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Abstract

We present a new high-accurate, stable and low-dissipative Smooth Particle

Hydrodynamics (SPH) method based on Riemann solvers. The method de-

rives from the SPH-ALE formulation first proposed by Vila and Ben Moussa.

Moving Least Squares approximations are used for the reconstruction of the

variables and the computation of Taylor expansions. The stability of the

scheme is achieved by the a posteriori Multi-dimensional Optimal Order

Detection (MOOD) paradigm. Such a procedure enables to provide gen-

uine gains in accuracy both for one- and two-dimensional problems involving

non-smooth flows when compared to classical SPH methods.
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1. Introduction

The Smooth Particle Hydrodynamics (SPH) method is based on a La-

grangian formulation of the Navier-Stokes equations and is widely used in

complex CFD applications. Initially introduced in the 1970’s by Lucy [1],

Gingold and Monaghan [2] for astrophysical applications, SPH is now applied

to a wide variety of applications such as porous media flow, magnetohydro-

dynamics, penetration, shock damage, explosions, etc. We refer to [3, 4] for

a general review on the SPH applications.

Most SPH formulations rely on the artificial viscosity approach [1, 2, 3]

to prevent the numerical approximation from oscillating near sharp fronts or

discontinuities. The use of artificial viscosities, however, leads to a significant

loss of accuracy in flows involving shocks or contact discontinuities: numerical

diffusion leads to excessive smearing of shock fronts and strong glitches near

contact discontinuities [5, 6].

In SPH formulations, a particle represents a finite piece of volume with

an associated mass, suggesting a link between the finite volume method and

the SPH technique. Several authors couple a Riemann solver with the SPH

framework and, more generally for meshless methods [5, 7, 8, 9, 10, 11, 12],

where the interaction between two particles is handled by the Riemann prob-

lem solution at the midpoint distance. Such a close relationship has led to

the question of whether finite volume methods do really require a mesh or

not [13].

We aim to develop a new accurate, stable and low-dissipative SPH Riemann-

based method. The technique presented here is based on the formulation

introduced by Vila, see [11, 12] where high order is achieved by using recon-
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structions based on Taylor series expansions to provide an accurate numerical

fluxes evaluation at the midpoint between two interacting particles. A simi-

lar second-order method was presented in [14] for incompressible flows. Here

we present an SPH scheme that combines the basic framework proposed by

Vila with the Multidimensional Optimal Order Detection (MOOD) paradigm

[15, 16, 17]. The use of MOOD provides robust and accurate stability prop-

erties to the scheme. Unlike many other stabilization procedures where the

limiting stage is performed a priori, –that is, before the flux computation

and solution update, the MOOD limiting procedure is performed a posteri-

ori. Indeed, a candidate solution based on high-order approximated fluxes

is computed and the numerical regularity is quantified to detect those cells

where non-physical oscillations occur. A correction is carried out to locally

reduce the order of the scheme and provide a more robust approximation.

High-accuracy is achieved through polynomial reconstruction of the vari-

ables evaluated at the integration points when solving the local Riemann

problems. Moving Least Squares (MLS) approximations are used to com-

pute the derivatives required in the polynomial reconstruction. The Moving

Least Squares method [18, 19] is a powerful technique for the approximation

of functions from scattered data. It was first proposed by [20] in a finite

volume framework for several sets of equations, including Euler and Navier-

Stokes equations. In similar context, a second-order SPH formulation using

slope limiters or fifth-order WENO interpolation is presented in [21] for 1D

problems. A 2D-WENO approach based on MLS has been developed by

[22]. We also mention the work of [23, 24] using a second-order scheme for

the Magnetohydrodynamics equations derived as a Galerkin formulation that
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uses Riemann solvers and MLS.

The paper is organized as follows. In Section 2 we present the compressi-

ble Euler equations for gas dynamics, and we recall the SPH-ALE scheme

of Vila and Ben Moussa. We briefly introduce the notations of the MLS

reconstruction we shall use for increasing the accuracy of the scheme while a

new MOOD paradigm in the SPH context is proposed in Section 3. We ad-

dress, in section4, the numerical issue where we assess the accuracy and the

robustness of the SPH-MOOD scheme. Finally, we draw some conclusions

and perspectives in the last section.

