A Comparative Study of Ranking-based Semantics for Abstract Argumentation
Elise Bonzon, Jérôme Delobelle, Sébastien Konieczny, Nicolas Maudet

To cite this version:

HAL Id: hal-01263996
https://hal.archives-ouvertes.fr/hal-01263996
Submitted on 29 Jan 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A Comparative Study of Ranking-based Semantics for Abstract Argumentation

Elise Bonzon
LIPADE
Universit´e Paris Descartes
France
bonzon@parisdescartes.fr

J´erˆome Delobelle
CRIL, CNRS
Universit´e d’Artois
France
delobelle@cril.fr

S´ebastien Konieczny
CRIL, CNRS
Universit´e d’Artois
France
konieczny@cril.fr

Nicolas Maudet
Sorbonne Universit´es
UPMC Univ Paris 06, CNRS
LIP6, UMR 7606
75005 Paris
nicolas.maudet@lip6.fr

Abstract

Argumentation is a process of evaluating and comparing a set of arguments. A way to compare them consists in using a ranking-based semantics which rank-order arguments from the most to the least acceptable ones. Recently, a number of such semantics have been proposed independently, often associated with some desirable properties. However, there is no comparative study which takes a broader perspective. This is what we propose in this work. We provide a general comparison of all these semantics with respect to the proposed properties. That allows us to underline the differences of behavior between the existing semantics.

Introduction

Argumentation consists in reasoning with conflicting information based on the exchange and evaluation of interacting arguments. The most popular way to represent argumentation process was proposed by Dung (1995) with argumentation frameworks modeled by binary graphs, where the nodes represent the arguments, and the edges represent the attacks between them. From these argumentation frameworks, several semantics indicating which sets of arguments, called extensions, are mutually compatible were proposed (see (Baroni, Caminada, and Giacomin 2011) for an overview). However, for applications with a big number of arguments, it can be problematic to have only two levels of evaluations (arguments are either accepted or rejected). For instance, such a limitation can be questionable when using argumentation for debate platforms on the web (see (Leite and Martins 2011) for such a discussion).

In order to fix these problems, a solution consists in using semantics that distinguish arguments not with the classical accepted/rejected evaluations, but with a large number of levels of acceptability. A lot of these semantics, called ranking-based semantics, were proposed in recent years (Amgoud and Ben-Naim 2013; Cayrol and Lagasquie-Schiex 2005; Leite and Martins 2011; Matt and Toni 2008; Gabbay 2012) with, for each semantics, different behaviour and logical properties. However, all these semantics have never been compared between them.

This is what we propose in this work. We study the existing ranking-based semantics in the literature (focusing on the semantics that return a unique ranking between arguments) in the light of the proposed properties. That allows us to underline the differences of behavior between those semantics, and to propose a better reading of the different choices one has on this matter.

The paper is organized as follows. The following section gives the relevant background regarding abstract argumentation and ranking-based semantics. The next section presents the different properties that have been introduced in the literature, whereas the next one formally introduces the existing ranking-based semantics. Note that due to space constraints, we can not recall all the details and justifications of semantics and properties of the literature, but the reader can find them in the corresponding papers. In the next section we discuss the different properties and compare the semantics, and the final section concludes.

Preliminaries

In this section, we start by briefly recalling what is a Dung’s abstract argumentation framework (Dung 1995).

Definition 1. An argumentation framework (AF) is a pair $F = (A, R)$ with A a set of arguments and R a binary relation on A, i.e. $R \subseteq A \times A$, called the attack relation. A set of arguments $S \subseteq A$ attacks an argument $b \in A$, if there exists $a \in S$, such that $(a, b) \in R$. We note Arg(F) = A.

Let $A\mathcal{F}$ be the set of all argumentation frameworks. For two AFs $F = (A, R)$ and $G = (A', R')$, we define the union $F \cup G = (A \cup A', R \cup R')$.

We can now introduce some useful notions in order to formalize properties of argumentation frameworks.

Definition 2. Let $F = (A, R)$ be an AF and $a, b \in A$. A path P from b to a, noted $P(b, a)$, is a sequence $s = \langle a_0, \ldots, a_n \rangle$ of arguments such that $a_0 = a$, $a_n = b$ and $\forall i < n, (a_{i+1}, a_i) \in R$. We denote by $l_P = n$ the length of P. A defender (resp. attacker) of a is an argument situated at the beginning of an even-length (resp. odd-length) path. We denote the multiset of defenders and attackers of a by $R^+_n(a) = \{b \mid \exists P(b, a) \text{ with } l_P \in 2N\}$ and $R^-_n(a) = \{b \mid \exists P(b, a) \text{ with } l_P \in 2N+1\}$ respectively. The direct attackers of a are arguments in $R^-_1(a)$. An argument a is defended if $R^+_2(a) \neq \emptyset$.

