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Volume fraction and spatial repartition of fillers impact the physical properties of rubber. Extended percolating
networks of nano-sized fillers significantly modify the macroscopic mechanical properties of rubbers. Random
models that describe the multiscale microstructure of rubber and efficient Fourier-based numerical algorithms are
combined to predict the material’s mechanical properties. From TEM image analysis, various types of multiscale
models were proposed and validated, accounting for the non-homogeneous distribution of fillers: in the present
work, aggregates are located outside of an exclusion polymer simulated by two families of random models. The
first model generates the exclusion polymer by a Boolean model of spheres. In the second model, the exclusion
polymer is a mosaic model built from a Johnson-Mehl tessellation. Here the exclusion polymer and the polymer
containing the filler show a similar morphology, contrary to the Boolean model. Aggregates are then described
as the intersection of a Boolean model of spheres and of the complementary of the exclusion polymer. Carbon
black particles are simulated by a Cox model of spheres in the aggregates. The models rely on a limited number
of parameters fitted from experimental covariance and cumulative granulometry. The influence of the model
parameters on percolation properties of the models is studied numerically from 3D simulations. Finally, a novel
Fourier-based algorithm is proposed to estimate the viscoelastic properties of linear heterogeneous media, in the
harmonic regime. The method is compared to analytical results and to a different, time-discretized FFT scheme.
As shown in this work, the proposed numerical method is efficient for computing the viscoelastic response of
microstructures containing rubbers and fillers.

1 Introduction

Mechanical properties of rubbers are often improved by including nanoscopic fillers in their composition. Usually,
silica and carbon black materials are used for this purpose. The geometrical properties of the fillers are an
important feature of the global material. In particular, their volume fraction and spatial distribution largely
determine the physical properties of the rubber. Extended percolating networks of fillers can for instance
significantly enhance the mechanical properties of rubbers on macroscopic scales.

This work investigates the influence of the fillers geometry on the viscoelastic properties of rubber. An
important step toward the completion of this research is the development of random models describing their
complex microstructure. Following a now well-established method in material science as in [15], random real-
izations of these models can in turn be used to perform an extensive study of the mechanical properties of the
rubber.

As reviewed by [13], several models have been developed in the past 20 years to describe the microstructure
of rubbers. [3] developed a model describing the carbon aggregates as squares or dodecahedra in an elastomeric
volume. Even if their model only accounts for the scale of aggregates, they were able to conduct extensive
finite elements calculations aimed at describing the large deformation behavior of the rubber. Relying on a
similar approach, [19] developed a cuberbille model to describe carbon aggregates in a rubber matrix. In their
model, they notably added a third phase accounting for a layer of bound rubber surrounding the aggregates.
[32] improved the microstructure description by considering that aggregates can be represented as the union of
carbon black spherical-shaped particles, eventually opening the way to the development of more accurate models.
Carbon black composites have finally been widely investigated at the Center for Mathematical Morphology
by [18], [34], [7] and [30].

In this paper, we first introduce the studied material nanostructure from TEM micrographs. After a morpho-
logical segmentation of images, measurements are performed to quantitatively characterize the microstructure.
Then, two random set models to reproduce the multiscale microstructure of rubbers are developed. They are
identified from the available experimental data obtained on TEM images and on simulations. In Section 4, we
focus on the issue of percolation, which is of particular interest regarding the microstructure optimization. In the
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last part, viscoelastic properties of the material are predicted by means of Fast Fourier Transforms performed
on simulated 3D images generated from the random model.

2 TEM Images analysis

2.1 Material

This work concerns a rubber material reinforced by carbon black particles as fillers, that are embedded in a
matrix of rubber and can be geometrically well-approximated by spheres of diameter D ' 30 − 40 nm, as
illustrated in Figure 1a. The volume fraction of the fillers is around 14 percents in the rubber. A key feature
of the material is that the rubber matrix is constituted of two distinct polymers: an exclusion polymer, which
cannot contain any filler, and its complementary polymer, which can contain fillers. Fillers tend to agglomerate
together within the rubber matrix. The filler particles indeed exhibit a turbostratic structure which enable
them to merge and create aggregates [13].

2.2 TEM images segmentation

To analyze the rubbers microstructure, we dispose of a set of 50 TEM micrographs of size 1024 by 1024 pixels
with resolution 2.13 nm per pixel. These images were obtained in the Yokohama Rubber Research Center. The
slices of material probed by the microscope have a thickness around 40 nm. The first task is to segment these
images, in order to identify the spatial distribution of the fillers. The segmentation procedure and its results are
presented in the first two paragraphs of this section. The next step is to extract morphological characteristics
from the segmented TEM images, as described in the third paragraph.

Algorithm The segmentation process aims at extracting the carbon black phase from the 8 bits TEM images.
White regions can be observed in the images, which correspond to aggregates prints that have been taken off
by the blade of the microtome during the samples preparation. These prints have to be included in the set of
regions to be extracted. The main difficulty here is the presence of an illumination gradient and of contrast
difference. Therefore, a simple thresholding is not sufficient to discriminate the black visible aggregates from
the rubber matrix.

The first step of the segmentation consists in denoising the TEM images. The denoising is performed
using an alternate sequential filter, a classical filter in mathematical morphology [36]. The second step of
the segmentation process is the extraction of the white aggregates prints. This task is easily performed by
thresholding the filtered image with a grey level higher than 170. Finally, the prints with area smaller than 3
pixels are removed from the thresholded image.

The third step of the segmentation process is the extraction of the visible black carbon aggregates. First,
the white prints of aggregates are extracted by an opening with a disc of radius 50 pixels to the filtered image,
followed by a geodesic reconstruction. Once the white prints have been removed, a black top hat is performed,
to account for contrast difference in the image and to detect the darkest zones. A closing of size 20 pixels is used
in this purpose. The top hat introduced by [25] is a morphological operator which returns the difference between
an original image and that same image after opening by some structuring element. This operator is classically
used to remove the large scale contrast in an image. A black top hat is simply a top hat operator applied on
the inverse image. At this point, a threshold on the resulting image extracts the visible black aggregates, with
a grey level around 15. This threshold level is specified to recover an average apparent area fraction of fillers
close to 28 percents for the available TEM images. This apparent area fraction results from the projection of
the particles on the image during the acquisition by TEM on slices with a thickness approximately twice the
radius of a black carbon particle. Finally, the aggregates with area lower than 3 pixels are removed by an area
opening applied to the thresholded image. The results of the segmentation procedure are shown step by step
for an initial TEM image in Figure 1.

