J. Eykelenboom, J. Blackwood, E. Okely, and D. Leach, SbcCD Causes a Double-Strand Break at a DNA Palindrome in the Escherichia coli Chromosome, Molecular Cell, vol.29, issue.5, pp.644-651, 2008.
DOI : 10.1016/j.molcel.2007.12.020

G. Cromie, J. Connelly, and D. Leach, Recombination at Double-Strand Breaks and DNA Ends, Molecular Cell, vol.8, issue.6, pp.1163-1174, 2001.
DOI : 10.1016/S1097-2765(01)00419-1

S. Kowalczykowski, D. Dixon, A. Eggleston, S. Lauder, and W. Rehrauer, Biochemistry of homologous recombination in Escherichia coli, Microbiol Rev, vol.58, issue.3, pp.401-465, 1994.

J. Mawer and D. Leach, Branch Migration Prevents DNA Loss during Double-Strand Break Repair, PLoS Genetics, vol.35, issue.8, p.1004485, 2014.
DOI : 10.1371/journal.pgen.1004485.s008

B. Connolly, Resolution of Holliday junctions in vitro requires the Escherichia coli ruvC gene product., Proceedings of the National Academy of Sciences, vol.88, issue.14, pp.6063-6067, 1991.
DOI : 10.1073/pnas.88.14.6063

B. Connolly and S. West, Genetic recombination in Escherichia coli: Holliday junctions made by RecA protein are resolved by fractionated cell-free extracts., Proceedings of the National Academy of Sciences, vol.87, issue.21, pp.8476-8480, 1990.
DOI : 10.1073/pnas.87.21.8476

M. Dillingham and S. Kowalczykowski, RecBCD Enzyme and the Repair of Double-Stranded DNA Breaks, Microbiology and Molecular Biology Reviews, vol.72, issue.4, pp.642-671, 2008.
DOI : 10.1128/MMBR.00020-08

G. Smith, How RecBCD Enzyme and Chi Promote DNA Break Repair and Recombination: a Molecular Biologist's View, Microbiology and Molecular Biology Reviews, vol.76, issue.2, pp.217-228, 2012.
DOI : 10.1128/MMBR.05026-11

A. Taylor and G. Smith, RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity, Nature, vol.423, issue.6942, pp.889-893, 2003.
DOI : 10.1038/nature01674

N. Handa, Molecular determinants responsible for recognition of the single-stranded DNA regulatory sequence, ??, by RecBCD enzyme, Proceedings of the National Academy of Sciences, vol.109, issue.23, pp.8901-8906, 2012.
DOI : 10.1073/pnas.1206076109

D. Dixon and S. Kowalczykowski, Role of the Escherichia coli Recombination Hotspot, ??, in RecABCD-dependent Homologous Pairing, Journal of Biological Chemistry, vol.270, issue.27, pp.16360-16370, 1995.
DOI : 10.1074/jbc.270.27.16360

D. Anderson and S. Kowalczykowski, SSB protein controls RecBCD enzyme nuclease activity during unwinding: a new role for looped intermediates, Journal of Molecular Biology, vol.282, issue.2, pp.275-285, 1998.
DOI : 10.1006/jmbi.1998.2013

A. Ponticelli, D. Schultz, A. Taylor, and G. Smith, Chi-dependent DNA strand cleavage by RecBC enzyme, Cell, vol.41, issue.1, pp.145-151, 1985.
DOI : 10.1016/0092-8674(85)90069-8

A. Taylor, D. Schultz, A. Ponticelli, and G. Smith, RecBC enzyme nicking at chi sites during DNA unwinding: Location and orientation-dependence of the cutting, Cell, vol.41, issue.1, pp.153-163, 1985.
DOI : 10.1016/0092-8674(85)90070-4

D. Anderson and S. Kowalczykowski, The recombination hot spot chi is a regulatory element that switches the polarity of DNA degradation by the RecBCD enzyme., Genes & Development, vol.11, issue.5, pp.571-581, 1997.
DOI : 10.1101/gad.11.5.571