Copyright © 2016, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
A defense root (resp. attack root) is a non-attacked defender (resp. attacker). We denote the multiset of defense roots and attack roots of \(a \) by \(BR^+\!_A (a) = \{ b \in R^+\!_A (a) \mid | R^+\!_A (b) | = 0 \} \) and \(BR^-\!_A (a) = \{ b \in R^-\!_A (a) \mid | R^-\!_A (b) | = 0 \} \) respectively. A path from \(b \) to \(a \) is a defense branch (resp. attack branch) if \(b \) is a defense (resp. attack) root of \(a \). Let us note \(BR^+\!_A (a) = \bigcup_n BR^+\!_n (a) \) and \(BR^-\!_A (a) = \bigcup_n BR^-\!_n (a) \).

The connected components of an \(AF \) are the set of largest subgraphs of \(AF \), denoted by \(cc (AF) \), where two arguments are in the same component of \(AF \) if and only if there is some path (ignoring the direction of the edges) between them.

In Dung’s framework (Dung 1995), the acceptability of an argument depends on its membership to some sets, called extensions. Another way to select a set of acceptable arguments is to rank arguments from the most to the least acceptable ones. Ranking-based semantics aim at determining such a ranking between arguments.

Definition 3. A ranking-based semantics \(\sigma \) associates to any argumentation framework \(AF = (A, R) \) a ranking \(\succeq\!^\sigma\!_A \) on \(A \), where \(\succeq\!^\sigma\!_A \) is a preorder (a reflexive and transitive relation) on \(A \), \(a \succeq\!^\sigma\!_b \) means that \(a \) is at least as acceptable as \(b \) (\(a \succeq\!^\sigma\!_b \) is a shortcut for \(a \succeq\!^\sigma\!_b \) and \(b \succeq\!^\sigma\!_a \)), and \(a \succeq\!^\sigma\!_b \) is a shortcut for \(a \succeq\!^\sigma\!_b \) and \(b \not\succeq\!^\sigma\!_a \).

When there is no ambiguity about the argumentation framework in question, we will use \(\succeq\!^\sigma \) instead of \(\succeq\!^\sigma\!_A \).

Finally, we need to introduce the notion of lexicographical order in order to define some ranking-based semantics.

Definition 4. A lexicographical order between two vectors of real number \(V = (V_1, \ldots, V_n) \) and \(V' = (V'_1, \ldots, V'_n) \), is defined as \(V \succeq\!_{\text{lex}} V' \) iff \(\exists n \ s.t. \ V_i \geq V'_i \) and \(\forall j < i, V_j = V'_j \).

Properties

Let us recall the logical properties proposed in the literature for ranking-based semantics. Please note that all the properties are not mandatory (we will see later that some of them are incompatible), but we want to give all of them for completeness and since we will check them for the existing ranking-based semantics. Unless stated explicitly, all the properties are defined for a ranking-based semantics \(\sigma \), \(\forall AF \in AF \) and \(\forall a, b \in Arg(AF) \).

Definition 5. An isomorphism \(\gamma \) between two argumentation frameworks \(AF = (A, R) \) and \(AF' = (A', R') \) is a bijective function \(\gamma : A \to A' \) such that \(\forall x, y \in A, (x, y) \in R \iff (\gamma(x), \gamma(y)) \in R' \). With a slight abuse of notation, we will note \(AF' = \gamma (AF) \).

Abstract.

The ranking on \(A \) should be defined only on the basis of the attacks between arguments. (Abs) Let \(AF, AF' \in AF \). For any isomorphism \(\gamma \) s.t. \(AF' = \gamma (AF) \), we have \(a \succeq\!^\gamma\!_b \iff \gamma (a) \succeq\!^\gamma\!_\gamma (b) \).

Independence.

The ranking between two arguments \(a \) and \(b \) should be independent of any argument that is neither connected to \(a \) nor to \(b \).

In (\forall AF' \in cc(AF), \forall a, b \in Arg(AF'), \forall a \succeq\!^\gamma\!_b \iff \gamma (a) \succeq\!^\gamma\!_\gamma (b) \).

We may have expectations regarding the best and worst arguments that we may find in an \(AF \):

Void Precedence. A non-attacked argument is ranked strictly higher than any attacked argument.

\[R^+_1 (a) = \emptyset \ \text{and} \ R^+_1 (b) \neq \emptyset \ \Rightarrow \ a \succeq\!^\sigma\! b \]

Self-Contradiction. A self-attacking argument is ranked lower than any non self-attacking argument.

\[(a, a) \notin R \ \text{and} \ (b, b) \in R \ \Rightarrow \ a \succeq\!^\sigma\! b \]

The following local properties are concerned with the direct attackers, or defenders, of arguments:

Cardinality Precedence. The greater the number of direct attackers for an argument, the weaker the level of acceptability of this argument.

\[| R^+_1 (a) | < | R^+_1 (b) | \ \Rightarrow \ a \succeq\!^\sigma\! b \]

Quality Precedence. The greater the acceptability of one direct attacker for an argument, the weaker the level of acceptability of this argument.

\[(a, c) \succeq\!^\sigma\! (b, d) \ (c \succeq\!^\sigma\! d) \Rightarrow a \succeq\!^\sigma\! b \]

Before defining the next properties, we need to introduce a relation that compares sets of arguments on the basis of their rankings (Amgoud and Ben-Naim 2013):

Definition 6. Let \(\succeq\!^\sigma\! \) be a ranking on a set of arguments \(A \). For any \(S_1, S_2 \subseteq A \), \(S_1 \succeq\!^\sigma\! S_2 \) is a group comparison iff there exists an injective mapping \(f \) from \(S_2 \) to \(S_1 \) such that \(\forall a \in S_2, f(a) \succeq\!^\sigma\! a \). And \(S_1 \succeq\!^\sigma\! S_2 \) is a strict group comparison iff \(S_1 \succeq\!^\sigma\! S_2 \) and \(| S_2 | < | S_1 | \) or \(\exists a \in S_2, f(a) > a \).