Morphological analysis An efficient way to keep track of the information embedded in the segmented images
is to rely on a morphological characterization of the material. In this work, use is made of the covariance, to
measure scales in the images, and of size distributions of the filler by opening transformations.

The covariance of a random set A is the probability that x and x+ h both belong to A:

C(x, x+ h) = P{x ∈ A, x+ h ∈ A}, (1)
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(a) (b)

(c) (d)

(e) (f)

Figure 1: (a) TEM Image of rubber matrices filled with carbon black, obtained in the Yokohama Rubber
Research Center. Different steps of the segmentation (see text): (b) Filtered TEM Image; (c) Extracted white
prints; (d) Dual Top-hat; (e) extracted aggregates; (f) segmented image.
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(a) (b)

Figure 2: (a) Experimental covariance measured on segmented images. (b) Experimental cumulative size
distribution of the carbon black filler obtained by openings by discs.

where h is some vector of Rn. For a stationary random set, the covariance is a function of the distance h only:

C(x, x+ h) = C(h). (2)

The covariance C(h) provides useful information about the spatial arrangement of the random set A and can
account for the presence of several scales in the studied set or for periodicity. By definition, C(0) simply
corresponds to the volume fraction p of the set A. In addition, the covariance C(h) reaches a sill at the distance
or range d. At this distance, we have

CA(d) = p2. (3)

The average covariance measured on segmented binary images is given in Figure 2a.
Another important statistical characteristic is the granulometry of the material. The axiomatic of gran-

ulometries was first formulated in [24]. In this work, we will consider a granulometry relying on a family of
openings by disks. Let K be a convex set. We consider the family {Kλ, λ > 0}, where Kλ = λK. The opening
operator (the symbols 	 and ⊕ representing the morphological erosion and dilation)

Φλ(A) = (A	 Ǩλ)⊕Kλ, (4)

defined for all closed set A, is a granulometry. Therefore, the granulometry by openings provides a convenient
way to characterize the size distribution of the aggregates in the material. The cumulative granulometry curve
of the carbon black filler, deduced from the changes of volume fraction measurement with the size λ, is shown
in Figure 2b.

Using the covariance and the granulometry curves, we can select a proper set of parameters for the identifi-
cation of random sets models and control their validity, as explained in the next section.

3 Random models of multiscale microstructures

As suggested by the intrinsic nature of the material and as observed after the segmentation, the fillers tend
to regroup in the material to create aggregates. As a consequence, we have to rely on a two-scale model to
properly describe the microstructure [16, 17]. The first scale corresponds to the aggregates, while the second
one describes more specifically the single particles inside the aggregates.

In addition, several alternatives can be considered to locate the aggregates outside of the exclusion polymer.
scale. In this work, two distinct models are used in this purpose. The first one relies on a Boolean model
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of spheres of constant radius to model the exclusion polymer distribution, the second one on Johnson-Mehl
tesselations. In both cases, the location of the centers of carbon black spheres are located according to a
Poisson point process restricted to the permitted zones, namely outside of the exclusion polymer and inside the
aggregates, generating a Cox Boolean model of spheres [16, 17]. Both models are presented and discussed in
this section. All simulations presented here are realized using the software VtkSim, developed in [9, 10] at the
Center for Mathematical Morphology. The method used for the implementation is briefly introduced later in
this section.

3.1 Exclusion polymer based on a Boolean model of spheres

3.1.1 Theoretical model

The first model relies on the Boolean model [24]. As eluded to earlier, the studied material contains two kinds
of polymers:

• an exclusion polymer Pe with volume fraction ve,

• a second polymer Pi with volume fraction vi that can contain fillers.

The exclusion polymer is modelled by a Boolean model of spheres of constant radius Re (Figure 3a) The model
depends on two parameters: the intensity θe of the underlying Poisson point process and the exclusion radius
Re. These two parameters can be related to the volume fraction of exclusion polymer to yield:

1− ve = exp

(
−θe

4π

3
R3
e

)
. (5)

Therefore, if the volume fraction of the exclusion polymer is known, the exclusion polymer modelling is controlled
by one single parameter. The second polymer is obtained as the complementary of the exclusion polymer. At
this point, the spatial distribution of aggregates still has to be simulated. Aggregates are modelled as the
intersection of the polymer Pi and of a Boolean model of spheres with radius Ra, independent from the model
used to simulate the exclusion polymer (Figure 3b). Again, the model is described by two parameters: the
intensity θi of the underlying Poisson point process, and the radius Ri of the implanted spheres. The volume
fraction va of the aggregates is given by

va = (1− ve)

1− e
−θi

4π

3
R3

i

 . (6)

The second scale of the material is made of the carbon black particles themselves. These particles are
simulated using a Boolean model of spheres of constant radius Rcb implanted on the realization of a Cox point
process driven by the aggregates. Since the carbon black particles exhibit a turbostratic structure, these particles
can interpenetrate. Therefore, in the model, the particles can partially overlap by introduction of a hard-core
distance equal to the radius of the particle (Figure 3c).

The intensity of this Cox process is the random measure defined by

θcb(x) =

{
θ if x ∈ Aaggr,
0 otherwise.

(7)

The overall construction of the model is summarized in Figure 4. A vectorial simulation of a domain with a
1µm3 volume is generated in 2 minutes. Concerning the parameters of the model, the radius of the spheres can
be measured experimentally. Therefore, the modelling of the second scale is entirely controlled by the single
parameter θcb. Overall, if the volume fraction ve of exclusion polymer and if the radius Rcb of the carbon black
particles are known, the global model is controlled by the following set of parameters:

(i) the intensity θe of the Poisson point process aimed at describing the exclusion polymer,

(ii) the intensity θa of the Poisson point process on which the modelling of the aggregates relies,

(iii) the radius Ra of the Boolean spheres used to model the aggregates,

(iv) the intensity θcb of the Cox point process on which relies the modelling of the spatial distribution of the
black carbon particles.
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(a) (b) (c)

Figure 3: The three steps of the construction of the model: (a) exclusion polymer (Boolean model of spheres);
(b) aggregates; (c) carbon black particles network (ve = 0.2; Re = 30 nm; Ra = 60 nm; Rcb = 20 nm; simulated
volume: (500 nm)3).