2. Discretization

The two-dimensional Euler equations, cast in a general system of conser-

vation laws in a Lagrangian frame, write

∂UUU

∂t
+∇∇∇ · (FFF − vvvframe ⊗UUU) = 000, in Ω, (1)

where vvvframe stands for the velocity of the Lagrangian frame while UUU and

FFF = (FFFx,FFFy) are the vector of the conservative variables and the inviscid

flux vector, namely

UUU =


ρ

ρu

ρv

ρE

 , FFFx =


ρu

ρu2 + p

ρuv

ρuH

 , FFFy =


ρv

ρuv

ρv2 + p

ρvH

 , (2)

with ρ the density, (u, v) the velocity, E the specific total energy, H = E+p/ρ

and p the pressure. We assume that the fluid is governed by a equation of

state p = P (ρ, ε) where ε = E − 1
2
(u2 + v2) represents the specific internal

energy. In this work we have considered the ideal gas EOS.
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2.1. Generic SPH formulation

We use the SPH-ALE formulation proposed in [11, 12]. The computa-

tional domain, Ω, is discretized by a set of N particles of effective volume Vi

with positions rrri = (xi, yi)
T for all 1 ≤ i ≤ N . The discrete form of system

(1)-(2) reads

∂ViUUU i

∂t
= −

ni∑
j=1

ViVj2 (GGGij −HHH i) · ∇Wij, (3)

∂Vi
∂t

=

ni∑
j=1

ViVj2 (vvvij − vvvi)∇∇∇Wij, (4)

where the first equation represents the evolution of the conservative variables

and the second equation describes the evolution of particle volumes. The

evolution of the particle position is given by a weighted average interpolation

of the velocity [25]

∂rrri
∂t

=

ni∑
j=1

VjvvvjWij

ni∑
j=1

VjWij

. (5)

In the previous equations, ∇Wij = ∇W (rrrj−rrri, hij) is the gradient of the

approximation kernel centered at particle i and ni is the number of neigh-

bor particles that are inside the stencil of the particle (see figure 1). The

product ViVj2∇Wij corresponds to geometrical weights of the SPH-ALE ap-

proximation, since these terms depends only on the position of the particles

i and j [26]. Function GGGij is the numerical flux computed at midpoint,

rrrij = (rrri + rrrj)/2, while we set HHH i = FFF(UUU i) − vvvi ⊗ UUU i, corresponding to

the Lagrangian flux tensor computed as a function of the state of the i−th

particle. Such a definition leads to a flux difference formulation of the SPH
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scheme [22] and can be interpreted as correction for the computation of the

geometrical weights of the SPH-ALE approximation [26, 27].

The kernel function Wij plays a crucial role in the SPH formulation. It is

used to weight the different particles that contribute to the approximation.

A wide variety of kernel functions are described in the literature [28, 29, 30,

31, 32] such as spline or exponential functions. We shall use the popular

cubic spline kernel despite it is not be the only nor possibly the best option

in terms of accuracy [33]:

Wij = αd



1− 3

2
q2
ij +

3

4
q3
ij qij ≤ 1,

1

4
(2− qij)3 1 < qij ≤ 2,

0 qij > 2,

(6)

where hij represents the smoothing length, qij is defined as qij = ‖rrrj − rrri‖ /hij
and αd is a normalization constant so that the partition of the unity prop-

erty holds. For one-dimensional geometries, we take αD = 1/hij whereas

αD = 15/7πh2
ij for the two-dimensional case. We adopt the variable smooth-

ing length strategy for h proposed by [34, 35]

hij =
1

2
(hi + hj), with hi = σVi

1
D (7)

where D is the space dimensions number and σ is a constant parameter. The

number of neighbors is variable, depending on the value of σ we shall set to

σ = 2 in the numerical applications.

The numerical flux GGGij is computed at point rrrij using the classical and
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2hi

i

Figure 1: Stencil of particle i defined with the smoothing length hi.

robust Rusanov flux [36]

GGGij =
1

2
(HHH+

ij +HHH−ij) · nnn−
1

2
S+
ij∆UUU ij · nnn, (8)

where S+
ij is the maximum eigenvalue of the Jacobian matrix which writes in

the Lagrangian framework

S+
ij = max (c+

ij, c
−
ij), (9)

where c±ij denotes the left and right sound speeds. Quantities HHH−ij and HHH+
ij

denote the flux approximations ofHHH on the left and right sides of the integra-

tion point rrrij with the positive orientation given by rrrj − rrri and represented

by the normalized vector nnnij while ∆UUU ij = UUU+
ij − UUU−ij is the jump of the

conservative vector.