Counter-Transitivity. If the direct attackers of \(b \) are at least as numerous and acceptable as those of \(a \), then \(a \) is at least as acceptable as \(b \).

\[R^+_1 (b) \succeq\!^\sigma\! R^+_1 (a) \Rightarrow a \succeq\!^\sigma\! b \]

Strict Counter-Transitivity. If CT is satisfied and either the direct attackers of \(b \) are strictly more numerous or acceptable than those of \(a \), then \(a \) is strictly more acceptable than \(b \).

\[R^+_1 (b) >_S R^+_1 (a) \Rightarrow a \succ\!^\sigma\! b \]

Defense Precedence. For two arguments with the same number of direct attackers, a defended argument is ranked higher than a non-defended argument.

\[| R^+_1 (a) | = | R^+_1 (b) |, R^+_2 (a) \neq \emptyset \ \text{and} \ R^+_2 (b) = \emptyset \ \Rightarrow \ a \succ\!^\sigma\! b \]

Definition 7. Let \(AF = (A, R) \) and \(a \in A \). The defense of \(a \) is simple iff every defender of \(a \) attacks exactly one direct attacker of \(a \). The defense of \(a \) is distributed iff every direct attacker of \(a \) is attacked by at most one argument.

Distributed-Defense Precedence. The best defense is when each defender attacks a distinct attacker.

\[| R^+_1 (a) | = | R^+_1 (b) | \ \text{and} \ | R^+_2 (a) | = | R^+_2 (b) |, \ \text{if the defense of} \ a \ \text{is simple and distributed and the defense of} \ b \]
is simple but not distributed, then \(a \succ^\sigma b\)

The following properties check if some change in an AF can improve or degrade the ranking of one argument. These properties have been proposed informally by Cayrol and Lagasquie-Schiex (2005), in the context of their semantics. We propose a formalization that generalizes them for any argumentation frameworks. We first define the addition of a defense/attack branch to an argument.

Definition 8. Let \(AF = \langle A, R \rangle\), \(a \in A\). The defense branch added to \(a\) is \(P^+ (a) = \langle A', R' \rangle\), with \(A' = \{x_0, \ldots, x_n\}\), \(n \in 2\mathbb{N}\); \(x_0 = a\), \(A' \cap A = \{a\}\), and \(R = \{(x_i, x_{i-1})| i \leq n\}\). The attack branch added to \(a\), denoted \(P^- (a)\), is defined similarly except that the sequence is of odd length (i.e. \(n \in 2\mathbb{N} + 1\)).

The following properties are defined \(\forall AF, AF^\gamma \in AF\) such that exists an isomorphism \(\gamma\) with \(AF^\gamma = \gamma(AF)\), and \(\forall a \in Arg(AF)\). We use \(AF^\gamma\) as a clone of \(AF\).

Strict addition of Defense Branch. Adding a defense branch to any argument improves its ranking.

\(\oplus DB\) If \(AF^* = AF \cup AF^\gamma \cup P^+(\gamma(a))\), then \(\gamma(a) \succ^\sigma_{AF^*} a\)

Addition of Defense Branch. It could make sense to treat differently non-attacked arguments. So in (Cayrol and Lagasquie-Schiex 2005), this property is defined in a more specific way: adding a defense branch to any attacked argument improves its ranking.

\(+ DB\) If \(AF^* = AF \cup AF^\gamma \cup P^+(\gamma(a))\) and \(|R^+_1(a)| \neq 0\), then \(\gamma(a) \succ_{AF^*} a\)

Increase of Attack branch. Increasing the length of an attack branch of an argument improves its ranking.

\(\oplus AB\) If \(b \in BR^+(a), b \notin BR^+(a)\) and \(AF^* = AF \cup AF^\gamma \cup P^+(\gamma(b))\), then \(\gamma(a) \succ_{AF^*} a\)

Addition of Attack branch. Adding an attack branch to any argument degrades its ranking.

\(+ AB\) If \(AF^* = AF \cup AF^\gamma \cup P^-(\gamma(a))\), then \(a \succ_{AF^*} \gamma(a)\)

Increase of Defense branch. Increasing the length of a defense branch of an argument degrades its ranking.