Figure 4: Scheme of the multiscale random model (exclusion zones made of a Boolean model of spheres).

(v) the hard-core distance for the Cox point process, which is equal to the radius of the particle.

Finally, note that a bound rubber of constant thickness t surrounds the carbon black particles. In the model,
the bound rubber is obtained by considering the Boolean difference of a boolean model of sphere of constant
radius Rcb + t implanted on the centers of the black carbon particles and of the Boolean spheres describing the
black carbon particles.

This version of the model is close to the version given in [13]. However in the previous work, aggregates were
obtained from a Boolean model of spheroids, instead of spheres, and no hard-core process was introduced for
the location of carbon black particles. Furthermore, the identification process of the parameters of the model
was completely different.

3.1.2 Model fitting from experimental data

The model can be identified and validated with the available experimental data. The four free parameters Re,
Ra, θa and Rcb are estimated by fitting the covariance and the granulometry curves of the simulated images to
the corresponding experimental curves.
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ve Re (nm) θa (nm−3) Ra (nm) θcb (nm−3) Rcb (nm)
0.2 30 4.0× 10−7 60 3.0× 10−5 18

Table 1: Optimized parameters for the Boolean model of exclusion polymer

Optimization algorithm The procedure to fit the model parameters is as follows. First, we start from the
experimental covariance C̃(h) for all distances 0 ≤ h ≤ N and the experimental granulometry curve G̃(s) for
all sizes 1 ≤ s ≤ K. Then, for each realization of the model the least square function is computed

F(Re, θa, Ra) =

N∑
n=0

(C[Re, θa, Ra, n]− C̃[n])2 +

K∑
k=1

(G[Re, θa, Ra, k]− G̃[k])2, (8)

where C (resp. G) is the covariance function (resp. granulometry curve) measured at all distances {0 ≤ n ≤ N}
(resp. for all sizes {0 ≤ k ≤ K}) on the realization. The optimization problem is thus the determination of the
parameters that minimize the functional F .

Considering the lack of analytical formulae for the covariance in the model, we have to rely on numerical
procedures to perform the optimization. Most numerical optimization algorithms rely on steepest-descent
or on Gauss procedures. A popular method in numerical optimization is thus the Levenberg-Marcquardt
algorithm [22], which combines these two approaches. This algorithm has been successfully used in [13] to
optimize a similar model for the microstructure of carbon black particles embedded in rubbers. The main issue
with the Levenberg-Marcquardt algorithm is that it relies on a gradient calculation. Estimating the gradient
of the covariance with respect to the simulation parameters is a difficult task here, since a small variability
cannot be avoided due to the intrinsic probabilistic nature of the model. As a consequence, in the present work
another classical optimization algorithm is implemented to perform the optimization, namely the Nelder-Mead
procedure [33]. The advantage of this algorithm is that it does not rely on the gradients of the functional with
respect to the parameters.

Results and discussion The values of the parameters obtained after optimization are given in the Table 1.
Note that a particular emphasis was given to the covariance fitting, as evidenced in Figure 5. A simulated image
is shown in Figure 6 and compared to a segmented TEM image.

It is clear from Figure 6 that the model accurately reproduces the reference covariance curve for the studied
material. However, a small but still significant discrepancy can be observed between the reference granulometry
and the simulations. This is a direct consequence of the model chosen to describe the microstructure. By
using a Boolean model to describe the exclusion polymer, strict limitations are imposed on the aggregates
geometry. In addition, the model does not preserve the geometrical symmetry between the exclusion polymer
and its complementary. As a consequence, the model fails to properly simulate the smallest aggregates, which
explains the discrepancy between the granulometry curves. This discrepancy can also result from the aggregate
prints removed during the sample preparation: they were considered to be originally mostly constituted of black
carbon particles, but this remains an approximation. Hence, the granulometry of the larger grains is largely
overestimated, which strongly impacts the granulometry features.

It is finally interesting to take a closer look at the optimal parameters, and in particular at the intensity
of the Cox model for the carbon black particles. One can note that the intensity of the Cox model yields a
significantly high value. This is explained by the high density of carbon black particles in the aggregates.

3.2 Exclusion polymer based on a Johnson-Mehl mosaic model

As indicated previously, a major issue regarding the Boolean model is that it does not preserve the geometrical
symmetry between the exclusion polymer and its complementary. It is therefore of interest to consider other
models to describe the exclusion polymer. For this purpose, a model for the exclusion polymer based upon
Johnson-Mehl tesselations is introduced in this section.

3.2.1 Theory

Let Ω denote a given volume in R3. A tessellation in Ω is a subdivision of Ω into three dimensional subsets
referred to as cells. A general theory of random tessellation has been established over the years, notably by
[23]), [37], [42] and [28]. Another useful reference on this topic is the book of [35]. Finally, note that the
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(a) (b)

Figure 5: Covariance (a) and granulometry (b) of the simulated material. The simulated curves are represented
by the discontinuous lines, the experimental curves by the continuous lines.

(a) (b)

Figure 6: Comparison between an experimental (a) and a simulated TEM image (b) for the Boolean model of
exclusion polymer.
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(a) (b) (c)

Figure 7: The three steps of the construction of the model: (a) exclusion polymer (Johnson-Mehl mosaic);
(b) aggregates; (c) carbon black particles network (ve = 0.2; θe = 4.10−7 nm−3; Ra = 60 nm; Rcb = 20 nm;
simulated volume: (500 nm)3).

paper of [29] provides a unified exposition of random Johnson-Mehl tessellations

The Johnson-Mehl tessellation model was introduced by Johnson and Mehl, mainly to describe crystalliza-
tion processes in metallography. Their model can be seen as a variation of the Voronöı model. A Voronöı
tessellation is a tessellation built from a Poisson point process P in the space R3. Every point x of R3 is
associated to the class Ci containing all points of R3 closer from the point xi of P than from any other point
of P. Johnson-Mehl tesselations can be seen as a sequential version of the Voronöı model, where the Poisson
points are implanted sequentially with time. All classes grow then isotropically with the same rate, and the
growth of crystal boundaries is stopped when they meet. All Poisson points falling in an existing crystal are
removed.

