This document must be cited according to its final version which is published in a conference as:

You downloaded this document from the CNRS open archives server, on the webpages of Pascal Dufour:
http://hal.archives-ouvertes.fr/DUFOUR-PASCAL-C-3926-2008
EXPLICIT MULTI-MODEL PREDICTIVE CONTROL OF A WASTE HEAT RANKINE BASED SYSTEM FOR HEAVY DUTY TRUCKS

Vincent GRELET1,2,3, Pascal DUFOUR2, Madiha NADRI2, Vincent LEMORT 3 and Thomas REICHE1

1Volvo Group Trucks Technology Advanced Technology and Research, 1 avenue Henri Germain, 69800 Saint Priest, France
2Université de Lyon, Lyon F-69003, Université Lyon 1, CNRS UMR 5007, Laboratory of Process Control and Chemical Engineering (LAGEP), Villeurbanne 69100, France
3LABOTHAP, University of Liege, Campus du Sart Tilman Bat. B49 B4000 Liege, Belgium

54th IEEE Conference on Decision and Control (CDC 2015)
15-18 December, Osaka, Japan
Table of contents

1. Context and motivations

2. Rankine cycle based heat recovery system
 - Rankine process
 - Studied system and controller objective

3. Nonlinear evaporator detailed model

4. Controller development
 - Identification
 - Piecewise linear approach
 - MMPC strategy

5. Simulation results

6. Conclusion and next steps
In nowadays heavy duty engines, a major part of the chemical energy contained in the fuel is released to the ambient through heat.
In nowadays heavy duty engines, a major part of the chemical energy contained in the fuel is released to the ambient through heat.

Waste heat recovery based on the Rankine cycle is a promising technique to increase fuel efficiency.
In nowadays heavy duty engines, a major part of the chemical energy contained in the fuel is released to the ambient through heat.

Waste heat recovery based on the Rankine cycle is a promising technique to increase fuel efficiency.

Dynamic models needed for concept optimization, fuel economy evaluation and control algorithm development.
Rankine process

- Liquid compression (1 → 2) from condensing to evaporating pressure by means of the pump power \dot{W}_{in}.
- Preheating (2 → 3a), vaporization (3a → 3b) and superheating (3b → 3c) by means of the input heat power \dot{Q}_{in}.
- Vapor expansion (3c → 4) from evaporating to condensing pressure creating power \dot{W}_{out} on the expander shaft.
- Condensation (4 → 1) releasing heat \dot{Q}_{out} in the heat sink.

Figure: Temperature-entropy diagram of the Rankine cycle
Recover heat from both EGR and exhaust in a serial configuration.

Working fluid: water ethanol mixture.

Focus on the control of the working fluid superheat at the expansion machine inlet.

Even more critical when using a kinetic expander.

Control issue: Reduce the deviation of the superheat around its set point to have safe and efficient operation.
Nonlinear evaporator detailed model

Model representation

\[\dot{x}_i = f_i(x_i, u), \quad (1) \]

\[u^T = [\dot{m}_f, P_f, h_f, \dot{m}_g, T_g], \quad x_i^T = [\dot{m}_f, h_f, T_{w_{int}}, T_g, T_{w_{ext}}] \quad (2) \]

\[f_i(x_i, u) = \]
\[\begin{bmatrix}
\dot{m}_f \left(\frac{h_f}{T_{g_{i-1}}} - \frac{\rho_f h_f}{T_{g_{i-1}}} \right) + \frac{1}{\rho_f} \frac{\partial \rho_f}{\partial h_f} \alpha_f A_{\text{exch}_{int}} \left(T_f - T_{w_{int}} \right) - \dot{m}_f \\
1 - \frac{h_f}{\rho_f} \frac{\partial \rho_f}{\partial h_f} \\
\left(\dot{m}_f h_f - \dot{m}_f h_f \right) - \alpha_f A_{\text{exch}_{int}} \left(T_f - T_{w_{int}} \right) \\
\rho_f V_f f_i \left(T_f - T_{w_{int}} \right) + \alpha_g A_{\text{exch}_{int}} \left(T_g - T_{w_{int}} \right) \\
\dot{m}_g c_{pg} \left(T_{g_{i-1}} - T_{g_i} \right) - \alpha_g \left[A_{\text{exch}_{int}} \left(T_g - T_{w_{int}} \right) - A_{\text{exch}_{ext}} \left(T_g - T_{w_{ext}} \right) \right] \\
\rho_{g_{i-1}} V_g c_{pg} \left(T_{g_{i-1}} \right) + \alpha_g A_{\text{exch}_{ext}} \left(T_g - T_{w_{ext}} \right) \\
\rho_{w_{int}} V_{w_{int}} \left(T_{g_{i-1}} - T_{g_i} \right) \\
\rho_{w_{ext}} V_{w_{ext}} \left(T_{g_{i-1}} - T_{g_i} \right) \\
\alpha_{amb} A_{\text{exch}_{ext}_{amb}} \left(T_{amb} - T_{w_{ext}} \right) + \alpha_g A_{\text{exch}_{ext}} \left(T_g - T_{w_{ext}} \right)
\end{bmatrix} \]
Dynamic relation between u (working fluid mass flow) and y (working fluid superheat) can be described around an operating point by a first order plus time delay (FOPTD) model:

