H. Kaplan, Black coatings are critical in optical design, Photon Spectra, pp.31-48, 1997.

H. Shi, J. G. Ok, H. W. Baac, and L. J. Guo, Low density carbon nanotube forest as an index-matched and near perfect absorption coating, Applied Physics Letters, vol.99, issue.21, p.99, 2011.
DOI : 10.1063/1.3663873

Y. Goueffon, L. Arurault, C. Mabru, C. Tonon, and P. Guigu, Black anodic coatings for space applications: Study of the process parameters, characteristics and mechanical properties, Journal of Materials Processing Technology, vol.209, issue.11, pp.5145-5151, 2009.
DOI : 10.1016/j.jmatprotec.2009.02.013

C. Leong and D. D. Chung, Carbon black dispersions as thermal pastes that surpass solder in providing high thermal contact conductance, Carbon, vol.41, issue.13, pp.2459-2469, 2003.
DOI : 10.1016/S0008-6223(03)00247-1

C. E. Kennedy, Review of Mid ? To High Temperatures Solar Selective Absorber Materials, NREL/TP-520-31267, 2002.

W. Bogaerts and C. Lampert, Materials for photothermal solar energy conversion, Journal of Materials Science, vol.75, issue.10, pp.2847-2875, 1983.
DOI : 10.1007/BF00700767

K. M. Yousif and B. E. Smith, Investigation of microstructure of molybdenum?copper black electrodeposited coatings with reference to solar selectivity, Journal of Materials Science, vol.43, issue.1, pp.31-185, 1996.
DOI : 10.1007/BF00355143

X. Xiao, L. Miao, G. Xu, L. Lu, Z. Su et al., A facile process to prepare copper oxide thin films as solar selective absorbers, Applied Surface Science, vol.257, issue.24, pp.10729-10736, 2011.
DOI : 10.1016/j.apsusc.2011.07.088

D. Kraemer, B. Poudel, H. Feng, J. C. Caylor, B. Yu et al., High-performance flat-panel solar thermoelectric generators with high thermal concentration, Nature Materials, vol.105, issue.7, pp.532-538, 2011.
DOI : 10.1063/1.3212668

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic et al., A nanophotonic solar thermophotovoltaic device, Nature Nanotechnology, vol.9, issue.2, pp.126-130, 2014.
DOI : 10.1038/nnano.2013.286

H. N. Noh and S. Y. Myong, Antireflective coating using a WO3???TiO2 nanoparticle photocatalytic composition for high efficiency thin-film Si photovoltaic modules, Solar Energy Materials and Solar Cells, vol.121, pp.108-113, 2014.
DOI : 10.1016/j.solmat.2013.10.038

P. Bermel, M. L. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic et al., Tailoring photonic metamaterial resonances for thermal radiation, Nanoscale Research Letters, vol.6, issue.1, 2011.
DOI : 10.1023/A:1017930332101

M. He and R. Chen, Structural and optical properties of CuMnCoOx spinel thin films prepared by a citric acid-based sol???gel dip coating route for solar absorber applications, Journal of Sol-Gel Science and Technology, vol.48, issue.2, pp.74-528, 2015.
DOI : 10.1007/s10971-015-3630-7

Z. A. Hamid, A. A. Aala, and P. Schmuki, Nanostructured black cobalt coatings for solar absorbers, Surface and Interface Analysis, vol.12, issue.11, pp.1493-1499, 2008.
DOI : 10.1002/sia.2950

G. Mcdonald, A preliminary study of a solar selective coating system using a black cobalt oxide for high temperature solar collectors, Thin Solid Films, vol.72, issue.1, 1980.
DOI : 10.1016/0040-6090(80)90561-1

N. D. Ivanova, E. I. Boldyrev, S. V. Ivanov, and I. S. Makeeva, Electrochemical Synthesis of Black Cobalt, Russian Journal of Applied Chemistry, vol.76, issue.10, pp.76-1589, 2003.
DOI : 10.1023/B:RJAC.0000015718.25417.01

N. A. Barakat, M. S. Khil, F. A. Sheikh, and H. Y. Kim, ) Nanofibers Produced by Electrospinning Process, The Journal of Physical Chemistry C, vol.112, issue.32, pp.12225-12233, 2008.
DOI : 10.1021/jp8027353

E. Barrera, L. Huerta, S. Muhl, and A. Avila, Synthesis of black cobalt and tin oxide films by the sol???gel process: surface and optical properties, Solar Energy Materials and Solar Cells, vol.88, issue.2, pp.179-186, 2005.
DOI : 10.1016/j.solmat.2004.03.010

H. Yamamoto, T. Naito, M. Terao, and T. Shintani, Nano structure analysis of sputtered thin films consisting of cobalt oxide and soda-lime glass composite, Thin Solid Films, vol.411, issue.2, pp.289-297, 2002.
DOI : 10.1016/S0040-6090(02)00275-4

