h−
d
2
)q
,

where, recall, C5 =
[√

8πσq−1
∗ γq+1

] 1
q ∑∞

r=d+1

∑∞
l=1 e

−2ler .

4. Appendix

4.1. Proof of Lemma 3

Recall that µ−1 = q−1 + τr−1 and note that 2 > µ > 1 since τ < 1 and r > 2. The proof of the
lemma is mostly based on the inclusion

Qx,s ∈ Sωµ
(
[−a− b, a+ b], R̃µ

)
, ∀ω ∈

(
1/µ− 1/2, 1

)
, (4.1)

where R̃µ = ∥K∥1 + 2
[
5
{
4L(a+ 1)

}µ
+ 4

{
2∥K∥1

}µ
(2− µ)−1

] 1
µ .

First, we note that all functions from Qx,s vanish outside the interval ∆ = [−a − b, a + b] since
K is compactly supported on [−a, a] and hs1 ≤ h < 1.

Next, applying Young inequality we obtain for any Q ∈ Qx,s

∥∥Q∥∥
Lµ(∆)

= λ−1

h⃗,s
(x)

[ ∫
∆

∣∣∣∣ ∫ b

−b
h−1/2
s1 K

(
y − x1
hs1

)
ℓ(x1)1Λs

[
h⃗
](x1, x)ν1(dx1)∣∣∣∣µν1(dy)] 1

µ

≤ λ−1

h⃗,s
(x)(hs1)

1
2 ∥K∥1

[ ∫ b

−b
|ℓ(x1)|µ 1Λs

[
h⃗
](x1, x)ν1(dx1)] 1

µ

≤ (hs1)
1
2 ∥K∥1. (4.2)

To get the last inequality we have used (3.40).
Let ω ∈

(
1/µ− 1/2, 1

)
be fixed. Let us bound from above the quantity

Jµ :=

∫
∆

∫
∆

|Q(y)−Q(z)|µ

|y − z|1+µω
dydz.

Putting y = u+ v and z = u− v we obtain by changing of variables

Jµ ≤ 2−µω

∫ ∞

−∞
|v|−1−µω

[ ∫ ∞

−∞
|Qs(u+ v)−Qs(u− v)|µdu

]
dv
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Note also that

|Qs(u+ v)−Qs(u− v)|

≤ λ−1

h⃗,s
(x)

∫ b

−b
h−1/2
s1

∣∣∣∣K(
u− x1
hs1

+
v

hs1

)
−K

(
u− x1
hs1

− v

hs1

)∣∣∣∣|ℓ(x1)|1Λs

[
h⃗
](x1, x)ν1(dx1).

Hence,

Jµ ≤ 2−µωh−µ(ω+1/2)
s λ−µ

h⃗,s
(x)

∫ ∞

−∞
|w|−1−µωGµ(w)dw,

where we have put for any w ∈ R

G(w) =

[ ∫ ∞

−∞

[ ∫ b

−b

∣∣∣∣K(
u− x1
hs1

+ w

)
−K

(
u− x1
hs1

− w

)∣∣∣∣|ℓ(x1)|1Λs

[
h⃗
](x1, x)ν1(dx1)]µdu] 1

µ

.

Applying Young inequality for any fixed w and we obtain

G(w) ≤ hs1

[ ∫ ∞

−∞

∣∣K(
u+ w

)
−K

(
u− w

)∣∣ du][ ∫ b

−b
|ℓ(x1)|µ1Λs

[
h⃗
](x1, x)ν1(dx1)] 1

µ

≤ hs1

[ ∫ ∞

−∞

∣∣K(
u+ w

)
−K

(
u− w

)∣∣ du]λ
h⃗,s

(x).

To get the last inequality we have used (3.40). Note that∫ ∞

−∞

∣∣K(
u+ w

)
−K

(
u− w

)∣∣ du ≤ 2∥K∥1, ∀w ∈ R;∫ ∞

−∞

∣∣K(
u+ w

)
−K

(
u− w

)∣∣ du ≤ 4L(a+ 1)|w|, ∀w ∈ [−1, 1].

To get the second inequality we have used Assumption 2 (i). Thus, we get finally

Jµ ≤ 2−µωhµ(1/2−ω)
s1

[
5
{
4L(a+ 1)

}µ
+ 4

{
2∥K∥1

}µ
(2− µ)−1

]
. (4.3)

Here we have also used that µ < 2 and µω > (2− µ)(2µ)−1.

