C. Meric, Physical and mechanical properties of cast under vacuum aluminum alloy 2024 containing lithium additions, Materials Research Bulletin, vol.35, issue.9, pp.1479-1494, 2000.
DOI : 10.1016/S0025-5408(00)00348-2

D. Tolga and S. Costas, Recent developments in advanced aircraft aluminium alloys, Mater. Des, vol.56, pp.862-871, 2014.

J. E. Kertz, P. I. Gouma, and R. G. Buchheit, Localized corrosion susceptibility of Al-Li-Cu-Mg-Zn alloy AF/C458 due to interrupted quenching from solutionizing temperature, Metallurgical and Materials Transactions A, vol.331, issue.333, pp.2561-2573, 2001.
DOI : 10.1007/s11661-001-0046-5

N. Jiang, J. F. Li, and Z. Q. Zheng, Effect of aging on mechanical properties and localized corrosion behaviors of Al?Cu?Li alloy, Trans. Nonferrous Met. Soc. China, vol.15, pp.23-29, 2005.

B. Decreus, A. Deschamps, F. De-geuser, P. Donnadieu, C. Sigli et al., The influence of Cu/Li ratio on precipitation in Al???Cu???Li???x alloys, Acta Materialia, vol.61, issue.6, pp.61-2207, 2013.
DOI : 10.1016/j.actamat.2012.12.041

URL : https://hal.archives-ouvertes.fr/hal-00838965

J. F. Li, C. X. Li, Z. W. Peng, and W. J. Chen, Corrosion mechanism associated with T1 and T2 precipitates of Al???Cu???Li alloys in NaCl solution, Journal of Alloys and Compounds, vol.460, issue.1-2, pp.460-688, 2008.
DOI : 10.1016/j.jallcom.2007.06.072

J. F. Li, Z. Q. Zheng, W. D. Ren, W. J. Chen, X. S. Zhao et al., Simulation on function mechanism of T1(Al2CuLi) precipitate in localized corrosion of Al-Cu-Li alloys, Transactions of Nonferrous Metals Society of China, vol.16, issue.6, pp.1268-1273, 2006.
DOI : 10.1016/S1003-6326(07)60005-3

R. G. Buchheit, J. P. Moran, and G. E. Stoner, CuLi) Intermetallic Compound and Its Role in Localized Corrosion of Al-2% Li-3% Cu Alloys, CORROSION, vol.50, issue.2, pp.120-130, 1994.
DOI : 10.5006/1.3293500

V. Proton, J. Alexis, A. Andrieu, J. Delfosse, M. Laffont et al., Characterization and understanding of the corrosion behaviour of the nugget in a 2050 aluminum alloy friction stir welding joint, Corros. Sci, pp.73-130, 2013.

R. G. Buchheit, J. P. Moran, and G. E. Stoner, Localized Corrosion Behavior of Alloy 2090???The Role of Microstructural Heterogeneity, CORROSION, vol.46, issue.8, pp.610-617, 1990.
DOI : 10.5006/1.3585156

F. Viejo, A. E. Coy, F. J. Garcia, Z. Liu, P. Skeldon et al., Relationship between microstructure and corrosion performance of AA2050-T8 aluminum alloy after excimer laser surface melting, Corros. Sci, pp.52-2179, 2010.

S. Richard, C. Gasqueres, C. Sarrazin-baudoux, and J. Petit, Coupled influence of microstructure and atmosphere environment on fatigue crack path in new generation Al alloys, Engineering Fracture Mechanics, vol.77, issue.11, pp.77-1941, 2010.
DOI : 10.1016/j.engfracmech.2010.04.027

G. S. Chen, K. C. Wan, M. Gao, R. P. Wei, and T. H. Flournoy, Transition from pitting to fatigue crack growth???modeling of corrosion fatigue crack nucleation in a 2024-T3 aluminum alloy, Materials Science and Engineering: A, vol.219, issue.1-2, pp.126-132, 1996.
DOI : 10.1016/S0921-5093(96)10414-7

S. I. Roklin, J. Y. Kim, H. Nagy, and B. Zoofan, Effect of pitting corrosion on fatigue crack initiation and fatigue life, Engineering Fracture Mechanics, vol.62, issue.4-5, pp.62-425, 1999.
DOI : 10.1016/S0013-7944(98)00101-5

K. Van-der-walde and B. M. Hillberry, Initiation and shape development of corrosion-nucleated fatigue cracking, International Journal of Fatigue, vol.29, issue.7, pp.1269-1281, 2007.
DOI : 10.1016/j.ijfatigue.2006.10.010

A. T. Kermanidis, P. V. Petroyiannis, and P. Spg, Fatigue and damage tolerance behavior of corroded 2024 T351 aircraft aluminum alloy, Theor. Appl. Fract. Mech, pp.43-121, 2005.