\(+ DB\) If \(b \in BR^+(a), b \notin BR^-(a)\) and \(AF^* = AF \cup AF^\gamma \cup P^+(\gamma(b))\), then \(a \succ_{AF^*} \gamma(a)\)

One can find the properties Abs, In, VP, DP, CT, SCT, CP, QP and DDP in (Amgoud and Ben-Naim 2013), the properties In, VP and SC in (Matt and Toni 2008) and the property VP in (Cayrol and Lagasquie-Schiex 2005).

To this set of properties from the literature we want to add some other important properties.

Total. All pairs of arguments can be compared.

\((\text{Tot})\) \(a \succeq b\) or \(b \succeq a\)

The next property states that all the non-attacked arguments should have the same rank.

Non-attacked Equivalence. All the non-attacked argument have the same rank.

\((\text{NaE})\) \(R^-_1(a) = \emptyset\) and \(R^+_1(b) = \emptyset\) \(\Rightarrow a \approx^\sigma b\)

The last property describes the behavior adopted by a semantics concerning the notion of defense, and can be viewed as some kind of compatibility with usual Dung’s semantics. The idea is that a defended argument is always better than an attacked argument.

Attack vs Full Defense. An argument without any attack branch is ranked higher than an argument only attacked by one non-attacked argument.

\((\text{AvsFD})\) \(AF\) is acyclic, \(|BR^-(a)| = 0, |R^+_1(b)| = 1\) and \(|R^+_2(b)| = 0 \Rightarrow a \succ^\sigma b\)

Let us now check the incompatibilities/dependencies between properties.

Proposition 1. For every ranking-based semantics, the following pairs of properties are not compatible:

- CP and QP (Amgoud and Ben-Naim 2013)
- CP and AvsFD
- CP and +DB
- VP and +DB

The following properties are not independent:

- SCT implies VP (Amgoud and Ben-Naim 2013)
- CT and SCT imply DP (Amgoud and Ben-Naim 2013)
- SCT implies CT
- CT implies NaE
- +DB implies +DB

Existing Ranking-based Semantics

Categoriser

Besnard and Hunter (2001) propose a categoriser function which assigns a value to each argument, given the value of its direct attackers.

Definition 9 (Besnard and Hunter 2001). Let \(F = \langle A, R \rangle\) be an AF. The categoriser function \(Cat : A \rightarrow [0, 1]\) is defined as:

\[
Cat(a) = \begin{cases}
1 & \text{if } R^-_1(a) = \emptyset \\
\frac{1}{1 + \sum_{c \in R^-_1(a)} Cat(c)} & \text{otherwise}
\end{cases}
\]

Definition 10. The ranking-based semantics Categoriser associates to any \(AF = \langle A, R \rangle\), a ranking \(\succeq_{AF}\) on \(A\) such that \(\forall a, b \in A, a \succeq_{AF} b \iff Cat(a) \geq Cat(b)\).

Example 1. Let \(F = \langle A, R \rangle\) with \(A = \{a, b, c, d, e\}\) and \(R = \{(a, e), (b, a), (b, c), (c, e), (d, a), (e, d)\}\).

![Figure 1: An argumentation framework](image-url)
This semantics takes into account only the value of the direct attackers to compute the strength of an argument. This is why the argument \(e \) of the example, which is attacked twice but by arguments that are attacked by a non-attacked argument, is ranked higher than the argument \(c \), which is attacked just once, but by a stronger argument.

Proposition 2. The ranking-based semantics Categoriser satisfies the properties Abs, In, VP, DP, CT, SCT, \(\uparrow \text{AB}, \uparrow \text{DB}, +\text{AB}, \text{Tot} \) and \(\text{NaE} \). The other properties are not satisfied.

Social Abstract Argumentation Framework

Leite and Martins (2011) introduce an extension of Dung’s abstract argumentation frameworks (SAF). They also propose a family of semantics where a model is a solution to the equation system with one equation for each argument, based on its social support and its direct attackers. In order to compare SAFs with the existing ranking-based semantics, we chose to ignore the social support of arguments by giving them the same value.

Definition 11. Let \(F = (A, R) \) be an AF and \(S = (L, \tau, \lambda, \gamma, \neg) \) be a (well-behaved) SAF semantic. The total mapping \(M_S : A \rightarrow L \) is a social model of \(F \) under semantics \(S \) such that \(\forall a \in A \):

\[
M_S(a) = \tau(a) \lambda \neg \{ M(a_i) : a_i \in R_1^{-1}(a) \},
\]

- \(L \) is a totally ordered set with top \(\top \) and bottom \(\bot \) elements, containing all possible valuations of an argument;
- \(\tau : A \rightarrow L \) is an attenuation factor, \(\tau \) is monotonic w.r.t. the first argument and antimonic w.r.t. the second argument;
- \(\lambda : L \times L \rightarrow L \) combines the initial score with the score of direct attackers. \(\lambda \) is continuous, commutative, associative, monotonic w.r.t. both arguments and \(\lambda \) is its identity element;
- \(\gamma : L \times L \rightarrow L \) aggregates the score of direct attackers. \(\gamma \) is continuous, commutative, associative, monotonic w.r.t. both arguments and \(\gamma \) is its identity element;
- \(\neg : L \rightarrow L \) restricts the value of the attacked argument. \(\neg \) is antimonic: continuous, \(\neg \bot = \top \), \(\neg \top = \bot \) and \(\neg \neg a = a \).