Putting R̃µ = ∥K∥1 +
[
5
{
2L(a+ 2)

}µ
+ 4

{
2∥K∥1

}µ
(2− µ)−1

] 1
µ we get from (4.2) and (4.3) for

any ω ∈
(
1/µ− 1/2, 1

)
∥∥Q∥∥

Lµ(∆)
+

[ ∫
∆

∫
∆

|Q(y)−Q(z)|µ

|y − z|1+µω
dydz

]1/µ
≤ R̃µh

1
2
−ω

s1 .

Thus, the inclusion (4.1) is proved since R̃µ ≤ Rµ. The assertion of the lemma follows from Lemma
2 with k = 1 and its consequence (3.1).
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4.2. Proof of Lemma 4

Similarly to the proof of Lemma 3 the proof of the present lemma is based on the inclusion

Ql,r ⊂ Sγr1
(
(−a− b, a+ b)

d
, R

)
, R = T (r)

(
2lh−

d
2
) 2γr

d . (4.4)

Indeed, if (4.4) holds then the required assertion follows from the consequence (3.1) of Lemma 2.
Thus, let us prove (4.4). First, we note that all functions from Ql,r vanish outside the cube

∆ = [−a− b, a+ b]d since K is compactly supported on [−a, a]d and h < 1.
Next, for any Q ∈ Ql,r we obviously have

∥Q∥1 :=
∫
∆
|Q(t)|νd(dt) ≤ ∥K∥d1

∫
(−b,b)d

|ϑ(x)|νd(dx) ≤ ∥K∥d1(2b)1/p, (4.5)

where the last inequality follows from the condition ϑ ∈ Bq,d and the Hölder inequality.

Taking into account that h⃗(x) =
(
h(x), . . . , h(x)

)
and that ⌊γr⌋ = ⌊d/2⌋, we have for any n ∈ Nd

satisfying |n| = ⌊γr⌋ in view of Assumption 3

DnQ(t) =

∫
(−b,b)d

[
h(x)

]−|n|−d[
DnK

]( t− x

h⃗(x)

)
ϑ(x)νd(dx).

Moreover, putting y = u+ v and z = u− v we obtain by changing of variables

In :=

∫
∆

∫
∆

∣∣DnQ(y)−DnQ(z)
∣∣

|y − z|d+ε
dydz ≤ 2−d−α

∫
Rd

|v|−d−εT (v)dv.

Here α = γr − ⌊γr⌋ and T (v) =
∫
Rd

∣∣DnQ(u+ v)−DnQ(u− v)
∣∣du.

We get using Fubini theorem

In ≤ 2−d−α

∫
(−b,b)d

[
h(x)

]−|n|−d|ϑ(x)|
{∫

|v|−d−α

[ ∫
∣∣∣∣[DnK

](u+ v − x

h(x)

)
−

[
DnK

](u− v − x

h(x)

)∣∣∣∣du]dv}νd(dx),
By changing variables in inner integrals w = (u− x)/h(x) and z = v/h(x) we obtain

In ≤ T

∫
(−b,b)d

[
h(x)

]−|n|−ε|ϑ(x)|νd(dx), (4.6)

where T = 2−d−α
∫
|z|−d−α

∫ ∣∣DnK(w + z)−DnK(w − z)
∣∣dwdz.

We obtain in view of Assumption 3 for any |n| ≤ ⌊d/2⌋+ 1∫
|DnK(w + z)−DnK(w − z)| dw ≤ 2C(K), ∀z ∈ Rd;∫
|DnK(w + z)−DnK(w − z)| dw ≤ 2L(a+ 2)d|z|, ∀|z| ≤ 1.