From a mathematical viewpoint, a Johnson-Mehl tessellation is constructed from a sequential Poisson point
process where the points xi, i = 1, .., N are implanted sequentially at a time ti, i = 1, .., N . The classes
Ci, i = 1, .., N corresponding to the points xi, i = 1, .., N are defined by

Ci =

{
y ∈ R3,∀j 6= i, ti +

‖xi − y‖
v

≤ tj +
‖xj − y‖

v

}
. (9)

3.2.2 Exclusion model

In our multiscale model, we rely now on a Johnson-Mehl tesselation to describe the exclusion polymer and
its complementary: each class Ci is attributed to the exclusion polymer with the probability ve (= 0.2 in the
present case) and to the other polymer with the probability 1 − ve, generating a binary Johnson-Mehl mosaic
(Figure 7a), that allows us to preserve the symmetry between the geometry of the exclusion polymer and its
complementary. Here, the two previous parameters of exclusion zone model (Re and θe) are replaced by a
single one, namely the intensity θe of the Poisson point process associated to the Johnson-Mehl tesselation. The
remaining parts of the model are the same as previously. Simulation parameters are the intensity of the Poisson
point processes attached to each polymer.

A realization of the Johnson-Mehl based model is displayed in Figure 7, as an illustrative example. A
vectorial simulation of a domain with a 1µm3 volume is generated in 10 minutes.

The overall construction of the model is summarized in Figure 8. If the volume fraction ve of exclusion
polymer and the radius Rcb of the carbon black particles are known, the global model is controlled by the
following set of parameters:

(i) the intensity θe of the Poisson point process associated to the Johnson-Mehl tesselation

(ii) the intensity θa of the Poisson point process on which relies the modelling of the aggregates,

(iii) the radius Ra of the boolean spheres used to model the aggregates,
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Figure 8: Scheme of the multiscale random model (exclusion polymer made of a Johnson-Mehl mosaic).

ve θe (nm=3) θa (nm−3) Ra (nm) θcb (nm−3) Rcb (nm)
0.2 4.0× 10−7 4.0× 10−7 60 3.5× 10−5 18

Table 2: Optimized parameters for the Johnson-Mehl model of exclusion polymer.

(iv) the intensity θcb of the Cox point process on which relies the modelling of the spatial distribution of the
black carbon particles.

Finally, the bound rubber is obtained as before by considering the Boolean difference of a Boolean model of
sphere of constant radius Rcb + t implanted on the centers of the black carbon particles and of the Boolean
spheres describing the black carbon particles.

3.2.3 Model fitting from experimental data

As previously, the parameters of the Johnson-Mehl exclusion model are estimated to match the morphological
descriptors obtained on the experimental TEM images. The values of the parameters obtained after optimization
are given in the Table 2. The experimental covariance and granulometry are compared with the corresponding
curves obtained by the simulations with fitted parameters on Figure 9. It turns out that the agreement between
experimental data and measurements made on simulations is better than in the previous version of the model.
A simulated image is shown in Figure 10 and compared to a TEM image.

3.3 Implementation of the models

Simulations of random structures are generally performed on a grid of points (i.e. 2D or 3D images), using
primary grains based on combination of pixels. The implementation in the software VtkSim relies on a com-
pletely different approach based upon level sets and implicit functions. In this approach, primary grains are
described by implicit functions [10, 9], which are real valued functions defined in the 3D space. The level sets of
an implicit function Φ are described by an equation of the form Φ(x, y, z) = c, for some constant c. A surface
is described as a level set of the function Φ, most commonly the set of points for which Φ(x, y, z) = 0. In
this case, the points for which Φ(x, y, z) < 0 correspond to the interior of the primary grain associated to the
implicit function, the points for which Φ(x, y, z) > 0 to its complementary and the level set Φ(x, y, z) = 0 to
the boundary of the primary grain. Any primary grain can be implemented, whatever its shape, as long as it
can be represented using an implicit function.

In the implicit function approach, complete simulations are generated, using Boolean combinations of pri-
mary implicit functions: the union and the intersection of two objects A1 and A2 are defined to yield the
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(a) (b)

Figure 9: Covariance (a) and granulometry (b) of the simulated material (Johnson-Mehl mosaic for the exclusion
polymer). The simulated curves are represented by the discontinuous lines, the experimental curves by the
continuous lines.

(a) (b)

Figure 10: Comparison between an experimental (a) and a simulated TEM image (b) for the Johnson-Mehl
mosaic model of exclusion polymer.
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minimum and the maximum, respectively, of their corresponding implicit functions. Thus, we have

Φ(A1 ∪A2) = min{Φ(A1),Φ(A2)} (10)

and
Φ(A1 ∩A2) = max{Φ(A1),Φ(A2)}. (11)

Similarly, the complementary Ac of set A is defined to be the opposite function

Φ(Ac) = −Φ(A). (12)

Several classical random models can be generated using this method, including among others soft-core
or hard-core Boolean models of spheres. Interestingly, since a combination of implicit functions is itself an
implicit function, the realization of a first random simulation enables us to generate multiscale simulations.
An interesting feature of the software is that it allows to directly export the simulated microstructures as a
mesh for further use, like finite elements based computations. Overall, using implicit functions to perform the
simulation allows us to build complex combinations of simulations that we could not process with a pixel based
method. Furthermore, vectorial simulations do not require a large amount of computer resources, which allows
us to obtain fast generations of microstructures with very large sizes and numbers of primary grains.

4 Percolation of the carbon black network

It is known that there is a large impact of the connectivity of elements in a random system on its macroscopic
behavior. Controlling the percolation of a network is of major interest in the optimization of the microstructure.
In this section, we focus on the percolation of the clusters constituted by the filler particles. Percolating networks
of filler can indeed significantly change the mechanical properties of the material. It is therefore of interest to
be able to select simulation parameters that will (or not) create percolating paths in the material.