Remark. The main objective of this work is the extension of the MOOD

paradigm to SPH methods, thus the choice of the formulation is not specific
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to the new limiting procedure we proposed and the MOOD technique suits

well with any stable SPH formulation based on Riemann solvers. �

2.2. High-order reconstruction and Moving Least Squares approximations

To improve the accuracy of the numerical method, we increase the or-

der of the approximations of UUU+
ij and UUU−ij that we plug into the numerical

flux to compute HHH+
ij and HHH−ij in equation (8). The quadratic reconstruction

associated to particle i and evaluated at rrrij reads

UUU+
ij = UUU i +∇∇∇UUU i · (rrrij − rrri) +

1

2
(rrrij − rrri)T ∇∇∇2UUU i (rrrij − rrri) , (10)

where the gradient ∇∇∇UUU i and the Hessian matrix ∇∇∇2UUU i involve the successive

derivatives of UUU . These terms are computed using MLS approximations.

Remark. The numerical scheme presents a second-order convergence at

most. This is due to the discretization of the divergence of the convective

terms in the Euler equation [37]. The approach presented in this work will

allow us to improve the accuracy as we increase the order of the reconstruc-

tion, even though the global asymptotic order of the scheme will not exceed

two. �

We give a brief overview of the Moving Least Squares (MLS) technique

for introducing the notations. We refer the reader to [18, 20] for a complete

description of the method. For a given set of ni values φj of position rrrj in

the neighbor of particle i (see Figure 1), the MLS approximation at point

rrr = (x, y)t is given by

φ̂(rrr) =

ni∑
j=1

Ψj(rrr)φj (11)
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where the associated shape functions, gathered in vector ΨΨΨ = (Ψ1,Ψ2, ...,Ψni
) ∈

Rni , are computed by

ΨΨΨT (rrr) = pppT (rrr)MMM−1(rrr)PPP (rrr)WWWMLS(rrr) (12)

where pppT (rrr) = (1, x, y, x2, y2, xy, ...) ∈ Rm is the basis functions vector, PPP is

a m× ni matrix where the basis functions are evaluated at each point of the

stencil, namely P = [pppT (rjrjrj)]j and MMM(rrr) is the m×m moment matrix given

by

MMM(rrr) = PPP (rrr)WWWMLS(rrr)PPP T (rrr). (13)

Diagonal matrix WWWMLS(rrr) is derived from the kernel function evaluated at

rrrj −rrri for the ni neighboring particles. In practice, we take in the numerical

applications the truncated exponential function [38]

Wij = W (rrrj, rrri, sx) =
e−( d

c )
2

− e−( dm
c )

2

1− e−( dm
c )

2 (14)

with d = |rrrj − rrri|, dm = 2 max (|rrrj − rrri|) and dm the smoothing length. The

coefficient c is defined by c = dm
sx

and sx = 1 is the shape parameter of the

kernel. Note that even though it is possible to use the same kernel function for

the computation of MLS shape functions and the SPH discretization of the

Euler equations, we have experimented with two different kernels to provide

more flexibility and future extensions for the MOOD paradigm.

High-order reconstruction (equation (10)) requires the computation of

accurate derivatives, namely

∇φ̂ =

ni∑
j=1

φj∇Ψj(rrr) (15)

We refer the interested reader to [20, 38] for a detailed description of the

computation of MLS derivatives.
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3. The Multi-dimensional Optimal Order Detection (MOOD)Method

It is well-known that high-order reconstructions lead to spurious nu-

merical oscillations in the vicinity of discontinuities (the so-called Gibbs

phenomenon). Limiting/stabilizing procedures such as artificial viscosity,

MUSCL with slope limiter, or ENO/WENO are applied to locally increase

the numerical diffusion for eliminating the non-physical oscillations. All these

methods are tagged a priori since the limiting procedure is performed with

the data at time tn to prevent the approximation at time tn+1 from oscillat-

ing. Recently, a new paradigm, based on an a posteriori limitating, has been

proposed in [15, 16] (the MOOD method). Here we extend the methodology

to the context of SPH formulation.