It yields (recall that D denotes the unit disc in Rd),

T ≤ 2−d+1

[
L(a+ 2)d

∫
z−d−α+11D(z)dz + C(K)

∫
z−d−α1D(z)dz

]
= T ∗(r).
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Thus, we deduce from (4.6) for any n satisfying |n| = ⌊γr⌋

In ≤ T ∗(r)

∫
(−b,b)d

[
h(x)

]−γr |ϑ(x)|νd(dx) ≤ T ∗(r)

(∫
(−b,b)d

[
h(x)

]−pγ
νd(dx)

) 1
p

= T ∗(r)

(∥∥∥h− d
2

∥∥∥
2pγr
d

) 2γr
d

= T ∗(r)

(∥∥∥h− d
2

∥∥∥
p+ 1

r

) 2γr
d

. (4.7)

Here we have used Hölder inequality, the condition ϑ ∈ Bq,d and the definition of γr.

Taking into account that h⃗ ∈ Hl,r we obtain from (4.7) that∑
|n|=⌊γr⌋

In ≤ (d/2 + 1)dT ∗(r)
(
2lh−

d
2
) 2γr

d .

It leads together with (4.5) to the assertion of the lemma.

4.3. Proof of Proposition 1

Set

B
h⃗
(f, x) =

∣∣∣∣ ∫ K
h⃗
(t− x)f(t)dt− f(x)

∣∣∣∣, x ∈ Rd.

We start the proof with several remarks.
1) Obviously Λs

[⃗
hf

]
∈ B

(
Rd

)
for any f ∈ Nd(β⃗, r⃗, L⃗) and any multi-index s since B

h⃗
(f, ·) is

measurable function. Moreover h⃗f (·) takes its values in countable set that implies that h⃗f (·) is
measurable function.

2) The definition of the Nikolskii class implies that ∥f∥rj ≤ Lj for any j = 1, . . . d. It yields, in
view of the Young inequality∥∥B

h⃗
(f, ·)

∥∥
rj

≤ (1 + ∥K∥1)Lj , ∀j = 1, . . . d,

and therefore,
νd
(
x ∈ (−b, b)d : B

h⃗
(f, x) = ∞

)
= 0, ∀h⃗ ∈ Hd

ε .

This, in its turn, implies that

νd

(
∪d
j=1

{
x ∈ (−b, b)d : hj(f, x) = ∞

})
= 0. (4.8)

3) The following statement was proved in Goldenshluger and Lepski (2014), Lemma 3: there
exists a constant C̃ completely determined by β⃗, d and the function w such that

B
h⃗
(f, x) ≤

d∑
j=1

B
h⃗,j

(f, x), x ∈ Rd,
∥∥B

h⃗,j
(f, ·)

∥∥
rj

≤ C̃Ljh
βj

j , ∀j = 1, . . . , d. (4.9)

10. Proof of the first assertion. For any s ∈ N∗ recall that h⃗s = (hs1 , . . . , hsd) and Vs =
∏d

j=1 hsj .

Denote by Sd the set consisting of s = (s1, . . . , sd) ∈ Nd satisfying sj ≥ Sε(j) for any j = 1, . . . , d.
We will also use the following notation: for any s ∈ Sd let ŝ ∈ Nd be such that ŝ < s and |s− ŝ| = 1.
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Putting X = ∩d
j=1{x ∈ (−b, b)d : hj(f, x) <∞} we have in view of the definition h⃗(f, ·) for any

s ∈ Sd such that s ̸=
(
Sε(1), . . . , Sε(d)

)
.

Λs

[⃗
hf

]
∩ X ⊆

{
x ∈ (−b, b)d : B

h⃗s
(f, x) + εV

− 1
2

s ≤ B
h⃗ŝ
(f, x) + εV

− 1
2

ŝ

}
⊆

{
x ∈ (−b, b)d : B

h⃗ŝ
(f, x) ≥ εV

− 1
2

s (1− e−1/2)

}
⊆

d∪
j=1

{
x ∈ (−b, b)d : B

h⃗ŝ,j
(f, x) ≥ εV

− 1
2

s (1− e−1/2)d−1

}
The last inclusion follows from the first inequality in (4.9) and the definition of ŝ.

We get from (4.8), the second inequality in (4.9) and the Markov inequality

νd

(
Λs

[⃗
hf

])
= νd

(
Λs

[⃗
hf

]
∩ X

)
≤

d∑
j=1

drjV
rj
2

s

[
ε(1− e−1/2)

]−rj
∥∥B

h⃗ŝ,j
(f, ·)

∥∥rj
rj

≤
d∑

j=1

κj

[
ε−1V

1
2
s h

βj
sj

]rj ,
where we have put κj =

{
d(eβj − eβj−1/2)C̃Lj

}rj and used once again the definition of ŝ.