$$
\frac{y(s)}{u(s)} = \frac{G}{1 + \tau s} e^{-Ls}, \quad (3)
$$

High variation in FOPTD parameters shows high nonlinearity.

Linear time invariant controller will hardly achieve the control objective with good performance under transient driving cycle.

Identification

- Dynamic relation between u (working fluid mass flow) and y (working fluid superheat) can be described around an operating point by a first order plus time delay (FOPTD) model:

$$
\frac{y(s)}{u(s)} = \frac{G}{1 + \tau s} e^{-Ls}, \quad (3)
$$

- High variation in FOPTD parameters shows high nonlinearity.

- Linear time invariant controller will hardly achieve the control objective with good performance under transient driving cycle.
Multi linear model approach consists into identifying a bank of N linear models and combine them by means of a weighting scheme.

Global model output is (at time t_k):

$$y_k = \sum_{i=1}^{N} y_{i,k} W_{i,k}$$

(4)

Key design issues are: 1/ the selection of the good model(s) in the bank. 2/ linear models mixing.

Modeling error of the i^{th} model at the current time t_k is defined by:

$$\epsilon_{i,k} = y_{p,k} - y_{i,k}.$$

(5)
Weighting scheme

Bayesian recursive scheme

\[
p_{i,k} = \frac{\exp(-\frac{1}{2} \epsilon_{i,k} K \epsilon_{i,k}^T p_{i,k-1})}{\sum_{m=1}^{N} \left(\exp(-\frac{1}{2} \epsilon_{m,k} K \epsilon_{m,k}^T p_{m,k-1})\right)} \tag{6}
\]

\[
W_{i,k} = \begin{cases}
\frac{p_{i,k}}{\sum_{m=1}^{N} p_{m,k}} & \text{for } p_{i,k} > \delta \\
0 & \text{for } p_{i,k} < \delta
\end{cases} \tag{7}
\]

where \(K\) is a vector and \(\delta\) a scalar.

New proposed scheme

\[
\tilde{\epsilon}_{i,k} = \frac{\epsilon_{i,k}^2}{\sum_{m=1}^{N} \epsilon_{m,k}^2} \tag{8}
\]

\[
X_{i,k} = (1 - \tilde{\epsilon}_{i,k}) \prod_{j \neq i, j=1}^{N} \tilde{\epsilon}_{j,k} \tag{9}
\]

\[
\tilde{X}_{i,k} = \frac{X_{i,k}}{\sum_{m=1}^{N} X_{m,k}} \tag{10}
\]

\[
W_{i,k} = \frac{1}{1 + Ts \tilde{X}_{i,k}} \tag{11}
\]

where \(T\) is a scalar.
Optimization problem

Model Predictive Control cost function for set-point tracking

\[
\begin{cases}
\min_{u_{\inf} \leq u_k \leq u_{\sup}} J(u_k) = \int_{t_k}^{t_k + t_p} (y_p(t) - y^{sp})^2 + w_u \Delta u_k^2 \, dt,
\end{cases}
\]

(12)

where \(w_u \) is a scaling factor and a penalty weight.