The fundamental idea behind the MOOD paradigm is to determine, a

posteriori, the optimal order of the polynomial reconstruction for each par-

ticle that provides the best compromise between accuracy and stability. To

this end, a candidate solution, U?, is evaluated as a potential approximation

for time tn+1. Then the candidate solution is confronted against a series of

tests, named detectors, to check whether the approximation is acceptable

or not according to the some predefined smoothness criteria. For the trou-

bled/bad cells, i.e. where the solution is declared as not valid, the candidate

solution is discarded and recomputed, starting again from data at tn but

with a more dissipative scheme that uses a lower polynomial degree for the

reconstruction.
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3.1. MOOD loop

More precisely, the MOOD method is based on two main ingredients: a

Particle Polynomial Degree (PPD), and a chain of detectors to assess the

validity of the candidate solution. The PPD indicates the degree of the poly-

nomial function we shall use to compute the candidate solution U?. The flux

is evaluated at the midpoint rrrij between particles i and j taking the poly-

nomial representation of degree min(PPD(i), PPD(j)). The chain detector

controls the admissibility of the resulting solution and the particles PPD is

decremented where a detector is activated. The MOOD loop then consists in

iterating through the PPD map, initialized with a maximal order (dmax = 3),

and in decreasing the degree of defected particle pointed by the chain detec-

tor. If the PPD map is modified, the candidate solution is discarded and

recomputed with the new PPD map else the candidate solution turns to be

the approximation at tn+1. It is of crucial importance to note that only the

altered cells have to be compute again, which saves a significant amount of

computational resources. In the worst situation, i.e. the PPD map has all its

entries equal to zero, we obtain the so-called parachute base scheme, using

the piecewise constant approximation, and providing, de facto, the first-order

and robust Vila scheme. The solution computed with this approximation is

assumed to be always valid. In figure 2, left panel, we sketch the classical a

priori stabilized SPH code through artificial viscosity or slope limiter, while

we display in the right panel the a posteriori SPH-MOOD procedure.

Remark. It is proven that the MOOD loop always terminates [15],

either with all particles being updated by the parachute scheme (i.e. all

PPD equals to 0), or if all particles being valid according to the chain of
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Figure 2: Left: Sketch of a classical a priori stabilized SPH code. The stabilization is

built in the solver through artificial viscosity, slope limiter, etc. — Right: Sketch of an

a posteriori SPH-MOOD like code. The MOOD loop assures that a BAD particle is

detected when the candidate solution at time tn+1 is not valid. For those particles only

re-computation occurs with a less accurate numerical scheme after some decrementing.

GOOD particles contrarily are accepted and are not recomputed.

detection criteria.�.

3.2. Chain detectors

In order to achieve stability within our SPH formulation, a chain of de-

tectors is built, comprising three elementary detectors, namely the Physical

Admissibility Detection (PAD), the Discrete Maximum Principle detector

(DMP) and the Plateau Detector (PD), assembled together in the so-called

chain detector given in Figure 3. Notice that the order of the elementary

detectors is important since the activation of one detector determines the

use of another detector. We detail in the next paragraph the definition and

the implementations of the three detectors.

3.2.1. Physical Admissibility Detection (PAD)

The Physical Admissibility Detection (PAD) requires that the candidate

solution remains physically admissible. This set of criteria are intrinsically
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candidate
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No

BAD

Yes
DMP

No

GOOD

PD

Yes

Yes

No

GOOD

BAD

Figure 3: Chain detector composed of successive elementary detectors.

dependent on the set of PDEs which are being solved. In this work we solve

the Euler system of conservation laws, and therefore density and pressure

must remain non-negative. For SPH formulations we consider that a candi-

date solution is physically admissible if it satisfies the following conditions:

• Positivity of the density: ρ?i > 0,

• Positivity of the pressure: p?i > 0 (or equivalently ε?i > 0),

• Positivity of the cell volume: V ?
i > 0.

Note that those conditions do not prevent the solution from oscillating, but

rather guarantee that the code will not crash (non-negative sound velocity)

due to unphysical state variables.

3.2.2. Discrete Maximum Principle (DMP)

The Discrete Maximum Principle (DMP) criterion prevents spurious nu-

merical oscillations from appearing in the vicinity of discontinuities and sharp

fronts. An admissible candidate solution fulfills the DMP if it satisfies

min
j∈Vi

(
ρnj , ρ

n
i

)
≤ ρ?i ≤ max

j∈Vi

(
ρnj , ρ

n
i

)
(16)
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where Vi is a set of neighbor particles. If a particle does not fulfill the crite-

rion, it follows that an extremum is detected and and a potential oscillation

may happen. Such a situation is considered as problematic, and therefore

the particle should be recomputed with a more dissipative scheme.