4.1 General approach

A simulation is said to percolate when a continuous path can be drawn in the filler phase that connects two
opposite faces of the simulation window (a cube in the 3D space). Our aim is to determine the probability
p that a simulation in a cubic window of length L percolates. To estimate p, N simulations of the random
model are performed, and the number of simulations that percolate is recorded. A set of parameters leads to a
percolating medium when more than 50 percents of the simulations percolate. In this approach, p is estimated
by

p̂N =
1

N

N∑
n=1

Pk, (13)

where Pk is the random variable equal to 1 when the simulation percolates and 0 otherwise. The estimator
p̂N is without bias. We denote by σ2 = p(1 − p) the variance of the random variables {Pi, i = 0, .., N}. The
variance of p̂N is then given by

Var(p̂N ) =
σ2

N
. (14)

Hence, Var(p̂N ) → 0 when N → +∞ and the estimator p̂ converges. For N large enough, according to the
Central Limit Theorem, we have

p̂N ∼ N (p, σ2/N), (15)

where N (p, σ2/N) denotes the normally distributed law with mean p and standard deviation σ/
√
N . Therefore,

it can be show that, for N = 100, with confidence 95%,

p− 1.96

√
p(1− p)
N

≤ p̂ ≤ p+ 1.96

√
p(1− p)
N

. (16)

Since the quantity p(1− p) is maximal for p = 1/2, yielding p(1− p) = 1/4, we have, in the worst case,

p− 0.098 ≤ p̂ ≤ p+ 0.098. (17)

In mathematical terms, we have

P
{
p− 0.098 ≤ p̂ ≤ p+ 0.098

}
≥ 0.95. (18)

This result provides an estimation of the precision of the results obtained in the percolation study.
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4.2 Percolation algorithm

The aim of the percolation algorithm is to label the connected clusters of filler particles. For each connected
cluster, it is then determined if it is percolating. The percolation algorithm proceeds as follows:

(i) A realization of the model is simulated in a volume of fixed size. At the end of the simulation, the algorithm
returns a list of the coordinates of the filler particles centers.

(ii) Following the approach of [30], the volume is subdivided into cubes of size R, R being the radius of the
filler particle. The coordinates of the filler particles centers are then sorted according to the subvolumes.

(iii) The classical two-pass algorithm is used to label all clusters of filler particles. For a given particle, the
number of test of intersection is restricted to the adjacent cubes, thus yielding a fast method of construction.

(iv) For each labelled cluster, the algorithm checks if the cluster is percolating.

4.3 Results

The effect of various morphological parameters on the proportion of percolating simulations, estimated on 100
realizations for each set of parameters, was investigated for the two previous models of multiscale random
microstructures: volume fraction of filler, size of aggregates, size of the exclusion polymer clusters. Two sizes
of simulations were used, namely (400 nm)3 and (800 nm)3. We report here results obtained on the largest
simulations.

Volume fraction of fillers The volume fraction of fillers is controlled in the simulations by means of the
intensity θcb for the centers of the carbon black spheres. The remaining parameters of the simulations are as
follows: ve = 0.2; Re = 30 nm (Boolean model for the exclusion polymer), θe = 4.0× 10−7nm−3 (Johson-Mehl
mosaic); va = 0.47; Ra = 60 nm; Rcb = 18 nm; simulated volume: (800 nm)3. The effect of θcb is illustrated by
Figures 11a and 11b. From these results, it turns out that the percolation threshold pc (i.e. the lowest value of
p for which more than 50% of realizations percolate) is given by vcb = 0.15 for the Boolean model of exclusion
and by vcb = 0.16 for the Johnson-Mehl mosaic. Therefore, the second model shows a slightly higher percolation
threshold. Since the nominal carbon black volume fraction of the real material is vcb = 0.14, it is expected that
its filler network does not percolate, which prevent the material to show a rigid macroscopic behavior.

Aggregates size The effect of the size Raggr of the filler aggregates of the material was studied, while keeping
constant the volume fraction of aggregates. We remind that the volume fraction of aggregates is given by

va = (1− ve)

1− e
−θi

4π

3
R3

i

 . (19)

By properly varying the intensity θaggr, the volume fraction of aggregates remains constant. The simulation pa-
rameters are ve = 0.2, Re = 30 nm (Boolean model), , θe = 4.0× 10−7nm−3 (Johnson-Mehl mosaic); va = 0.47;
θcb = 3.5× 10−5 nm−3, vcb = 0.14 and Rcb = 18 nm.

The results are displayed in Figures 11c and 11d. Interestingly, we note that, all things otherwise equal,
increasing the size of the aggregates results in a monotonous increase of the percentages of simulations that
percolate. For instance the percentage of percolating simulations climbs from 40 percents when Raggr = 55 nm
to 60 percents when Raggr = 70 nm for the two types of models, so that percolation in enhanced for larger
aggregates.

Exclusion polymer clusters size From simulations generated by variations of the intensity θe of the Poisson
point process, the number of exclusion polymer clusters increases (and thus their size is reduced since the volume
fraction of exclusion polymer is kept constant). This results in a very slight decrease of the number of percolating
simulations for both models. Overall, the effect of the exclusion polymer clusters size on percolation properties
remains rather small.
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(a) (b)

(c) (d)

Figure 11: (a,b): Influence of the density θcb of filler (with Ve and Va fixed) on the proportion of percolating
simulations for the two models of exclusion zones: (a) Boolean model of spheres; (b) Johnson-Mehl mosaic.
Simulated volume: (800 nm)3. (c,d): Influence of the aggregates size (with Ve, Va and vcb fixed) on the
proportion of percolating simulations for the two models of exclusion zones: (c) Boolean model of spheres; (d)
Johnson-Mehl mosaic. Simulated volume: (800 nm)3.
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5 Prediction of viscoelastic properties of simulated 3D microstruc-
tures by Fast Fourier Transform (FFT)

In this section a preliminary study of the viscoelastic behavior of the models of random microstructure is
presented. For simplicity, the approach is restricted to the case of two-components media, namely a viscoelastic
matrix and an elastic filler. In the present, accordingly, the mechanical behavior of the various polymers
(exclusion polymer, polymer containing the filler, thin layer around carbon-black particles) is supposed to be
the same. In addition, only small deformations of the polymer are considered.

Using a Fourier decomposition in time, strain and stresses are specified as a series of harmonics. This is
commonly accounted for by the introduction of complex elastic moduli. A Fourier decomposition in space
is introduced, making use of FFT methods to compute the elastic response of highly-contrasted composites.
This method is first validated using analytical results for periodic media and compared with explicit time-
discretization. It is efficiently applied to arbitrarily complex microstructures provided by a regular grid of
voxels, such as images of real or of simulated microstructures, and does not require any further meshing of
images. Extended to the viscoelastic case, it provides full-field reconstructions in time-space, from which the
effective viscoelastic properties of a composite medium are estimated.