One possible (well-behaved) SAF semantic proposed in (Leite and Martins 2011) is the simple product semantic \(S_{P_\epsilon} = (\langle 0, 1 \rangle, \tau_\epsilon, \lambda, \gamma, \neg) \) where \(\tau_\epsilon = \frac{1}{1 + \epsilon} \) (with \(\epsilon > 0 \), to ensure the uniqueness of the semantics), \(x_1 \lambda x_2 = x_1 \times x_2 \) (Product T-Norm), \(x_1 \gamma x_2 = x_1 + x_2 - x_1 \times x_2 \) (Probabilistic Sum T-CoNorm) and \(\neg x_1 = 1 - x_1 \).

Definition 12. The ranking-based semantics SAF associates to any AF \((A, R) \) a ranking \(\succ_{\text{SAF}} \) on \(A \) such that \(\forall a, b \in A, a \succ_{\text{SAF}} b \iff M_S(a) \geq M_S(b) \).

Example 1 (cont.). With \(\epsilon = 0.1 \), we obtain \(M_{\text{SP}}(a) \approx 0.07 \), \(M_{\text{SP}}(b) \approx 0.91 \), \(M_{\text{SP}}(c) \approx 0.08 \), \(M_{\text{SP}}(d) \approx 0.20 \) and \(M_{\text{SP}}(e) \approx 0.78 \). We obtain the ranking: \(b \succ_{\text{SAF}} e \succ_{\text{SAF}} d \succ_{\text{SAF}} c \succ_{\text{SAF}} a \).

As for the Categoriser semantics, the strength of attackers is more important than their numbers, and thus \(e \) is preferred to \(c \). However the impact of a defense branch on an argument is weaker with SAF than with Categoriser.

Proposition 3. SAF satisfies Abs, In, VP, DP, CT, SCT, \(\uparrow \text{AB}, \uparrow \text{DB}, +\text{AB}, \text{Tot} \) and \(\text{NaE} \). The other properties are not satisfied.

Discussion-based semantics

The Discussion-based semantics (Amgoud and Ben-Naim 2013) compares arguments by counting the number of paths ending to them. If some arguments are equivalent (they have the same number of direct attackers), the size of paths is recursively increased until a difference is found.

Definition 13. Let \(F = (A, R) \) be an AF, \(a \in A \), and \(i \in \mathbb{N} \).

\[
\text{Dis}_i(a) = \begin{cases}
-|R_1^i(a)| & \text{if } i \text{ is odd} \\
|R_1^i(a)| & \text{if } i \text{ is even}
\end{cases}
\]

The discussion count of \(a \) is denoted \(\text{Dis}(a) = (\text{Dis}_1(a), \text{Dis}_2(a), \ldots) \).

Definition 14. The ranking-based semantics \(\text{DBs} \) associates to any AF \((A, R) \) a ranking \(\succ_{\text{DBs}} \) on \(A \) such that \(\forall a, b \in A, a \succ_{\text{DBs}} b \iff \text{Dis}(b) \geq_{\text{lex}} \text{Dis}(a) \).

Example 1 (cont.).

<table>
<thead>
<tr>
<th>step</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>-2</td>
<td>-3</td>
<td></td>
</tr>
</tbody>
</table>

Using the lexicographical order, one obtains the following ranking: \(b \succ_{\text{DBs}} d \succ_{\text{DBs}} c \succ_{\text{DBs}} e \succ_{\text{DBs}} a \).

The number of attackers is more important than their strength, thus \(c \) is here stronger than \(e \).

Proposition 4. \(\text{DBs} \) satisfies Abs, In, VP, DP, CT, SCT, CP, \(\uparrow \text{AB}, \uparrow \text{DB}, +\text{AB}, \text{Tot} \) and \(\text{NaE} \). The other properties are not satisfied.

Burden-based semantics

The Burden-based semantics (Amgoud and Ben-Naim 2013) assigns, at each step \(i \), a Burden number to every argument, that depends on the Burden numbers of its direct attackers.

Definition 15. Let \(F = (A, R) \) be an AF, \(a \in A \) and \(i \in \mathbb{N} \).

\[
\text{Bur}_i(a) = \begin{cases}
1 & \text{if } i = 0 \\
1 + \sum_{b \in R_1^i(a)} \text{Bur}_{i-1}(b) \quad \text{otherwise}
\end{cases}
\]

The Burden number of \(a \) is denoted \(\text{Bur}(a) = (\text{Bur}_0(a), \text{Bur}_1(a), \ldots) \).

Two arguments are lexicographically compared on the basis of their Burden numbers.

Definition 16. The ranking-based semantics \(\text{Bbs} \) associates to any AF \((A, R) \) a ranking \(\succ_{\text{Bbs}} \) on \(A \) such that \(\forall a, b \in A, a \succ_{\text{Bbs}} b \iff \text{Bur}(b) \geq_{\text{lex}} \text{Bur}(a) \).
Example 1 (cont.).