Since νd

(
Λs

[⃗
hf

])
= 0 for any s /∈ Sd by the definition of h⃗f and νd

(
Λs0

[⃗
hf

])
≤ (2b)d, s0 =(

Sε(1), . . . , Sε(d)
)
, we obtain for any τ ∈ (0, 1)∑
s∈Nd

ντd

(
Λs

[⃗
hf

])
≤

d∑
j=1

κτ
j

∑
s∈Sd,s̸=s0

[
ε−1V

1
2
s h

βj
sj

]τrj + (2b)
d
τ .

In view of (2.8) (the definition of Sε(j), j = 1, . . . , d) we get

V
1
2
s =

[
hde−

∑d
l=1 Sε(l)e

∑d
l=1(Sε(l)−sl)

] 1
2 ≤ ε

1
2β+1 e

1
2

∑d
l=1(Sε(l)−sl);

h
βj
sj = hβje−βjSε(j)eβj(Sε(j)−sj) ≤ ε

2β
2β+1 eβj(Sε(j)−sj) ≤ ε

2β
2β+1 .

It yields ε−1V
1
2
s h

βj
sj ≤ e

1
2

∑d
k=1(Sε(k)−sk) and, therefore,∑

s∈Nd

ντd

(
Λs

[⃗
hf

])
≤

d∑
j=1

κτ
j

(
1− e−

τrj
2

)−d
+ (2b)

d
τ =: L.

The first assertion is proved.
20. Proof of the second assertion. The condition of the proposition allows us to assert that there

exists p > p such that υ(2 + 1/β) > p. Putting ϕε = ed/2ε
2β

2β+1 we obtain using the definition of h⃗f∥∥∥V − 1
2

h⃗f

∥∥∥p
p

≤ ε−p
∥∥∥Bh⃗f

(f, ·) + εV
− 1

2

h⃗f

∥∥∥p
p
= ε−p

∫
(−b,b)d

inf
h⃗∈Hε

[
B

h⃗
(f, x) + εV

− 1
2

h⃗

]p
dx

≤
(
2ϕεε

−1
)p

+

∞∑
k=0

(
2ek+1ϕεε

−1
)p
νd

(
x : inf

h⃗∈Hε

[
B

h⃗
(f, x) + εV

− 1
2

h⃗

]
≥ 2ekϕε

)

≤
(
2ϕεε

−1
)p

+
∞∑
k=0

(
2ek+1ϕεε

−1
)p
νd

(
x : B

h⃗[k]
(f, x) + εV

− 1
2

h⃗[k]
≥ 2ekϕε

)
,
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where we choose h⃗[k] ∈ Hε as follows. Let h⃗[k] =
(
h1[k], . . . , hd[k]

)
be given by

hj [k] =
(
ϕε)

1/βje
k
(

1
βj

−υ(2+1/β)
βjrj

)
, j = 1, . . . , d,

and define h⃗[k] ∈ Hε from the relation e−1h⃗[k] ≤ h⃗[k] < h⃗[k].
First we note that

hj [k] ≤
(
ϕε)

1/βj ≤ he−Sε(j)+1,

since r⃗ ∈ [1, p]d and p < υ(2 + 1/β). This guarantees the existence of h⃗[k]. Next,

εV
− 1

2

h⃗[k]
≤ εV

− 1
2

e−1h⃗[k]
= ek+d/2ε

2β
2β+1 = ekϕε,

and, therefore, using the latter bound, (4.9) and Markov inequality we obtain

∥∥∥V − 1
2

h⃗f

∥∥∥p
p

≤
(
2ϕεε

−1
)p

+

∞∑
k=0

(
2ek+1ϕεε

−1
)p
νd

(
x : B

h⃗s[k]
(f, x) ≥ ekϕε

)

≤
(
2ϕεε

−1
)p

+

∞∑
k=0

(
2ek+1ϕεε

−1
)p d∑

j=1

(ekϕε)
−rj (C̃Lj)

rj
(
hsj [k]

)βjrj

≤
(
2ϕεε

−1
)p

+
∞∑
k=0

(
2ek+1ϕεε

−1
)p
e−kυ(2+1/β)

d∑
j=1

(
C̃Lj

)rj
= ε

− p
2β+1

{(
2ed/2

)p
+

(
2ed/2+1

)p ∞∑
k=0

e−k[υ(2+1/β)−p]
d∑

j=1

(
C̃Lj

)rj}.
As we see the assumption of the proposition υ(2 + 1/β) > p allowing us to choose p > p and
υ(2 + 1/β) > p is crucial. The second assertion is proved.