A. Taylor and G. Smith, Regulation of homologous recombination: Chi inactivates RecBCD enzyme by disassembly of the three subunits, Genes & Development, vol.13, issue.7, pp.890-900, 1999.
DOI : 10.1101/gad.13.7.890

E. Darmon, J. Eykelenboom, M. Lopez-vernaza, M. White, and D. Leach, Repair on the Go: E. coli Maintains a High Proliferation Rate while Repairing a Chronic DNA Double-Strand Break, PLoS ONE, vol.26, issue.10, p.110784, 2014.
DOI : 10.1371/journal.pone.0110784.s007

T. Bailey, Practical Guidelines for the Comprehensive Analysis of ChIP-seq Data, PLoS Computational Biology, vol.13, issue.11, p.1003326, 2013.
DOI : 10.1371/journal.pcbi.1003326.s007

D. Dixon and S. Kowalczykowski, The recombination hotspot ?? is a regulatory sequence that acts by attenuating the nuclease activity of the E. coli RecBCD enzyme, Cell, vol.73, issue.1, pp.87-96, 1993.
DOI : 10.1016/0092-8674(93)90162-J

A. Taylor and G. Smith, RecBCD enzyme is altered upon cutting DNA at a chi recombination hotspot., Proceedings of the National Academy of Sciences, vol.89, issue.12, pp.5226-5230, 1992.
DOI : 10.1073/pnas.89.12.5226

M. Spies, A Molecular Throttle, Cell, vol.114, issue.5, pp.647-654, 2003.
DOI : 10.1016/S0092-8674(03)00681-0

M. Singleton, M. Dillingham, M. Gaudier, S. Kowalczykowski, and D. Wigley, Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks, Nature, vol.54, issue.7014, pp.187-193, 2004.
DOI : 10.1016/S0076-6879(97)77028-9

P. Bianco, Processive translocation and DNA unwinding by individual RecBCD enzyme molecules, Nature, vol.409, issue.6818, pp.374-378, 2001.
DOI : 10.1038/35053131

A. Taylor and G. Smith, Unwinding and rewinding of DNA by the RecBC enzyme, Cell, vol.22, issue.2, pp.447-457, 1980.
DOI : 10.1016/0092-8674(80)90355-4

B. Liu, R. Baskin, and S. Kowalczykowski, DNA unwinding heterogeneity by RecBCD results from static molecules able to equilibrate, Nature, vol.75, issue.7463, pp.482-485, 2013.
DOI : 10.1038/nature12333

T. Waldminghaus and K. Skarstad, ChIP on Chip: surprising results are often artifacts, BMC Genomics, vol.11, issue.1, p.414, 2010.
DOI : 10.1186/1471-2164-11-414

S. Gruber and J. Errington, Recruitment of Condensin to Replication Origin Regions by ParB/SpoOJ Promotes Chromosome Segregation in B. subtilis, Cell, vol.137, issue.4, pp.685-696, 2009.
DOI : 10.1016/j.cell.2009.02.035

F. Barre, Circles: The replication-recombination-chromosome segregation connection, Proceedings of the National Academy of Sciences, vol.98, issue.15, pp.8189-8195, 2001.
DOI : 10.1073/pnas.111008998

T. Kogoma, Stable DNA replication: Interplay between DNA replication, homologous recombination, and transcription, Microbiol Mol Biol Rev, vol.61, issue.2, pp.212-238, 1997.

J. Corre, F. Cornet, J. Patte, and J. Louarn, Unraveling a region-specific hyperrecombination phenomenon: Genetic control and modalities of terminal recombination in Escherichia coli, Genetics, vol.147, issue.3, pp.979-989, 1997.