<table>
<thead>
<tr>
<th>step</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Using the lexicographical order, one obtains the following ranking: \(b \succ_{Bu} d \succ_{Bu} c \succ_{Bu} e \succ_{Bu} a \)

As on this example, Dbs and Bbs often return the same result. The main difference between these semantics is that Bbs satisfies DDP, some examples related to that kind of structures lead to distinct results.

Proposition 5. Bbs satisfies Abs, In, VP, +DB, +AB, +DB, NaE and AvsFD. The other properties are not satisfied.

Valuation with tuples

The semantics proposed by Cayrol and Lagasquie-Schiex (2005) takes into account all the ancestors branches of an argument (defender and attacker) stored in tuples values:

Definition 17. Let \(F = (A, R) \) be an AF and \(a \in A \). Let \(v_p(a) \) be the (ordered) tuple of even integers representing the lengths of all the defense branches of \(a \), i.e. \(v_p(a) \) is the smallest ordered tuple such that \(|BR^+_p(a)| = x \Rightarrow n \in_x v_p(a) \), where \(\in_x \) means “appears at least \(x \) times”. Similarly let \(\ell_t \) be the (ordered) tuple of odd integers representing the lengths of all the attack branches of \(a \), i.e. \(\ell_t \) is the smallest ordered tuple such that \(|BR^-_t(a)| = x \Rightarrow n \in_x \ell_t \).

A tuple value for \(a \) is the pair \(v(a) = [v_p(a), v_t(a)] \).

Then, when cycles exist in the AF, some tuples can be infinite. To calculate them, this method requires a highly involved process, that turn cyclical graphs into infinite acyclic graphs. We thus consider this approach for acyclic graphs only, and denote it by \(\text{Tuples}^* \).

Once the tuple value of each argument has been computed, one can compare them. To do so one has to compare the length of attack/defense branches and, in case of a tie, to compare the values inside each tuple (see Algorithm 1).

Algorithm 1: \(\text{Tuples}^* \)

Input: \(v(a), v(b) \) two tuple values of arguments \(a \) and \(b \)

Output: A ranking \(\geq \) between \(a \) and \(b \)

1. \(\text{begin} \)
2. \(\text{if } v = w \text{ then } a \geq^T b \text{ and } b \geq^T a; \)
3. \(\text{else} \)
4. \(\text{if } |v| = |w| \text{ and } |v_p| = |w_p| \text{ then } \)
5. \(\text{if } v_p \leq_{lex} w_p \text{ and } v_t \geq_{lex} w_t \text{ then } a \geq^T b; \)
6. \(\text{else} \)
7. \(\text{if } v_p \geq_{lex} w_p \text{ and } v_t \leq_{lex} w_t \text{ then } a \leq^T b; \)
8. \(\text{else } a \not\geq^T b \text{ and } a \not\leq^T b; \)
9. \(\text{else} \)
10. \(\text{if } |v| \geq |w| \text{ and } |v_p| \leq |w_p| \text{ then } a \geq^T b; \)
11. \(\text{else} \)
12. \(\text{if } |v| \leq |w| \text{ and } |v_p| \geq |w_p| \text{ then } a \leq^T b; \)
13. \(\text{else } a \not\geq^T b \text{ and } a \not\leq^T b; \)
14. \(\text{end} \)

As an example, Dbs and Bbs often return the same result. The main difference between these semantics is that Bbs satisfies DDP, some examples related to that kind of structures lead to distinct results.

Proposition 5. Bbs satisfies Abs, In, VP, +DB, +AB, +DB, NaE and AvsFD. The other properties are not satisfied.

Let us remark that two arguments can be incomparable. It is the case, for example, if an argument has strictly more attack branches and more defense branches than another one. Consequently, this semantics returns a partial ranking between arguments.

As example 1 contains a cycle, we can not compute Tuples* on this running example.

Proposition 6. The ranking-based semantics \(\text{Tuples}^* \) satisfies Abs, In, VP, +DB, +AB, +DB, +AB, NaE and AvsFD. Other properties are not satisfied.

Matt & Toni

Matt and Toni (2008) compute the strength of an argument using a two-person zero-sum strategic game. This game confronts two players, a proponent and an opponent of a given argument, where the strategies of the players are sets of arguments. For an \(AF = (A, R) \) and \(a \in A \), the sets of strategies for the proponent and opponent are \(SP(a) = \{ P | P \subseteq A, a \in P \} \) and \(SO = \{ O \subseteq A \} \) respectively.

Definition 18. Let \(F = (A, R) \) be an AF and \(X, Y \subseteq A \). The set of attacks from \(X \) to \(Y \) is defined by \(Y^X_F = \{(a, b) \in X \times Y | (a, b) \in R \} \). The degree of acceptability of \(P \) w.r.t \(O \) is given by \(\phi(P, O) = \frac{1}{2}[1 + f(|OP^{O_F}|)] \) where \(f(n) = \frac{n}{n+1} \).