4.4. Proofs of (1.5) and (1.6).

We start with the following bound obtained by application of the Minkovski inequality for integrals
and the Hölder inequality.

σp
(
h⃗
)
≤ ∥K∥2

∥∥V − 1
2

h⃗

∥∥
p
, ∀h⃗ ∈ S∗

d,p(h). (4.10)

Set Sy =
{
h⃗ ∈ S∗

d,p(h) : σp
(
h⃗
)
≤ y∥K∥2

∥∥V − 1
2

h⃗

∥∥
p

}
, where y ≤ 2

−2− 1
p will be chosen later. Our

first goal consists in establishing the following inequality.

(3/4)(γp)
1
p ∥K∥2

∥∥V − 1
2

h⃗

∥∥
p
≤ E

(∥∥ξ
h⃗

∥∥
p

)
≤ (γp)

1
p ∥K∥2

∥∥V − 1
2

h⃗

∥∥
p
, ∀h⃗ ∈ Sy. (4.11)

where, remind, γp is the p-th absolute moment of the standard normal distribution
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The right hand side of the latter inequality is obvious. Indeed, we have in view of Jensen inequality
and Fubini theorem

E
(∥∥ξ

h⃗

∥∥
p

)
≤

[
E
(∥∥ξ

h⃗

∥∥p
p

)] 1
p
=

[ ∫
(−b,b)d

(
E
∣∣ξ

h⃗
(x)

∣∣p)νd(dx)] 1
p

= (γp)
1
p ∥K∥2

∥∥V − 1
2

h⃗

∥∥
p
.

Thus, let us prove the left hand side in (4.11). In view of duality arguments

ζ :=
∥∥ξ

h⃗

∥∥
p
= sup

ϑ∈Bs,d

∫
(−b,b)d

ϑ(x)ξ
h⃗
(x)νd(dx) =: sup

Q∈Q
ζQ

where we have put ζQ =
∫
Rd Q(t)W (dt) and

Q =
{
Q ∈ Rd → R : Q(·) =

∫
(−b,b)d

ϑ(x)K
h⃗
(·, x)νd(dx), ϑ ∈ Bs,d

}
.

Let Mζ be the median of ζ and let η ∼ N
(
0, σ2p (⃗h)

)
. We have in view of triangle inequality

(γp)
1
p ∥K∥2

∥∥V − 1
2

h⃗

∥∥
p
=

[
E
(∥∥ξ

h⃗

∥∥p
p

)] 1
p
=:

[
E|ζ|p

] 1
p ≤Mζ +

[
E|ζ −Mζ |p

] 1
p .

Note that ζ = supQ∈Q ζQ and ζQ is zero mean gaussian random function on Q. Moreover, this
function is bounded since Eζ <∞ in view of the right hand side of (4.11).

Hence, in view of Theorem 12.2 in Lifshits (1995), P
(
|ζ −Mζ | > z

)
≤ 2P(|η| > z) for any z > 0.

It yields, E|ζ −Mζ |p ≤ 2E|η|p = 2γpσ
p
p (⃗h) Since y ≤ 2

−2− 1
p , we obtain for any h⃗ ∈ Sy

[
E|ζ −Mζ |p

] 1
p ≤ 4−1(γp)

1
p ∥K∥2

∥∥V − 1
2

h⃗

∥∥
p
.

It remains to note that Mζ ≤ Eζ, Theorem 14.1 in Lifshits (1995), and the left hand side of (4.11)
follows. We easily deduce from (4.11) that

4−1(γp)
1
p ∥K∥2

∥∥V − 1
2

h⃗

∥∥
p
≤Mζ ≤ (γp)

1
p ∥K∥2

∥∥V − 1
2

h⃗

∥∥
p
, ∀h⃗ ∈ Sy. (4.12)

Indeed, the right hand side follows from Mζ ≤ Eζ and the right hand side of (4.11). Additionally,

Eζ ≤Mζ + E|ζ −Mζ | ≤Mζ + 2γ1σp(⃗h) ≤Mζ + 2−1(γp)
1
p ∥K∥2

∥∥V − 1
2

h⃗

∥∥
p
, ∀h⃗ ∈ Sy.