Modeling error

\[
e_k = y_{p,k} - y_k.
\]

(13)

Output prediction \(y_p(t) \) in (12) can be written based on the \(N \) models and feedback:

\[
y_p(t) = y(t) + e_k.
\]

(14)

Output response of a FOPTD model

\[
y_i(t) = y_{p,k} e^{-\frac{(t-t_k)}{\tau_i}} + \int_{t_k}^{t} e^{-\frac{(t-s)}{\tau_i}} \frac{G_i}{\tau_i} u(s - L_i) \, ds.
\]

(15)
A model response (15) can be developed as:

\[y_i(t) = y_{p,k} e^{\frac{-(t-t_k)}{\tau_i}} + \frac{G_i}{\tau_i} e^{\frac{-t}{\tau_i}} \int_{t_k}^{t} e^{\frac{s}{\tau_i} u(s - L_i)} ds, \tag{16} \]

Based on the time delay \(L_i \), let us define:

\[
\begin{align*}
\lambda_i &= \max(a_i \in \mathbb{N} | a_i \leq \frac{L_i}{T_s}) \\
\Delta L_i &= L_i - \lambda_i T_s, \in \mathbb{R}^+.
\end{align*}
\tag{17}
\]

Integration in (16) is done by parts, where the \(\lambda_i + 2 \) time intervals are:

<table>
<thead>
<tr>
<th>(s)</th>
<th>(s - L_i)</th>
<th>(u(s - L_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_k \rightarrow t_k + \Delta L_i)</td>
<td>(t_k - L_i \rightarrow t_k - \lambda_i)</td>
<td>(u(t_k - \lambda_i - 1))</td>
</tr>
<tr>
<td>(t_k + \Delta L_i \rightarrow t_k + \Delta L_i + T_s)</td>
<td>(t_k - \lambda_i \rightarrow t_k - \lambda_i + 1)</td>
<td>(u(t_k - \lambda_i))</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(t_k + \Delta L_i + (\lambda_i - j) T_s \rightarrow t_k + \Delta L_i + (\lambda_i - j + 1) T_s)</td>
<td>(t_{k-j} \rightarrow t_{k-j+1})</td>
<td>(u(t_{k-j}))</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(t_k + \Delta L_i + (\lambda_i - 1) T_s \rightarrow t_k + L_i)</td>
<td>(t_{k-1} \rightarrow t_k)</td>
<td>(u(t_{k-1}))</td>
</tr>
<tr>
<td>(t_k + L_i \rightarrow t)</td>
<td>(t_k \rightarrow t - L_i)</td>
<td>(u(t_k) = u_k)</td>
</tr>
</tbody>
</table>
Explicit MMPC formulation

Once integrated, (16) is a linear expression in the optimization argument u_k:

$$
y_i(t) = y_{p,k}f_1_i(\tau_i, t_k, t) + f_2_i(T_s, G_i, \tau_i, \Delta L_i, \lambda_i, t_k, t, u(past)) + u_kf_3_i(G_i, \tau_i, L_i, t_k, t),
$$

(18)

where the f_i may be explicitly defined offline and updated online at each time t_k. Hence the initial cost function is:

$$
J(u_k) = \int_{t_k}^{t_k+t_p} \left(\sum_{i=1}^{N} \left(w_{i,k}y_i(t) + e_k - y_{sp}^k \right)^2 + w_u\Delta u_k^2 \right) dt
$$

(19)

where the prediction horizon $t_p = max(t_{pi}) \forall i$ may be tuned as:

$$
\begin{align*}
t_{pi} &= \gamma_p \tau_i + L_i; \quad \gamma_p \in \mathbb{R}^+; \\
e.g.: \gamma_p &= 1 \text{ (63\% of the dynamics is predicted)} \\
or \gamma_p &= 3 \text{ (95\% of the dynamics is predicted)}.
\end{align*}
$$

(20)
Explicit MMPC formulation

Based on the step response series (16) of the N linear FOPTD models:

$$J(u_k) = \beta_{2,k}(N, G_i, \tau_i, L_i, t_p, w_u, w_i,k)u_k^2$$

$$+\beta_{1,k}(N, T_s, G_i, \tau_i, L_i, t_p, \Delta L_i, \lambda_i, w_u, y_p, y_{k,s}, e_k, u(past), w_i,k)u_k$$

$$+\beta_{0,k}(N, T_s, G_i, \tau_i, L_i, t_p, \Delta L_i, \lambda_i, w_u, y_p, y_{k,s}, e_k, u(past), w_i,k),$$

Minimization of (21) obtained with the first order optimality at each t_k:

$$\frac{\partial J}{\partial u_k} = 0 \text{ at } u_k = u_{min}^k.$$

(22)

Calculation of u_{min}^k is then straightforward:

$$u_{min}^k = \frac{-\beta_{1,k}}{2\beta_{2,k}}$$

(23)

which leads to the explicit formulation of the solution u_{k}^\star:

$$\begin{cases}
\text{if } u_{inf} \leq u_{min}^k \leq u_{sup} : u_{k}^\star = u_{min}^k \\
\text{if } u_{min}^k \leq u_{inf} : u_{k}^\star = u_{inf} \\
\text{if } u_{sup} \leq u_{min}^k : u_{k}^\star = u_{sup}.
\end{cases}$$