Definition 19. Let \(F = (A, R) \) be an AF. The rewards of \(P \), denoted by \(r_F(P, O) \), are defined by:

\[
r_F(P, O) = \begin{cases}
0 & \text{iff } \exists a, b \in P, (a, b) \in R, \\
1 & \text{iff } |OP^{O_F}| = 0, \\
\phi(P, O) & \text{otherwise}.
\end{cases}
\]

Proponent and opponent choose mixed strategies, according to some probability distributions, respectively \(p = (p_1, p_2, \ldots, p_m) \) and \(q = (q_1, q_2, \ldots, q_n) \), with \(m = |SP| \) and \(n = |SO| \). For each argument \(a \in A \), the proponent’s expected payoff \(E(a, p, q) \) is then given by \(E(a, p, q) = \sum_{j=1}^m p(j) r_{a,j} \). Finally the value of the zero-sum game for an argument \(a \), denoted by \(s(a) \), is \(s(a) = \max_p \min_q E(a, p, q) \).

Definition 20. The ranking-based semantics \(\text{M&T} \) associates to any \(AF = (A, R) \) a ranking \(\geq^\text{M&T} \) on \(A \) such that \(\forall a, b \in A, a \geq^\text{M&T} b \text{ iff } s(a) \geq s(b) \).

Example 1 (cont.). One obtains \(s(a) \approx 0.17 \), \(s(b) = 1 \), \(s(c) = 0.25 \), \(s(d) = 0.25 \) and \(s(e) = 0.5 \) and the following preorder: \(b \geq^\text{M&T} c \geq^\text{M&T} d \geq^\text{M&T} a \).

On this example, we can see that once again the strength of attackers is more important than their numbers (\(e \) is ranked higher than \(d \)).

Proposition 7. The ranking-based semantics \(\text{M&T} \) satisfies Abs, In, VP, +AB, SC, Tot, NaE and AvsFD. Other properties are not satisfied.

Discussion

As it can be easily checked on the running example, all these proposed ranking semantics have distinct behaviors (the ranking obtained is different for each semantics - see
some axioms seem to be widely accepted and shared by all semantics. We see that the properties \text{Abs}, \text{In} and \text{VP} are satisfied by all the ranking semantics. This is expected, since these properties really seem necessary for a good ranking semantics. Indeed, we recall that the input is a Dung’s abstract argumentation framework where there is no information about the nature of arguments, so only the attacks have to be taken into account, hence the importance of Abs. Concerning the property Independence (In), no justification could explain the fact that an argument can influence others arguments without an existing link between them. Finally, the non-attacked arguments are obviously the best arguments in an AF, it is why VP is necessary. \text{NaE} is also satisfied by all semantics. This is also a very basic requirement for a ranking semantics, it mainly says that the non-attacked arguments are all equivalent. This is a kind of compatibility principle with usual Dung’s semantics, and it says that only your attackers should impact your ranking, not the arguments you attack.\footnote{Another property that we consider as a requirement is the Tot property, which is in line with the idea of “ranking” semantics. It would be necessary if one wants to use these semantics in real applications. This is a drawback of Tuples*. An interesting question is to know if it is possible to refine Tuples*, i.e. to define a semantics close to Tuples*, but that is easily computable for argumentation frameworks with cycles, and that satisfies Tot. A last property satisfied by all semantics is +\text{AB}, which states that adding an attack branch towards an argument degrades its ranking. This also seems to be a perfectly natural requirement for ranking semantics: the more you are attacked, the worse you are.} Overall, this gives us a set of 6 properties that should be satisfied by any ranking semantics: \text{Abs}, \text{In}, \text{VP}, \text{NaE}, \text{Tot} and +\text{AB}. One can note that \text{Abs}, \text{In}, \text{NaE} and \text{Tot} are satisfied by the grounded semantics, so they are compatible with usual Dung’s semantics. \text{VP} and +\text{AB} are not satisfied by the grounded semantics, because it only has two levels of evaluation (accepted/rejected), and these two properties really introduce graduality in the evaluation.

\begin{itemize}
 \item Some axioms seem to be very discriminatory and provide a rough classification of semantics. As a general comment, one can check in the table that SAF, \text{Cat}, \text{Dbs} and Bsds share a lot of properties. Tuples* and M&T seem to belong to another class of semantics: they are the only ones that satisfy \text{AvsFD}. The property \text{AvsFD}, illustrated in Figure 2, which states that an argument that is (only) attacked once by a non-attacked argument (it is the case of \(b\) only attacked by \(b_1\)) is worse than an argument that have any number of attacks that all belong to defense branches (it is the case of \(a\) which have four defense branches and no attack branch), is a very discriminating property. So this property can be seen as a kind of boundary between two sub-classes of ranking properties. The ones that satisfy it take care of the whole branches of attack/defense. Whereas for the properties that do not satisfy

\end{itemize}

There are a number of observations that we can make regarding these axioms and the results reported in Table 2:

\footnote{Note that it could make sense to make a distinction between arguments that attack a lot of arguments and the ones that do not — so to violate NaE, in particular. This could be considered as some kind of power index. But this is not the aim of ranking semantics.}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
Semantics & \text{Order between arguments} \\
\hline
\text{Cat} & \(h \succ \text{Cat} d \succ \text{Cat} e \succ \text{Cat} c \succ \text{Cat} a\) & & & & & & & \\
\hline
\text{SAF} & \(h \succ \text{SAF} e \succ \text{SAF} d \succ \text{SAF} c \succ \text{SAF} a\) & & & & & & & \\
\hline
\text{M&T} & \(h \succ \text{M&T} e \succ \text{M&T} d \succ \text{M&T} c \succ \text{M&T} a\) & & & & & & & \\
\hline
\text{Dbs} & \(h \succ \text{Dbs} d \succ \text{Dbs} c \succ \text{Dbs} e \succ \text{Dbs} a\) & & & & & & & \\
\hline
\text{Bds} & \(h \succ \text{Bds} d \succ \text{Bds} c \succ \text{Bds} e \succ \text{Bds} a\) & & & & & & & \\
\hline
\end{tabular}
\caption{Orders obtained on the Example 1}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
Properties & SAF & Cat & Dbs & Bsds & Tuples* & M&T & Grounded \\
\hline
\text{Abs} & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ \\
\hline
\text{In} & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ \\
\hline
\text{VP} & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ \\
\hline
\text{DP} & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ \\
\hline
\text{CT} & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ \\
\hline
\text{SCT} & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ \\
\hline
\text{CP} & × & × & × & × & × & × & × & × & × & × & × \\
\hline
\text{QP} & × & × & × & × & × & × & × & × & × & × & × \\
\hline
\text{DDP} & × & × & × & × & × & × & × & × & × & × & × \\
\hline
\text{SC} & × & × & × & × & × & × & × & ✓ & ✓ & ✓ & ✓ \\
\hline
\text{DDB} & × & × & × & × & × & × & × & ✓ & ✓ & ✓ & ✓ \\
\hline
\text{+DB} & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ \\
\hline
\text{TAB} & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ \\
\hline
\text{TDB} & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ \\
\hline
\text{+AB} & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ \\
\hline
\text{Tot} & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ & ✓ \\
\hline
\text{AvsFD} & × & × & × & × & × & × & × & ✓ & ✓ & ✓ & ✓ \\
\hline
\end{tabular}
\caption{Properties satisfy by the studied ranking semantics.}
\end{table}
it, a defense branch (that still ends by an attack towards the argument) always penalizes it.

- **More specific properties.** As mentioned already, axioms operate at different levels. We observe that ‘local’ axioms (CP, QP, DP, (S)/CT), just looking at direct attackers (or defenders), make choice which can be justified in some situations, but which seem hardly general (and sometimes impossible to reconcile with some more global properties, as our Prop. 1 shows). Properties related to ‘change’ (⊕DB, +DB, ↑AB, ↓DB, +AB) are very appealing. One of our contributions is to have systematically generalized them.

- **Defining axiomatically the worst arguments is not obvious.** Interestingly, while all semantics agree axiomatically on which arguments should be the best in a system (VP), there is no consensus regarding the worst arguments. SC is very interesting in that respect. It makes the observation that a self-contradicting argument is intrinsically flawed, without even requiring other arguments to defeat it. But as can be observed none of the semantics comply with it, except the one of Matt and Toni. It is because all semantics consider that an argument that attacks itself is a path like the other ones. So an argument which attacks itself (and by no other argument) is better than an argument which is attacked several times.

- **The interplay of axioms is often instructive.** We have identified a number of incompatibilities between axioms. There is an additional remark that we can make in that respect, that is related to the incompatibility between VP and ⊕DB. One can easily remark that ⊕DB is more general than +DB, and in a sense more natural: the property is stated for any cases, it does not treat some arguments (the non-attacked arguments here) differently. But if contradicts VP in this case. +DB is a less “systematic” property (it was the original one proposed in (Cayrol and Lagasquie-Schiex 2005)) but is compatible with VP : if one accepts that non-attacked arguments should be the best (VP), it cannot be the case that adding a defense branch always improve the situation of a given argument.

- **This set of axioms is yet to be augmented.** This can be observed by the fact that SAF and Cat satisfy the same set of properties, whereas they have quite different definitions and behavior. This mean that at least one property is lacking in order to discriminate these two operators.

Conclusion

In this work we proposed a comparative study of existing ranking-based semantics. It turns out that the existing ranking-based semantics exhibit quite different behaviors and satisfy different properties. We propose to take as basic properties for ranking-based semantics Abs, In, VP, NaE, Tot and +AB. We also put forward AvsFD that discriminates two subclasses of semantics.

There is still work needed on the topic. First to propose other ranking-based semantics. But it is also important to find other logical properties, and to try to characterize classes of semantics with respect to these properties. An ambitious research agenda would be to identify situations where controversial axioms are justified or not.

Acknowledgements

This work benefited from the support of the project AMANDE ANR-13-BS02-0004 of the French National Research Agency (ANR).

References