The DMP criterion is very robust, but it may lead to an overly dissipative

scheme. Indeed, a new local extremum is not per se the starting point of

a spurious oscillation, but may rather correspond to a physically relevant

event (a compression for example). Nonetheless, all spurious oscillations do

emerge with a new local extremum. Additional detectors have been designed

in [15, 16, 17] to differentiate physically relevant extremum from spurious

oscillations, in order to achieve numerical schemes with very high-order of

accuracy. However, due to the effective second-order of the SPH scheme,

such detectors are not required here.

In the application of MOOD to finite volume formulations, Vi is consti-

tuted of the cells sharing a face (in 3D) or an edge (in 2D) with the control

volume i [15]. In SPH formulations, we define Vi as the set of closest parti-

cles coming from different directions. To this end, we split the reconstruction

stencil of the particle i in four sub-domains, as displayed in Figure 4. For

each sub-domain, we choose the closest particle to particle i and include it in

Vi. Since particles are moving, one should check if the candidate position of

the particle i leaves Vi (see figure 4). If that case, the DMP detector defined

by relation (16) is no longer valid, and the PPD for particle i is set to zero.

Another scenario has been also tested where we use smaller time steps until

this condition is fulfilled.
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Figure 4: Sketch of the stencil of particle i divided in four sub domains needed for the

DMP (NW, NE, SE and SW).

3.2.3. Plateau Detector (PD)

Assume that a smooth solution is constant on a sub-domain D. Due to

the truncation for real numbers representation on computer, the constant

solution is numerically contaminated by a noise which provides artificial ex-

trema of relative order 10−15. The DMP detector incorrectly interprets the

noise as local extrema, leading to a dramatic order reduction while the so-

lution is mainly constant. To overcome such a drawback, we introduce the

Plateau Detector, which releases the DMP criterion when the solution is

almost constant.

For a particle i of stencil Vi, the Plateau Detector is activated if

max
j∈Vi

(|ρ?i − ρ?j |) ≤ εP

where εP > 0 is the Plateau Detector threshold. In this work we have

set εP = 10−15. If the DMP is activated for the particle i, we check the

plateau criterion. If the PD is activated, then we release the DMP detector

maintaining the maximum order.
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4. Numerical tests and examples

We present representative numerical simulations to assess the quality of

the SPH-MOOD scheme to produce accurate and robust approximations,

and demonstrate the suitability of the method for solving the Euler equations

in multidimensional form. All the numerical examples have been computed

using a third-order Runge-Kutta scheme for time integration [39]. The initial

particles volumes, Vi, are determined such that∫
Ωi

WdΩi =

ni∑
j

VjWij

following [24, 33]. Several SPH-MOOD versions have been implemented using

different Taylor reconstructions and will be compared to the first-order Vila

scheme [11], which is henceforth referred to as the SPH parachute scheme.

assess the performance of the SPH-MOOD scheme, several benchmarks

have been carried out that we list hereafter.

2D Ringleb’s flow problem. The two-dimensional problem provides a smooth

solution we use to measure the effective order of accuracy of the tested

SPH scheme.

1D Sod like shock tubes. Two one-dimensional tests presenting simple non-

interacting waves (rarefaction, contact discontinuity and shock) are car-

ried out to assess the robustness of the schemes.

2D circular blast waves. We have performed the simulations for two situa-

tions where three cylindrical waves are generated. The tests check the

ability of the schemes to preserve the axisymmetric symmetry but also

16



to evaluate the accuracy gain with the MOOD procedure faced to the

traditional methods.

4.1. Ringleb’s flow

We begin by studying the rate of convergence for the SPH-MOOD-MLS

method for a inviscid compressible fluid. The flow solution is obtained as

a solution of the hodograph equation [40]. The computational domain Ω =

[−1.15,−0.75]×[0.15, 0.55] is discretized using several different sets of particle

distributions. Each distribution has about two times more particles than the

previous one. For this test case, the particle motion is Eulerian. In order to

check the formal order of accuracy of our numerical solver, we compute the

L2 norm of the entropy error as

Lent,N2 =

√
1

Ω

∫
Ω

(
pN/ρ

γ
N − p∞/ρ

γ
∞

p∞/ρ
γ
∞

)2

dΩ (17)

where γ = 7/5, and ρN , pN is the numerical solution, computed with N

particles at final time, and ρ∞, p∞ stand for the density and pressure of the

exact solution respectively. For two sets of particles with respective number

N1 and N2, we expect the global entropy error to decrease, and, to reach an

asymptotic numerical order of convergence computed as

Oent,N
2 =

log
(
Lent,N1

2 /Lent,N2

2

)
log(

√
N2/N1)

. (18)

Errors and their associated convergence rates are reported in Tables 1,

while figure 5 displays the convergence curves as a function of N in log-scale.