T. Horiuchi, Y. Fujimura, H. Nishitani, T. Kobayashi, and M. Hidaka, The DNA replication fork blocked at the Ter site may be an entrance for the RecBCD enzyme into duplex DNA., Journal of Bacteriology, vol.176, issue.15, pp.4656-4663, 1994.
DOI : 10.1128/jb.176.15.4656-4663.1994

C. Rudolph, A. Upton, A. Stockum, C. Nieduszynski, and R. Lloyd, Avoiding chromosome pathology when replication forks collide, Nature, vol.33, issue.7464, pp.608-611, 2013.
DOI : 10.1038/nature12312

F. Blattner, The Complete Genome Sequence of Escherichia coli K-12, Science, vol.277, issue.5331, pp.1453-1462, 1997.
DOI : 10.1126/science.277.5331.1453

A. Link, D. Phillips, and G. Church, Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization., Journal of Bacteriology, vol.179, issue.20, pp.6228-6237, 1997.
DOI : 10.1128/jb.179.20.6228-6237.1997

C. Merlin, S. Mcateer, and M. Masters, Tools for Characterization of Escherichia coli Genes of Unknown Function, Journal of Bacteriology, vol.184, issue.16, pp.4573-4581, 2002.
DOI : 10.1128/JB.184.16.4573-4581.2002

E. Darmon, SbcCD Regulation and Localization in Escherichia coli, Journal of Bacteriology, vol.189, issue.18, pp.6686-6694, 2007.
DOI : 10.1128/JB.00489-07

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2045166

M. White, J. Eykelenboom, M. Lopez-vernaza, E. Wilson, and D. Leach, Non-random segregation of sister chromosomes in Escherichia coli, Nature, vol.25, issue.7217, pp.1248-1250, 2008.
DOI : 10.1038/nature07282

Z. Chen, H. Yang, and N. Pavletich, Mechanism of homologous recombination from the RecA???ssDNA/dsDNA structures, Nature, vol.47, issue.7194, pp.489-494, 2008.
DOI : 10.1038/nature06971

R. Galletto, I. Amitani, R. Baskin, and S. Kowalczykowski, Direct observation of individual RecA filaments assembling on single DNA molecules, Nature, vol.21, issue.7113, pp.875-878, 2006.
DOI : 10.1038/nature05197

B. Pugh and M. Cox, Stable binding of recA protein to duplex DNA. Unraveling a paradox, J Biol Chem, vol.262, issue.3, pp.1326-1336, 1987.

N. Croucher, A simple method for directional transcriptome sequencing using Illumina technology, Nucleic Acids Research, vol.37, issue.22, p.148, 2009.
DOI : 10.1093/nar/gkp811

P. Khil, F. Smagulova, K. Brick, R. Camerini-otero, and G. Petukhova, Sensitive mapping of recombination hotspots using sequencing-based detection of ssDNA, Genome Research, vol.22, issue.5, pp.957-965, 2012.
DOI : 10.1101/gr.130583.111

URL : https://hal.archives-ouvertes.fr/hal-00877675

A. Yamane, RPA Accumulation during Class Switch Recombination Represents 5??????3??? DNA-End Resection during the S???G2/M Phase of the Cell Cycle, Cell Reports, vol.3, issue.1, pp.138-147, 2013.
DOI : 10.1016/j.celrep.2012.12.006

S. Webb, R. Hector, G. Kudla, and S. Granneman, PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast, Genome Biology, vol.15, issue.1, p.8, 2014.
DOI : 10.1038/nature12121

J. Nicol, G. Helt, S. Blanchard, . Jr, A. Raja et al., The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets, Bioinformatics, vol.25, issue.20, pp.2730-2731, 2009.
DOI : 10.1093/bioinformatics/btp472

Y. Zhang, Model-based Analysis of ChIP-Seq (MACS), Genome Biology, vol.9, issue.9, 2008.
DOI : 10.1186/gb-2008-9-9-r137

G. Schweikert, B. Cseke, T. Clouaire, A. Bird, and G. Sanguinetti, MMDiff: quantitative testing for shape changes in ChIP-Seq data sets, BMC Genomics, vol.14, issue.1, p.826, 2013.
DOI : 10.1186/1471-2164-14-826