In what follows, a complex FFT scheme for viscoelastic composites is introduced and applied to 3D simula-
tions of the two previously introduced versions of the multiscale model.This section presents a complex Fourier
(FFT) scheme for computing the viscoelastic response of composites. Linear strain-stress relations with elastic
and viscoelastic phases are considered. The problem to solve is presented in Section (5.1). The FFT method
used to solve the problem is described in Section (5.2). It is validated in Section (5.3) and used to predict the
properties of rubber containing fillers in Section (5.4).

5.1 Problem setup

Consider a domain V representing a heterogeneous material subject to steady-state oscillatory conditions. In
the harmonic regime, the time-dependence of the strain ε̃ and stress fields σ̃ at point x is given by the complex
fields:

ε̃(x; t) = ε(x) eiωt, σ̃(x; t) = σ(x) eiωt, (20)

where the amplitudes ε and σ are second-rank tensor fields, and ω is the frequency applied to the system. In
the above, ε(x) and σ(x) are complex and do not depend on the time t. The physical strain and stress fields
are the real parts of ε̃ and σ̃:

ε̂(x; t) = R [ε̃(x; t)] , σ̂(x; t) = R [σ̃(x; t)] . (21)

For simplicity, it is assumed that the material contains elastic inclusions (phase α = 2) embedded in a viscoelastic
matrix (phase α = 1). Referring to C2 as the inclusions’s isotropic elastic stiffness tensor, we have, in phase 2:

σ̃(x; t) = C2 : ε̃(x; t), σ(x) = C2 : ε(x), (22)

or equivalently,
σkk(x) = 3κ2εkk(x), σ′(x) = 2µ2ε

′(x). (23)

where µ2 is the inclusion’s shear modulus, κ2 its bulk modulus, and where the strain and stress deviatoric parts
are defined as:

ε′ij = εij − (εkk/3)δij , σ′ij = σij − (σkk/3)δij , (24)

δ being the Kronecker symbol. Inclusions are embedded in a viscoelastic matrix, where the local strain-stress
relation is written generally as:

σ̃(x; t) =

∫ t

−∞
dτ C1(t− τ) :

dε̃(x; τ)

dτ
. (25)

In the above, C1(t) designates a time-dependant fourth-order isotropic tensor with shear and bulk (strain-rate)
moduli µ1(t) and κ1(t). Following [5] the time-dependence is removed using Eq. (20):

σkk(x) = 3κ∗1(iω)εkk(x), σ′(x) = 2µ∗1(iω)ε′(x), (26)
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for x in the matrix. The complex elastic moduli κ∗1(iω) and µ∗1(iω) are:

κ∗1(iω) = κ1 + iω

∫ ∞
0

dη [κ1(η)− κ1] e−iωη, (27a)

µ∗1(iω) = µ1 + iω

∫ ∞
0

dη [µ1(η)− µ1] e−iωη, (27b)

with:
κ = lim

t→∞
κ1(t) ≥ 0, µ = lim

t→∞
µ1(t) ≥ 0. (28)

The local response of the material is given by Eqs. (23) and (26). Viscous effects are taken into account by
the imaginary parts of the elastic moduli µ1(iω) and κ1(iω). When the latter are positive, the stress fields’s
oscillations are advanced by an amount of:

∆t =
arg [σ(x)]− arg [ε(x)]

ω
, (29)

compared to that of the strain field. For instance, if ε(x) is real:

σ̃(x; t) = R [σ(x)] eiω(t−∆t). (30)

Such effects are absent in the purely elastic case (23).The material equations above are completed by admissibility
equations for the strain and stress fields. Assuming first that the displacement field u(x; t) is infinitesimal
compared to the microstructure characteristic sizes, we have:

ε̃ij(x; t) =
∂j ũi(x; t) + ∂iũj(x; t)

2
. (31)

Second, stress equilibrium is met at every point:

∂iσ̃ij(x; t) = 0. (32)

We define the complex displacement amplitude u(x) by:

ũ(x; t) = u(x) eiωt (33)

so that Eqs. (31) and (32) become:

εij(x) =
∂jui(x) + ∂iuj(x)

2
, ∂iσij(x) = 0. (34)

Applying periodic boundary conditions with time-harmonic macroscopic strain loading as:

〈ε̃(x; t)〉 = ε eiωt, ε̃(x; t) #, σ̃(x; t) #, (35)

where ε is a constant, 〈·〉 designates a spatial average over the domain V and # denotes a periodic field in space
with elementary cell V . The above is indifferently written as:

〈ε(x)〉 = ε, ε(x) #, σ(x) #. (36)

Hereafter it is assumed, without loss of generality, that all components of ε are real. The composite’s effective
response is given by the stiffness tensor Ceff :

σ = 〈σ(x)〉 = Ceff : ε. (37)

When the composite is isotropic and V is large enough, the tensor Ceff is isotropic as well. Its shear and bulk
moduli are noted µeff and κeff .

Eqs. (23), (26), (34) and (36) define the response of the material to a harmonic solicitation. In theory, these
solutions allow one to reconstruct the local and macroscopic responses of the material subjected to non-harmonic
(arbitrary) strain loading, in the steady-state regime [5]. The first equation in (35) can be replaced by:

α(t) = 〈ε̃(x; t)〉, (38)

16



so that a time-varying macroscopic strain loading α(t) is applied. Taking the Fourier transform of the latter:

α(t) =
1

2π

∫ ∞
−∞

dω α(ω) eiωt. (39)

The strain field acting in the material is the superposition of the following harmonic responses:

ε̃(x; t) =
1

2π

∫ ∞
−∞

dω εω(x) eiωt, (40)

where εω(x) is the complex field solution of Eqs. (23), (26), (34) and (36) with ε = α(ω).

5.2 FFT methods

The purpose of this section is to solve numerically Eqs. (23), (26), (34) and (36) on a grid of voxels, using
“Fourier methods” as developed by [31, 8, 26]. The “direct scheme” [31] and “augmented Lagrangian” [26]
Fourier methods apply to linear elasticity. The “accelerated scheme” [8], originally given in the context of
conductivity, has been extended to linear elasticity by [26] . We remark that the problem (23), (26), (34)
and (36) is mathematically identical to that of linear elasticity, except that complex instead of real fields are
concerned. Thus, FFT methods apply to the viscoelastic problem considered here, as will be seen later. This is
true of other more recent FFT methods like the “rotated” [39] and “variational FFT” [4] schemes. Accordingly,
any of these schemes can be implemented for this purpose.