We observe that the accuracy increases as the reconstruction is improved.

However, the global order of the scheme remains a second-order one asymp-

totically. Nonetheless, tgain in accuracy with respect to the base scheme

17



using the proposed method is up to 6 orders of magnitude. The MOOD

approach systematically improves the error as the degree of the Taylor ap-

proximation increases.

N Lent,N2 error Oent,N
2

B
a
se

sc
h
e
m
e

1024 8.28× 10−4 —

2304 5.76× 10−4 0.898

4096 4.42× 10−4 0.918

9216 3.03× 10−4 0.933

16384 2.31× 10−4 0.946

36864 1.56× 10−4 0.957

65536 1.18× 10−4 0.966

N Lent,N2 error Oent,N
2

L
in
e
a
r
re
co

n
st
ru

ct
io
n 1024 8.54× 10−7 —

2304 3.84× 10−7 1.971

4096 2.15× 10−7 2.012

9216 9.60× 10−8 1.992

16384 5.40× 10−8 1.998

36864 2.40× 10−8 1.998

65536 1.35× 10−8 2.007

N Lent,N2 error Oent,N
2

Q
u
a
d
ra

ti
c
re
co

n
st
ru

ct
io
n

1024 3.69× 10−8 —

2304 1.01× 10−8 3.202

4096 3.30× 10−9 3.876

9216 1.53× 10−9 1.892

16384 4.90× 10−10 3.968

36864 1.86× 10−10 2.384

65536 9.67× 10−11 2.281

N Lent,N2 error Oent,N
2

C
u
b
ic

re
co

n
st
ru

ct
io
n 1024 1.69× 10−8 —

2304 4.13× 10−9 3.466

4096 1.13× 10−9 4.499

9216 9.54× 10−10 0.425

16384 2.9× 10−10 4.138

36864 1.38× 10−10 1.836

65536 7.91× 10−11 1.930

Table 1: Accuracy orders Oent,N
2 and Lent,N

2 norm of entropy error for the Ringleb flow

test case, using the SPH Base scheme and the proposed SPH-MOOD-MLS schemes with

linear, quadratic and cubic Taylor reconstructions respectively.
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Figure 5: Entropy errors Lent,N
2 as a function of N in log-scale for all SPH-MOOD schemes

and the base scheme. Data are taken from Table 1.

4.2. 1D Riemann problems

Two one-dimensional test problems involving discontinuous solutions are

considered to assess the robustness of the scheme. The solutions of the Rie-

mann problems we consider are constituted of simple waves such as genuinely

non-linear shock, contact discontinuity or rarefaction fan.

4.2.1. Sod tube

The first case (T1) is the Sod shock tube on the domain is [0, 1] charac-

terized by the initial conditions

(T1) (ρ, u, p) =

 (1, 0, 1), if x ≤ 0.5

(0.125, 0, 0.1), otherwise
(19)
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We use a discretization of 200 particles and solutions are advanced up to

t = 0.2. The exact solution comprises a left-moving rarefaction wave, a

right-moving contact discontinuity, and a shock wave. We use a Taylor re-

construction until the third derivative controlled by the MOOD procedure,

with Rusanov numerical flux.

Figure 6 displays the numerical approximation compared with the exact

solution. We note the very good agreement with the exact solution computed

using the NUMERICA library, detailed in [41]. We also notice the absence

of spurious oscillations. Moreover, we observe the great improvement in

accuracy compared with the first-order scheme (the Vila’s one).

Figure 7 shows the results obtained for different number of particles.

We observe that the approximations converge to the exact solution, and

the curves for different variables obtained with 100 particles with the SPH-

MOOD-MLS scheme are closer to the exact solution than those obtained

with the base SPH scheme using 200 particles.

For the second test case (T2) detailed in [28, 42], we consider a domain

Ω = [−0.6, 0.6] and the initial conditions are given by

(T2) (ρ, u, p) =

 (1, 0, 1), if x ≤ 0.5

(0.25, 0, 0.1795), otherwise
(20)

A discretization using 400 particles is applied where the particles are dis-

tributed in two zones. In the first one (covering the domain [−0.6, 0]) we put

320 equally distributed particles while in the second one (domain [0, 0.6]) we

place 80 particles. Computation is carried out until the final time, which is

t = 0.2.