(24)
Input disturbances

Gas mass flow vs Time

Gas Temperature vs Time

Egr Mass Flow
Exhaust Mass Flow

Egr Temperature
Exhaust Temperature
Tracking error and manipulated variable

![Graph showing tracking error and manipulated variable over time.](image)
Conclusion

- New modeling weighting scheme based on a piecewise linear approach has been developed and validated.
- New scheme has less tuning parameters than the Bayesian scheme.
- Explicit MMPC strategy for Rankine cycle based heat recovery system is presented.
- MMPC is compliant with classical automotive integration constraints (i.e., basic CPU and fast sampling time).

Next steps

- Experimental validation.
- Robustness study.
Contacts and discussion

Authors
- Vincent GRELET: greletv@live.com
- Pascal DUFOUR: dufour@lagep.univ-lyon1.fr
- Madiha NADRI: nadri@lagep.univ-lyon1.fr
- Vincent LEMORT: vincent.lemort@ulg.ac.be
- Thomas REICHE: thomas.reiche@volvo.com

Acknowledgement
This PhD thesis is collaboration between UCBL1, ULg and Volvo Trucks which is gratefully acknowledged for the funding. The French ministry of higher education and research for the financial support of the CIFRE PhD thesis 2012/549 is also acknowledged.
\[\beta_{1,k} = \sum_{i=1}^{N} \left[\beta_{1,k}^{'} + \beta_{1,k}^{''} + \beta_{1,k}^{'''} + \beta_{1,k}^{'''} + \beta_{1,k}^{''''} \right] - 2w_{u}u_{k-1}t_{p}, \quad (25) \]

\[\beta_{1,k}^{'} = -G_{i} \tau_{i} w_{i,k}^{2} y_{p,k} \left(e^{\frac{L_{i}}{\tau_{i}}} + 2e^{\frac{-t_{p}}{\tau_{i}}} - e^{\frac{L_{i}-2t_{p}}{\tau_{i}}} - 2 \right), \quad (26) \]

\[\beta_{1,k}^{''} = -G_{i}^{2} \tau_{i} u(t_{k-\lambda_{i}-1}) w_{i,k}^{2} e^{-\frac{2t_{p}}{\tau_{i}}} \left(e^{\frac{\Delta L_{i}}{\tau_{i}}} - 1 \right) \left(e^{\frac{t_{p}}{\tau_{i}}} - 1 \right) \ldots \]

\[\left(e^{\frac{L_{i}}{\tau_{i}}} - 2e^{\frac{-t_{p}}{\tau_{i}}} + e^{\frac{L_{i}+t_{p}}{\tau_{i}}} \right) \quad (27) \]
\[\beta_{1,k}''' = \sum_{j=1}^{\lambda_i} G_i^2 \tau_i u(t_{k-j}) w_{i,k}^2 e^{\frac{\Delta L_i - t_p - j T_s + \lambda_i T_s}{\tau_i}} \left(e^{\frac{T_s}{\tau_i}} - 1 \right) \left(e^{\frac{L_i - t_p}{\tau_i}} - 2 \right) \cdots \]

\[- G_i^2 \tau_i u(t_{k-j}) w_{i,k}^2 e^{\frac{\Delta L_i - j T_s + \lambda_i T_s}{\tau_i}} \left(e^{\frac{L_i}{\tau_i}} - 2 \right) \left(e^{\frac{T_s}{\tau_i}} - 1 \right) \] (28)

\[\beta_{1,k}'''' = 2 G_i w_{i,k} \left(e_k - y^{SP} \right) \left(t_p + \tau_i e^{\frac{L_i - t_p}{\tau_i}} - \tau_i e^{\frac{L_i}{\tau_i}} \right) \] (29)

\[\beta_{2,k} = \frac{G_i^2 w_{i,k}^2 \left(2 t_p + 4 \tau_i e^{\frac{L_i - t_p}{\tau_i}} - \tau_i e^{\frac{2 L_i - 2 t_p}{\tau_i}} - 4 \tau_i e^{\frac{L_i}{\tau_i}} + \tau_i e^{\frac{2 L_i}{\tau_i}} \right)}{2} + w_u t_p \] (30)
Input disturbances

Engine speed and torque

- Engine speed
 - Speed (rpm)
 - Time (s)

- Engine torque
 - Torque (N.m)
 - Time (s)
Tracking error and manipulated variable

Developed weighting scheme