K. M. Gruenberg, B. A. Craig, B. M. Hillberry, R. J. Bucci, and A. J. Hinkle, Predicting fatigue life of pre-corroded 2024-T3 aluminum from breaking load tests, International Journal of Fatigue, vol.26, issue.6, pp.629-640, 2004.
DOI : 10.1016/j.ijfatigue.2003.10.010

E. J. Dolley, B. Lee, and R. P. Wei, The effect of pitting corrosion on fatigue life, Fatigue <html_ent glyph="@amp;" ascii="&"/> Fracture of Engineering Materials and Structures, vol.23, issue.7, pp.555-560, 2000.
DOI : 10.1046/j.1460-2695.2000.00323.x

D. L. Du-quesnay, P. R. Underhill, and H. J. Britt, Fatigue crack growth from corrosion damage in 7075-T6511 aluminium alloy under aircraft loading, International Journal of Fatigue, vol.25, issue.5, pp.371-377, 2003.
DOI : 10.1016/S0142-1123(02)00168-8

. Fig, Fatigue?corrosion life curves (?max (% YS) vs. number of cycles to failure) of a) T34 and b) T84 metallurgical states at 20 Hz R = 0.1. On each graph, results obtained on pre-corroded samples (CI) for short pre-immersion times are given for comparison

N. Pauze, Fatigue corrosion dans le sens travers court de tôles d'aluminum 2024? T351 présentant des défauts de corrosion localisée, ENSM, Saint, 2008.

A. Turnbull, Corrosion pitting and environmentally assisted small crack growth, Proc. R. Soc. Lond. A Math, 2014.
DOI : 10.1046/j.1365-2818.1998.00367.x

J. T. Burns, J. M. Larsen, and R. P. Gangloff, Driving forces for localized corrosion to fatigue crack transition in Al?Zn?Mg?Cu, Fatigue Fract, Engng. Mater. Struct, pp.34-745, 2011.

J. T. Burns, S. Kim, and R. P. Gangloff, Effect of corrosion severity on fatigue evolution in Al???Zn???Mg???Cu, Corrosion Science, vol.52, issue.2, pp.498-508, 2010.
DOI : 10.1016/j.corsci.2009.10.006

V. Proton, J. Alexis, E. Andrieu, C. Blanc, J. Delfosse et al., Influence of Post-Welding Heat Treatment on the Corrosion Behavior of a 2050-T3 Aluminum-Copper-Lithium Alloy Friction Stir Welding Joint, Journal of The Electrochemical Society, vol.158, issue.5, pp.158-139, 2011.
DOI : 10.1149/1.3562206

M. Guérin, E. Andrieu, G. Odemer, J. Alexis, and C. Blanc, Effect of varying conditions of exposure to an aggressive medium on the corrosion behavior of the 2050 Al???Cu???Li alloy, Corrosion Science, vol.85, pp.85-455, 2014.
DOI : 10.1016/j.corsci.2014.04.042

M. Guérin, Comportement en corrosion d'un alliage d'aluminum-cuivre-lithium AW2050: couplage environnement, microstructure et état de contrainte du matériau, INP

M. Guérin, E. Andrieu, G. Odemer, J. Alexis, and C. Blanc, The relationship between grain boundaries/grain properties and their corrosion susceptibility in a 2050 aluminium alloy, 2015.

J. G. Rinker and M. Marek, Microstructure, toughness and stress corrosion cracking behavior of aluminum alloy 2020, Materials Science and Engineering, vol.64, issue.2, pp.203-221, 1984.
DOI : 10.1016/0025-5416(84)90104-6

V. Proton, J. Alexis, E. Andrieu, J. Delfosse, A. Deschamps et al., The influence of artificial ageing on the corrosion behaviour of a 2050 aluminium???copper???lithium alloy, Corrosion Science, vol.80, pp.494-502, 2014.
DOI : 10.1016/j.corsci.2013.11.060

URL : https://hal.archives-ouvertes.fr/hal-00963754

Q. Contrepois, Texture et anisotropie du comportement mécanique après laminage à chaud d'un alliage léger d'aluminum cuivre lithium pour l'aéronautique, ENSM, Saint, 2010.