Hereafter, the “discrete scheme” proposed by [41], coupled with the algorithm of [31], is used. A similar
scheme has already been investigated in the context of conductivity by [40] leading to much improved convergence
properties, especially for highly-contrasted composites. The scheme gives for the kth-iteration:

εk+1(q) = ε−G0(q) :
[
σ(q)− C0 : εk(q)

]
, (41)

where q is the Fourier wave vector, C0 is a reference elastic tensor and G0(q) its associated Green operator,
discretized using a forward and backward finite difference scheme on the rotated grid. The stress field is
computed at each step in the direct space using the material’s constitutive law, and the strain field is initialized
by εk=0 ≡ ε. Convergence strongly depends on C0, an arbitrary (complex) reference tensor, which has to be
optimized. An absolute convergence criterion is defined on stress equilibrium as:

max
x
|divσ(x)| ≤ η (42)

where η is the required precision. Care is needed when choosing C0. To ensure that the physical strain and
stress fields are symmetric, i.e.:

ε̂kl(x; t) = ε̂lk(x; t), σ̂kl(x; t) = ε̂lk(x; t), (43)

it is necessary to enforce:
εkl(x) = εlk(x), σkl(x) = σlk(x). (44)

Hence, the tensors ε and σ are not symmetric in the complex sense. To enforce this, the Green tensor must
satisfy:

G0
ij,kl(q) = G0

ji,kl(q) = G0
ij,lk(q) =

[
G0
kl,ij(q)

]∗
. (45)

In turn, this implies:
C0
ij,kl = C0

ji,kl = C0
ij,lk =

(
C0
kl,ij

)∗
= C0

kl,ij , (46)

so that C0 must be real. This is in contrast with optics where we are free to choose complex references (see [2]).
In the rest of this work, we choose κ0 = 0.51 [Re(κ∗1) + Re(κ∗2)], µ0 = 0.51 [Re(µ∗1) + Re(µ∗2)], for the bulk and
shear moduli of the reference tensor, respectively, where µ∗1,2, κ∗1,2 are the complex elastic moduli in phases 1
and 2.
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Figure 12: Comparison between analytical estimates given by [6] (solid and dashed lines) and FFT results
(symbols) for the effective elastic response of a periodic array of spheres with varying volume fraction: imaginary
part of the effective shear moduli µp,s (a) and ratio Im(µp,s)/Re(µp,s).

5.3 Validation and comparison with an explicit time-discretized FFT scheme

In this section, a periodic array of spheres with cubic symmetry is considered. The spheres are purely elastic
with shear and bulk moduli µ2 = κ2 = 1000 GPa, and, for simplicity, the embeding medium is supposed to be
Maxwellian. Outside the spheres, the stress σ(t) and strain fields ε(t) satisfy:

σ̃′(t)dt

t1
+ dσ̃′(t) = 2µ0dε̃′(t),

σ̃kk(t)dt

t1
+ dσ̃kk(t) = 3κ0dε̃kk(t) (47)

with µ0 = κ0 = 1 GPa, t1 = 1 s. This is equivalent to [5]:

σ̃′(t) =

∫ t

−∞
dτ 2µ1(t− τ)

dε̃′(τ)

dτ
, σ̃kk(t) =

∫ t

−∞
dτ 3κ1(t− τ)

dε̃kk(τ)

dτ
, (48)

with:

µ1(t) = µ0e
−t/t1H(t), κ1(t) = κ0e

−t/t1H(t), H(t) =

{
0 if t < 0,
1 if t > 0.

(49)

In the above, H(t) is the Heaviside step function. Using (25) the complex elastic moduli in the embedding
medium read, as functions of the angular frequency ω:

µ∗1(iω) =
µ0

1 + 1/(iωt1)
, κ∗1(iω) =

κ0

1 + 1/(iωt1)
. (50)

Heareafter the frequency is set to ω = 1[rad/s]. A sphere is discretized in a cubic domain of size 64× 64× 64
voxels. The FFT method described in Sec. (5.2) is then used to solve the viscoelastic problem in the complex
domain. The spheres composite has a macroscopic response with cubic symmetry of bulk moduli κs and shear
moduli µp, µs:

C =


κs + 4

3µp κs − 2
3µp κs − 2

3µp 0 0 0
κs + 4

3µp κs − 2
3µp 0 0 0

κs + 4
3µp 0 0 0

µs 0 0
sym µs 0

µs

 (51)

in Voigt notation where ε = (εxx, εyy, εzz, 2εyz, 2εxz, 2εxy) and σ = (σxx, σyy, σzz, σyz, σxz, σxy). FFT Results
are compared to the analytical estimates in [6] (Figure 12). Excellent agreement between the FFT results and
analytical estimates is found for the complex shear moduli µp,s when the volume fraction of spheres is less than
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Figure 13: Macroscopic strain ε12 = 〈ε̂12(x; t)〉 and resulting stress component σ12 = 〈σ̂12(x; t)〉 vs. time t,
for the time-discretized scheme. The macroscopic strain is 0 for t < π/(2ω). In violet: comparison with the
harmonic regime as predicted by the complex Fourier scheme.

20%. For the ratio Im(µp,s)/Re(µp,s), good agreement is obtained for quite smaller volume fractions (not
larger than 10%).

Finally, the Fourier method developed in Sec. (5.2) is compared to an explicit time-discretized scheme.
Assume that:

ε̂(x; t) = 0, σ̂(x; t) = 0 (52)

for t < t0. For t ≥ t0, the material is subject to harmonic strain loading:

〈ε̂(x; t)〉 = cos(ωt)ε (53)

Hereafter we take t0 = π/(2ω) and again ω = 1 [rad/s] for simplicity. The stress field σ at time t + dt is then
computed by discretizing Eq. (47). For instance, for the deviatoric parts:

∆σ̂′(x, t) = 2µ0∆ε̂′(x, t)− σ̂′(x, t)∆t
t1

, (54)

∆σ̂′(x, t) = σ̂′(x, t+ ∆t)− σ̂′(x, t), ∆ε̂′(x, t) = ε̂′(x, t+ ∆t)− ε̂′(x, t).