T. Warang, N. Patel, A. Santini, N. Bazzanella, A. Kale et al., Pulsed laser deposition of Co3O4 nanoparticles assembled coating: Role of substrate temperature to tailor disordered to crystalline phase and related photocatalytic activity in degradation of methylene blue, Applied Catalysis A: General, vol.423, issue.424, pp.423-424, 2012.
DOI : 10.1016/j.apcata.2012.02.037

T. Q. Ngo, A. Posadas, H. Seo, S. Hoang, M. D. Mcdaniel et al., on Si(001) for visible light driven photoelectrochemical water oxidation, Journal of Applied Physics, vol.114, issue.8, p.84901, 2013.
DOI : 10.1063/1.4819106

M. E. Donders, H. C. Knoops, M. C. Van-de-sanden, W. M. Kessels, and P. H. Notten, Remote Plasma Atomic Layer Deposition of Co3O4 Thin Films, Journal of The Electrochemical Society, vol.158, issue.4, pp.158-92, 2011.
DOI : 10.1149/1.3552616

M. Diskus, O. Nilsen, and H. Fjellvag, Thin Films of Cobalt Oxide Deposited on High Aspect Ratio Supports by Atomic Layer Deposition, Chemical Vapor Deposition, vol.144, issue.92, pp.135-140, 2011.
DOI : 10.1002/cvde.201006891

M. Burriel, G. Garcia, J. Santiso, A. N. Hansson, S. Linderoth et al., Co3O4 protective coatings prepared by Pulsed Injection Metal Organic Chemical Vapour Deposition, Thin Solid Films, vol.473, issue.1, pp.98-103, 2005.
DOI : 10.1016/j.tsf.2004.07.081

J. Tyczkowski, R. Kapica, and J. ?ojewska, Thin cobalt oxide films for catalysis deposited by plasma-enhanced metal???organic chemical vapor deposition, Thin Solid Films, vol.515, issue.16, pp.6590-6595, 2007.
DOI : 10.1016/j.tsf.2006.11.056

S. Pasko, A. Abrutis, L. G. Hubert-pfalzgraf, and V. Kubilius, Cobalt (II) ??-diketonate adducts as new precursors for the growth of cobalt oxide films by liquid injection MOCVD, Journal of Crystal Growth, vol.262, issue.1-4, pp.653-657, 2004.
DOI : 10.1016/j.jcrysgro.2003.10.077

URL : https://hal.archives-ouvertes.fr/hal-00007408

A. R. Ivanova, G. Nuesca, X. Chen, C. Goldberg, A. E. Kaloyeros et al., The Effects of Processing Parameters in the Chemical Vapor Deposition of Cobalt from Cobalt Tricarbonyl Nitrosyl, Journal of The Electrochemical Society, vol.146, issue.6, pp.146-2139, 1999.
DOI : 10.1149/1.1391904

F. Fau and F. Maury, Growth and characterizations of Co coatings deposited by MOCVD below 120 ? C using Co2, 3rd Inter. Symp. on Trends and New Applications in Thin Films, Le Vide, les Couches Minces, pp.95-97, 1991.

E. Fuji, H. Torii, A. Tomozawa, R. Takayama, and T. Hirao, Preparation of cobalt oxide films by plasma-enhanced metalorganic chemical vapour deposition, Journal of Materials Science, vol.49, issue.23, pp.30-6013, 1995.
DOI : 10.1007/BF01151521

A. U. Mane and S. A. Shivashankar, MOCVD of cobalt oxide thin films: dependence of growth, microstructure, and optical properties on the source of oxidation, Journal of Crystal Growth, vol.254, issue.3-4, pp.368-377, 2003.
DOI : 10.1016/S0022-0248(03)01156-4

S. Schmid, R. Hausbrand, and W. Jaegermann, Cobalt oxide thin film low pressure metal-organic chemical vapor deposition, Thin Solid Films, vol.567, pp.8-13, 2014.
DOI : 10.1016/j.tsf.2014.07.029

M. E. Gross, K. Schnoes-kranz, D. Brasen, and H. Luftman, Organometallic chemical vapor deposition of cobalt and formation of cobalt disilicide, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.6, issue.5, pp.1548-1552, 1988.
DOI : 10.1116/1.584212

D. X. Ye, S. Pimanpana, C. Jezewski, F. Tang, J. J. Senkevich et al., Low temperature chemical vapor deposition of Co thin films from, Co2(CO) Thin Solid Films, vol.8, issue.485, pp.95-100, 2005.