Figure 8 shows the density, velocity, pressure and internal energy curves
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Figure 6: Simulations results for the 1D Sod shock tube problem (T1) using 200 particles

in the domain [0, 1]. We plot density (top-left), velocity (top-right), pressure (bottom-

left), specific total energy (bottom-right). Results obtained using the SPH-MOOD-MLS

method with Rusanov flux and a fourth-order Taylor reconstruction (filled circles), and

using the SPH base scheme (empty squares).

at the final time. We also plot the numerical results obtained using an SPH

method with artificial viscosity (AV) [28] which exhibits a better accuracy

than the original first-order base scheme (Vila’s SPH-ALE scheme). Unfor-

tunately for the SPH with AV, we observe wiggles and kinks appearing in the

pressure, velocity and energy plots. Conversely, Vila’s scheme (base scheme),

does not present these problems but, as we have already seen on the (T1)
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Figure 7: Results for the 1D Sod shock tube problem (T1) using different number of parti-

cles in the domain [0, 1].We plot density (top-left), velocity (top-right), pressure (bottom-

left), specific total energy (bottom-right). Results obtained using the SPH-MOOD-MLS

method with Rusanov flux and a fourth-order Taylor reconstruction.

problem, it provides a solution with significant dissipation. We remark that

the SPH-MOOD-MLS scheme proposed here obtains more accurate results

than the artificial viscosity SPH method without numerical artifacts. We

also observe the wiggles and kinks are appearing in the pressure, velocity

and energy plots when using this scheme. The Vila scheme (base scheme),

does not present these problems, but it gives a very dissipative solution. Fi-
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nally, the SPH-MOOD-MLS scheme provides a more accurate approximation

than the artificial viscosity SPH method without numerical artifacts.
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Figure 8: Results for the 1D Sod shock tube problem (T2) using 400 particles in the domain

[−0.6, 0.6], distributed as explained in the text. We plot density (top-left), velocity (top-

right), pressure (bottom-left), specific total energy (bottom-right). Results obtained using

the SPH-MOOD-MLS method with Rusanov flux and a fourth-order Taylor reconstruction

(filled circles), and using the SPH base scheme (empty squares). We also plot the results

obtained with an SPH method using artificial viscosity (AV-SPH) [28].
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4.3. Circular blast wave problems

The computational domain for two 2D blast wave problems is an open

disk with center in (0, 0) and radius R = 1.5. In order to create the initial

distribution of the particles, shown in Figure 9, we first define the Delaunay

triangulation of given sets of generators, then the particles are matched to

the barycenters of the triangulation. A regular and radially symmetric and

a unstructured set of 74651 generators are considered. As mentioned these

generators are used as the initial vertex of the triangles of the associated and

unique Delaunay triangulation (using the algorithm from PDE toolbox of

MATLAB). We use this procedure in order to obtain a correct computation

of the initial particle volumes Vi required by the scheme [22]. The SPH-

MOOD-MLS scheme with cubic Taylor reconstruction and Rusanov flux is

used for this example.

For the first blast wave problem (BWP1) case, the initial condition is

(ρ, u, v, p) =

 (1, 0, 0, 1), if |r| ≤ 0.5

(0.125, 0, 0, 0.1), otherwise
. (21)

The exact solution is constituted of cylindrical rarefaction, contact and shock

waves.

Figure 10, left column, displays the density and pressure approximations

obtained at the final time, t = 0.2. We observe a very good agreement with

the reference solution, obtained with the NUMERICA library [41]. As in

the one-dimensional case, we note a remarkable accuracy improvement of

the approximation calculated with the SPH-MOOD-MLS method in com-

parison with the SPH-ALE base scheme. The solution is free from spurious

oscillations and preserves the radial symmetry.
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Figure 9: Particle distributions used for 2D blast wave problems. Structured distribution

(top) and unstructured distribution (bottom).

We perform another simulation using a random initial particle distri-

bution (Figure 9, bottom) initial distribution of particles. The numerical

approximation is displayed in figure 10 right panel and the curves present a

good agreement with the reference solution.

We plot in Figure 11 the density, velocity and pressure for all particles as

a function of particle radius in the structured case (top panels) and unstruc-
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tured one (bottom panels). In the structured case, the particles maintain the

symmetry of the solution thus the representation of the full set of particles

as a one-dimensional plot (by rotation invariance) is valid. In the unstruc-

tured case, the symmetry is not as well reproduced as in the uniform case, in

particular the velocity norm suffer of an important deviation with respect to

the other variables, density and pressure being less dispersed. We emphasize

that the SPH-MOOD-MLS scheme is genuinely able to maintain cylindrical

symmetry in presence of non-regular flow without spurious numerical effects.