The above is mathematicaly equivalent to a thermoelastic stress-strain relation with unknown ∆ε̂ and ∆σ̂ and
with applied strain loading given by (53):

〈∆ε̂′(x, t)〉 = −ω sin(ωt)∆tε (55)

In the inclusions, the fields ∆σ̂(x; t) and ∆ε̂(x; t) are related by Hooke’s law. The FFT method for thermoe-
lasticity proposed by [38], [1] is then applied at each time step. We set ∆t = 0.01 and apply shear loading with
ε12 = ε21 = 1 and εij = 0 for (i, j) 6= (1, 2), (2, 1). A comparison between the FFT scheme with time-discretized
strain-stress relation and that with complex elastic moduli, is represented in Figure 13 for the macroscopic
response. The macroscopic stress σ12 = 〈σ12〉 is given as a function of time t. It is emphasized that, for the
time-discretized sheme, σ12(t) (top dashed line) is computed at many loading step whereas, for the FFT method
involving complex moduli one computation is carried out which gives the harmonic response at t→∞ (bottom
dashed line). As expected, beyond an intermediary regime, the time-explicit scheme converges to a harmonic
response identical to that predicted by the complex FFT scheme.

5.4 Computations on random two-scales media

To illustrate the efficiency of the method, viscoelastic computations are performed on the Boolean and Johnson-
Mehl two-scales models. The local properties are set to 78 400 and 30 000 MPa for the bulk and shear moduli,
resp., in the filler. In the polymer, a viscoelastic law with Prony series given by [21] is used. Complex elastic
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Figure 14: (a-b): Real and imaginary parts of the mean stress field σm for a hydrostatic strain loading (εm = 1%)
at a frequency ω = 117 Hz. The minimal and maximal values are −47 and 140 Gpa (real part (a)) and −1.0
and 6.2 GPa (imaginary part (b)). The stress values are thresholded between 8.68 and 8.73 GPa (real part) and
1.5 and 1.6 (imaginary part) to highlight the field patterns in the polymer. (c-d): Real and imaginary parts of
the shear stress field σ12 for a shear strain loading (εxy = 1%) at a frequency ω = 117 Hz. The minimal and
maximal values are −17 and 44 GPa (real part (c)) and −1.2 and 0.7 GPa (imaginary part (d)). The stress
values are thresholded between 0 and 6 MPa (real part) and 0 and 1 (imaginary part).
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Figure 15: Comparison between the Johnson-Mehl and Boolean sphere models for the exclusion polymer and
Hashin sphere assemblage: frequency dependence of the effective real part (a) and imaginary part (b) of the
complex bulk modulus. (c): Real part of the complex shear modulus. (d): Imaginary part.

21



moduli are used for 23 frequencies. Each 3D computation required about 3 hours on a 12-cores computer and
800 iterations with η = 3.10−5. No time discretization is used. Domains with size (0.8 µm)3 discretized over
(400)3 voxels are simulated.

FFT maps of the mean stress field (opposite of pressure) are shown in Figures 14a and 14b, showing a 2D
section for the exclusion zones modelled by a Boolean model. The material is submitted to a hydrostatic strain
loading, the frequency being ω = 117 Hz. Strong internal stresses in the polymer appear in regions surrounded
by fillers. Maps of the shear stress component with shear strain loading are shown in Figures 14c and 14d.

The effective moduli are obtained by averaging the fields calculated by FFT, using a standard homogenization
approach. The relative precision of the estimated moduli is calculated from the variance of the fields at different
scales, as developed in the statistical RVE approach of [20]. At a frequency ω = 117 Hz, the relative precision
for the real part and the imaginary part of the bulk modulus is equal to 0.2% and to 0.3%. For the the real
part and the imaginary parts of the shear modulus, it is equal to 17% and 3.8% respectively.

The frequency dependence of the effective complex bulk modulus and of the effective shear modulus are
illustrated in Figure 15. FFT data for the Boolean and Johnson-Mehl models are compared to the viscoelastic
response of the Hashin sphere assemblage [12]. The inner spheres and outer layers in the Hashin coating have
the same properties as the fillers and polymer respectively, and the volume fraction are the same as in the
model (about 10.6%). It has been shown that the bulk and shear moduli of isotropic two-phases viscoelastic
composites are constrained to a region in the complex plane [11, 27] that generalizes the Hashin and Shtrikman
bounds. The Hashin coating has extremal properties for the bulk modulus in the sense that its bulk modulus
lies on the frontier of the region. For the material considered here, the contrast of properties in terms of bulk
moduli is moderate (about 25), and so the Hashin coating is very close to that of the Boolean and Johnson-Mehl
models, as computed using FFT (Figures 15a and 15b). The situation is sensibly different for the real part of
the shear modulus, which is 3.104 higher in the filler than in the polymer (Figure 15c). The real part of the
shear modulus of the Johnson-Mehl model is higher than that of the Boolean model.

We note that the viscoelastic response of the models is much softer than that of the Hashin assemblage with
stiff outer coating, which is not represented in figure 15. Our results are also consistent with that obtained
by [14] in the context of elasticity, where elastic moduli close to the Hashin and Shtrikman lower bounds were
predicted.

6 Conclusion

Multiscale morphological models of random 3D microstructures were developed to simulate the distribution
of fillers in rubber materials, accounting for the presence of aggregates and of an exclusion polymer. These
models enable us to study the percolation of carbon black filler as a function of its multiscale distribution. It
was proved that the two models involving a different morphology for the exclusion polymer do not percolate for
the volume fraction of carbon black contained in the material.

The effective viscoelastic moduli are predicted by Fast Fourier Transforms on 3D simulated images of the
microstructure. The simple method proposed in this work predicts the harmonic response of composites with
arbitrary microstructures, frequency per frequency and is restricted to linear materials. The effective bulk
modulus and shear modulus are predicted in a large frequency range (about from 10−1 to 104 rad/s).

Further studies will involve a systematic change of the microstructures by means of the parameters of the
model, and its impact on the effective properties, to find optimal microstructures with respect to the macroscopic
behavior.

Acknowledgements F. Willot is indebted to S. Forest for helpful suggestions regarding the FFT-based
computations.
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