Introduction to vector quantization and its applications for numerics*

Abstract : We present an introductory survey to optimal vector quantization and its first applications to Numerical Probability and, to a lesser extent to Information Theory and Data Mining. Both theoretical results on the quantization rate of a random vector taking values in ℝd (equipped with the canonical Euclidean norm) and the learning procedures that allow to design optimal quantizers (CLVQ and Lloyd’s procedures) are presented. We also introduce and investigate the more recent notion of greedy quantization which may be seen as a sequential optimal quantization. A rate optimal result is established. A brief comparison with Quasi-Monte Carlo method is also carried out.
Type de document :
Article dans une revue
ESAIM: Proceedings and Surveys, EDP Sciences, 2015, 48 (1), pp.29-79. <10.1051/proc/201448002 >
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01263773
Contributeur : Philippe Macé <>
Soumis le : lundi 1 février 2016 - 15:15:46
Dernière modification le : mardi 11 octobre 2016 - 14:02:45
Document(s) archivé(s) le : samedi 12 novembre 2016 - 00:15:29

Fichier

proc144802.pdf
Publication financée par une institution

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale 4.0 International License

Identifiants

Collections

Citation

G. Pagès. Introduction to vector quantization and its applications for numerics*. ESAIM: Proceedings and Surveys, EDP Sciences, 2015, 48 (1), pp.29-79. <10.1051/proc/201448002 >. <hal-01263773>

Partager

Métriques

Consultations de
la notice

93

Téléchargements du document

33