For the second blast wave problem (BWP2) case, we set the following

initial condition

(ρ, u, v, p) =

 (1, 0, 0, 2), if |r| ≤ 0.5

(1, 0, 0, 1), otherwise
(22)

Figure 12 shows the approximations for the density and pressure at fi-

nal time t = 0.2. As for the BWP1 case, the results calculated with the

SPH-MOOD-MLS method are clearly more accurate that the ones obtained

with the base scheme. They show a very good agreement with the reference

solution.

Figure 13 is the counterpart of Figure 11, but for the BWP2 problem,

both in the structured (top panels) and unstructured (bottom panels) cases.

From these results we conclude that, for the structured and unstructured ini-

tialization, the scheme can maintain the underlying symmetry of the problem.

In other words the particles are not dispersed, the particles’ values (density,

velocity and pressure) are rather well approximated as a function of their

radius.
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Figure 10: Two dimensional blast wave BWP1 problem. On the left we plot the density

results at t = 0.2 obtained using a structured grid and on the right, the solution using an

unstructured grid. We also plot the density (middle) and the pressure (bottom) results

for a cut at y = 0 using the novel SPH-MOOD-MLS scheme (filled circles) compared with

the SPH base code (empty squares) and the reference solution (single line).
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Figure 11: Two dimensional blast wave BWP1 problem. Density (left panels), norm of

the velocity (middle panels) and pressure (right panels) as a function of particle radius

for all particles. Top panels present particles (×) which are initially as a regular polar

mesh whereas bottom panels present the particles (.) which are randomly distributed (see

figure 9).

28



−1 −0.5 0 0.5 1
0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

ρ

 

 

Exact
SPH Base scheme
SPH−MOOD−MLS

−1 −0.5 0 0.5 1
0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

ρ

 

 

Exact
SPH Base scheme
SPH−MOOD−MLS

−1 −0.5 0 0.5 1

1

1.5

2

2.5

x

p

 

 

Exact
SPH Base scheme
SPH−MOOD−MLS

−1 −0.5 0 0.5 1

1

1.5

2

2.5

x

p

 

 

Exact
SPH Base scheme
SPH−MOOD−MLS

Figure 12: Two dimensional blast wave BWP2 problem results at t = 0.2. On the left we

plot the density results obtained using a structured grid and on the right, the solution using

an unstructured grid. We also plot the density (middle) and the pressure (bottom) results

for a cut at y = 0 using the novel SPH-MOOD-MLS scheme (filled circles) compared with

the SPH base code (empty squares) and the reference solution (single line).
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Figure 13: Two dimensional blast wave BWP2 problem. Density (left panels), norm of

the velocity (middle panels) and pressure (right panels) as a function of particle radius

for all particles. Top panels present particles (×) which are initially as a regular polar

mesh whereas bottom panels present the particles (.) which are randomly distributed (see

figure 9).
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Conclusions

In this work we have presented a new high-accurate SPH code. It is based

on the use of Riemann solvers and Moving Least Squares for high accurate

reconstruction of the left and right states of the Riemann problem. The

stability of the numerical scheme is achieved by using the Multidimensional

Optimal Order Detection (MOOD) paradigm. This a posteriori paradigm

permits to stabilize the scheme without the call to classical limiting strategy

such as slope limiter or artificial viscosity. The procedure only decreases the

accuracy of the reconstructions when troubled cells are detected. Ultimately,

locally to some troubles cells, the lowest possible accuracy of reconstruction

can be reached, in other words the base SPH scheme is employed for those

cells.

Our formulation obtains accurate and very promising results as demonstrated

by several 1D and 2D test cases involving shock waves both with uniform

or random initial distributions of particles. The MOOD paradigm greatly

improves the accuracy on smooth flows when compared to the base scheme.

Moreover, the proposed SPH-MOOD-MLS scheme maintains an essentially

non-oscillatory behavior for non smooth flow without any spurious oscilla-

tions.

The numerical scheme presented here is formally second-order, due to

the use of kernel approximations for the discretization of the divergence of

the convective terms in the Euler equation [37]. This problem can how-

ever be overcome using MLS approximations to discretize these terms [24],

and, in this context, the MOOD approach presented here can be applied
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without modification. Yet another possibility for reaching higher effective

convergence orders is the extension of the MOOD paradigm to the choice of

the kernel function. This possibility is currently being investigated by the

authors.
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