]. V. Proton, J. Alexis, E. Andrieu, J. Delfosse, A. Deschamps et al., The influence of artificial ageing on the corrosion behaviour of a 2050 aluminium???copper???lithium alloy, Corrosion Science, vol.80, pp.494-502, 2014.
DOI : 10.1016/j.corsci.2013.11.060

URL : https://hal.archives-ouvertes.fr/hal-00963754

P. Lequeu, K. P. Smith, and . Danielou, Aluminum-Copper-Lithium Alloy 2050 Developed for Medium to Thick Plate, Journal of Materials Engineering and Performance, vol.73, issue.2, pp.841-847, 2009.
DOI : 10.1007/s11665-009-9554-z

Y. Ro, S. R. Agnew, G. H. Bray, and R. P. Gangloff, Environment-exposure-dependent fatigue crack growth kinetics for, Mater. Sci. Eng. A, vol.468, pp.470-88, 2007.

D. C. Slavik and R. P. Gangloff, Environmental microstructure effects on fatigue crack facet orientation in an Al?Li?Cu?Zr alloy, Acta Metall. Mater, pp.44-3515, 1996.

E. I. Meletis and W. Huang, The role of the T1 phase in the pre-exposure and hydrogen embrittlement of Al???Li???Cu alloys, Materials Science and Engineering: A, vol.148, issue.2, pp.197-209, 1991.
DOI : 10.1016/0921-5093(91)90822-5

N. J. Kim and E. U. Lee, Effect of T1 precipitate on the anisotropy of Al???Li alloy 2090, Acta Metallurgica et Materialia, vol.41, issue.3, pp.41-941, 1993.
DOI : 10.1016/0956-7151(93)90028-Q

K. Jones and D. W. Hoeppner, Prior corrosion and fatigue of 2024-T3 aluminum alloy, Corrosion Science, vol.48, issue.10, pp.3109-3122, 2006.
DOI : 10.1016/j.corsci.2005.11.008

K. Vanderwalde, J. Brockenbrough, B. Craig, and B. Hillberry, Multiple fatigue crack growth in pre-corroded 2024-T3 aluminum, International Journal of Fatigue, vol.27, issue.10-12, pp.1509-1518, 2005.
DOI : 10.1016/j.ijfatigue.2005.06.026

S. I. Rokhlin, J. Kim, H. Nagy, and B. Zoofan, Effect of pitting corrosion on fatigue crack initiation and fatigue life, Engineering Fracture Mechanics, vol.62, issue.4-5, pp.62-425, 1999.
DOI : 10.1016/S0013-7944(98)00101-5

X. D. Li, X. S. Wang, H. H. Ren, Y. L. Chen, and Z. T. Mu, Effect of prior corrosion state on the fatigue small cracking behaviour of 6151-T6 aluminum alloy, Corrosion Science, vol.55, pp.55-81, 2012.
DOI : 10.1016/j.corsci.2011.09.025

S. Kim, J. T. Burns, and R. P. Gangloff, Fatigue crack formation and growth from localized corrosion in Al???Zn???Mg???Cu, Engineering Fracture Mechanics, vol.76, issue.5, pp.76-651, 2009.
DOI : 10.1016/j.engfracmech.2008.11.005

K. M. Gruenberg, B. A. Craig, and B. M. Hillberry, Predicting fatigue life of pre-corroded 2024-T3 aluminum from breaking load tests, International Journal of Fatigue, vol.26, issue.6, pp.615-627, 2004.
DOI : 10.1016/j.ijfatigue.2003.10.010

D. Delafosse, J. P. Chateau, A. Chambreuil, and T. Magnin, Dislocation-hydrogen interactions during stress corrosion cracking in fcc metals: experiments on single crystals and numerical simulations, Materials Science and Engineering: A, vol.234, issue.236, pp.889-892, 1997.
DOI : 10.1016/S0921-5093(97)00414-0