This, together with left hand side of (4.11) completes the proof of (4.12).

Proof of (1.5). 10. Suppose first that h⃗ ∈ Sy and put for brevity λp =
∥∥V − 1

2

h⃗

∥∥
p
. We have

E
{[
ζ − 2−4(γp)

1
p ∥K∥2λp

]
+

}q
≥

[
2−4(γp)

1
p ∥K∥2λp

]qP{|ζ −Mζ | ≤ 2−3(γp)
1
p ∥K∥2λp

}
≥ B′

1h
− dq

2

[
1− 2P

{
|η| > 2−3(γp)

1
p ∥K∥2λp

}]
. (4.13)

To get the first inequality we have used the left hand side of (4.12). Taking into account that h⃗ ∈ Sy

we obtain
P
{
|η| > 2−3(γp)

1
p ∥K∥2λp

}]
≤ 2− 2Φ

(
2−3(γp)

1
p y−1

)
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where Φ is the distribution function of the standard normal law. Choosing y0 from the equality

2− 2Φ
(
2−3(γp)

1
p y−1

)
= 4−1 and setting y = y0 ∧ 2

−2− 1
p we deduce from (4.13)

E
{[
ζ − 2−4(γp)

1
p ∥K∥2λp

]
+

}q
≥ 2−1B′

1h
− d

2 , ∀h⃗ ∈ Sy. (4.14)

20. Suppose now that h⃗ ∈ S∗
d,p(h) \Sy and put for brevity X = 2−3(γp)

1
p ∥K∥2. One has

E
{[
ζ − 2−4(γp)

1
p ∥K∥2λp

]
+

}q
≥ B′

1h
− dq

2 P{ζ ≥ Xλp}.

Remembering that ζ = supQ∈Q ζQ we get

E
{[
ζ − 2−4(γp)

1
p ∥K∥2λp

]
+

}q
≥ B′

1h
− dq

2 sup
Q∈Q

P{ζQ ≥ Xλp}. (4.15)

Taking into account that ζQ ∼ N
(
0, ||Q||22

)
we have

√
2πP

{
ζQ ≥ Xλp

}
≥ ||Q||2(Xλp)−1

[
1 + ||Q||22(Xλp)−2

]−1
e
− (Xλp)

2

2||Q||22

Since σp(⃗h) = supQ∈Q ||Q||2 we obtain from (4.10)
[
1 + ||Q||22(Xλp)−2

]−1 ≥
[
1 + 8(γp)

− 1
p
]−1

.
Therefore,

sup
Q∈Q

P
{
ζQ ≥ Xλp

}
≥ B′′

1σp(⃗h)(Xλp)
−1e

− (Xλp)
2

2σ2
p(h⃗)

Since h⃗ ∈ S∗
d,p(h) \Sy one has σp(⃗h)(Xλp)

−1 ≥ 8y(γp)
− 1

p that implies

sup
Q∈Q

P
{
ζQ ≥ Xλp

}
≥ 8B′′

1y(γp)
− 1

p e
− (γp)

2
p

128y2

It yields together with (4.15)

E
{[
ζ − 2−4(γp)

1
p ∥K∥2λp

]
+

}q
≥ B′′′

1 h−
dq
2 , ∀h⃗ ∈ S∗

d,p(h) \Sy. (4.16)

The inequality (1.5) follows now from (4.14) and (4.16).

Proof of (1.6). In view of the right hand side of (4.11) and the first assertion of Lemma 1 we
have

E
{[∥∥ξ

h⃗

∥∥
p
−

(
(γp)

1
p ∥K∥2 +

√
2
)∥∥V − 1

2

h⃗

∥∥
p

]
+

}q

≤ q

∫ ∞

0
zq−1P

{
ζ − Eζ >

√
2λp + z

}
dz ≤ e−σ−2

p

(
h⃗
)
λpσqp

(
h⃗
)
q

∫ ∞

0
zq−1e−

z2

2 dz.
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