J. Lee, H. J. Yang, J. H. Lee, J. Y. Kim, W. J. Nam et al., as a Precursor, Korean Journal of Materials Research, vol.16, issue.2, pp.539-542, 2006.
DOI : 10.3740/MRSK.2006.16.2.106

Y. K. Ko, D. S. Park, B. S. Seo, H. J. Yang, H. J. Shin et al., Studies of cobalt thin films deposited by sputtering and MOCVD, Materials Chemistry and Physics, vol.80, issue.2, pp.560-564, 2003.
DOI : 10.1016/S0254-0584(03)00085-3

G. Dormans, OMCVD of cobalt and cobalt silicide, Journal of Crystal Growth, vol.114, issue.3, pp.364-372, 1994.
DOI : 10.1016/0022-0248(91)90054-9

Q. Zhao, D. W. Greve, and K. Barmak, UHV/CVD growth of Co on Si(0 0 1) using cobalt carbonyl, Applied Surface Science, vol.219, issue.1-2, pp.136-142, 2003.
DOI : 10.1016/S0169-4332(03)00597-X

H. S. Rhee and B. T. Ahn, ChemInform Abstract: Cobalt Metallorganic Chemical Vapor Deposition and Formation of Epitaxial CoSi2 Layer on Si(100) Substrate., ChemInform, vol.146, issue.44, pp.146-2720, 1999.
DOI : 10.1002/chin.199944307

J. Lee and J. G. Lee, Deposition characteristics of Co thin films over high aspect ratio trenches by MOCVD using CO2(CO)8 as a precursor, J. Korean Phys. Soc, pp.49-697, 2006.

H. Chen and A. A. Adesina, Improved alkene selectivity in carbon monoxide hydrogenation over silica supported cobalt-molybdenum catalyst, Applied Catalysis A: General, vol.112, issue.2, pp.87-103, 1994.
DOI : 10.1016/0926-860X(94)80211-4

M. G. Hutchins, P. J. Wright, and P. D. Grebenik, Comparison of different forms of black cobalt selective solar absorber surfaces, Solar Energy Materials, vol.16, issue.1-3, pp.113-131, 1987.
DOI : 10.1016/0165-1633(87)90013-X

V. Gupta, T. Kawaguchi, and N. Miura, Synthesis and electrochemical behavior of nanostructured cauliflower-shape Co???Ni/Co???Ni oxides composites, Materials Research Bulletin, vol.44, issue.1, pp.44-202, 2009.
DOI : 10.1016/j.materresbull.2008.04.020

P. Haniam, C. Kunsombat, S. Chiangga, and A. Songsasen, Synthesis of Cobalt Oxides Thin Films Fractal Structures by Laser Chemical Vapor Deposition, The Scientific World Journal, vol.11, issue.8, pp.685270-685276, 2014.
DOI : 10.1021/jp9014564

G. L. Chen, C. Guyon, Z. X. Zhang, B. D. Silva, P. D. Costa et al., Catkin liked nano-Co3O4 catalyst built-in organic microreactor by PEMOCVD method for trace CO oxidation at room temperature, Microfluidics and Nanofluidics, vol.19, issue.3, pp.16-141, 2013.
DOI : 10.1007/s10404-013-1220-y

D. Ne?as and P. Klapetek, Gwyddion: an open-source software for SPM data analysis, Cent. Eur, J. Phys, vol.10, pp.181-188, 2012.

E. Barrera, I. González, and T. Viveros, A new cobalt oxide electrodeposit bath for solar absorbers, Solar Energy Materials and Solar Cells, vol.51, issue.1, pp.69-82, 1998.
DOI : 10.1016/S0927-0248(97)00209-2

T. D. Kang, H. S. Lee, and H. Lee, Optical properties of black NiO and CoO single crystals studied with spectroscopic ellipsometry, J. Korean Phys. Soc, pp.50-632, 2007.

J. G. Cook and F. P. Koffyberg, Solar thermal absorbers employing oxides of Ni and Co, Solar Energy Materials, vol.10, issue.1, pp.55-67, 1984.
DOI : 10.1016/0165-1633(84)90008-X

L. Liao, Q. Zhang, Z. Su, Z. Zhao, Y. Wang et al., Efficient solar water-splitting using a nanocrystalline CoO photocatalyst, Nature Nanotechnology, vol.85, issue.1, pp.69-73, 2014.
DOI : 10.1002/anie.200805534

R. Gillen and J. Robertson, Accurate screened exchange band structures for the transition metal monoxides MnO, FeO, CoO and NiO, Journal of Physics: Condensed Matter, vol.25, issue.16, p.165502, 2013.
DOI : 10.1088/0953-8984/25/16/165502

A. Amri, Z. T. Jiang, T. Pryor, C. Yin, and S. Djordjevic, Developments in the synthesis of flat plate solar selective absorber materials via sol???gel methods: A review, Renewable and Sustainable Energy Reviews, vol.36, pp.316-328, 2014.
DOI : 10.1016/j.rser.2014.04.062

J. S. Rayleigh, On Reflection of Vibrations at the Confines of two Media between which the Transition is Gradual, Proc. Lond, pp.11-51, 1880.
DOI : 10.1112/plms/s1-11.1.51

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim et al., Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm, Optics Express, vol.16, issue.8, pp.5290-5298, 2008.
DOI : 10.1364/OE.16.005290

M. Bass, Optical properties of films and coatings, Handbook of Optics: Volume IV -Optical Properties of Materials, Nonlinear Optics, Quantum Optics, 2010.

F. Guillemot, Couches poreuses de silice structurées par des latex: structure, propriétés mécaniques et applications optiques, Materials chemistry Ecole Polytechnique X, 2010.