
HAL Id: hal-01262444
https://hal.science/hal-01262444v4

Submitted on 9 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Enforcement of (Timed) Properties with
Uncontrollable Events

Matthieu Renard, Yliès Falcone, Antoine Rollet, Thierry Jéron, Hervé
Marchand

To cite this version:
Matthieu Renard, Yliès Falcone, Antoine Rollet, Thierry Jéron, Hervé Marchand. Optimal Enforce-
ment of (Timed) Properties with Uncontrollable Events. Mathematical Structures in Computer Sci-
ence, 2019, 29 (1), pp.169-214. �10.1017/S0960129517000123�. �hal-01262444v4�

https://hal.science/hal-01262444v4
https://hal.archives-ouvertes.fr

Under consideration for publication in Math. Struct. in Comp. Science

Optimal Enforcement of (Timed) Properties
with Uncontrollable Events
M A T T H I E U R E N A R D1, Y L I È S F A L C O N E2, A N T O I N E R O L L E T1,

T H I E R R Y J É R O N3, and H E R V É M A R C H A N D3

1 LaBRI, Bordeaux INP, Université Bordeaux, Bordeaux, France.
2 Univ. Grenoble-Alpes, Inria, Laboratoire d’Informatique de Grenoble, F-38000 Grenoble, France.
3 Inria Rennes Bretagne-Atlantique, Rennes, France.

Received April 2017

This paper deals with runtime enforcement of untimed and timed properties with uncontrollable
events. Runtime enforcement consists in defining and using mechanisms that modify the executions
of a running system to ensure their correctness with respect to a desired property. We introduce a
framework that takes as input any regular (timed) property described by a deterministic automaton
over an alphabet of events, with some of these events being uncontrollable. An uncontrollable event
cannot be delayed nor intercepted by an enforcement mechanism. Enforcement mechanisms should
satisfy important properties, namely soundness, compliance, and optimality - meaning that enforce-
ment mechanisms should output as soon as possible correct executions that are as close as possible
to the input execution. We define the conditions for a property to be enforceable with uncontrollable
events. Moreover, we synthesise sound, compliant, and optimal descriptions of runtime enforcement
mechanisms at two levels of abstraction to facilitate their design and implementation.

1. Introduction

Runtime verification (Leucker and Schallhart, 2009; Falcone et al., 2013) is a powerful tech-
nique which aims at checking the conformance of the executions of a system under scrutiny with
respect to some specification. It consists in running a mechanism that assigns verdicts to a se-
quence of events produced by the instrumented system with respect to a property formalising
the specification. This paper focuses on runtime enforcement (cf. (Schneider, 2000; Ligatti et al.,
2009; Falcone et al., 2011; Basin et al., 2013)) which goes beyond pure verification at runtime
and studies how to react to a violation of specifications. In runtime enforcement, an enforcement
mechanism (EM) takes a (possibly incorrect) execution sequence as input, and outputs a new
sequence. Enforcement mechanisms should be sound and transparent, meaning that the output
should satisfy the property under consideration and should be as close as possible to the input,
respectively. When dealing with timed properties, EMs can act as delayers over the input se-
quence of events (Pinisetty et al., 2012; Pinisetty et al., 2014b; Pinisetty et al., 2014c). That is,
whenever possible, EMs buffer input events for some time and then release them in such a way
that the output sequence of events satisfies the property. The general scheme is given in Fig. 1.

Renard, Falcone, Rollet, Jéron, Marchand 2

S
σ

E
E(σ)

ϕ

Figure 1: Enforcement mechanism E,
modifying the execution σ of the system
S toE(σ), so that it satisfies property ϕ.

Motivations. We focus on enforcement of properties
with uncontrollable events†. Introducing uncontrol-
lable events is a step towards more realistic runtime
enforcement. Uncontrollable events naturally occur
in many application scenarios where the EM has no
control over certain input events. For instance, certain
events from the environment may be out of the scope

of the mechanism at hand. This situation arises for instance in avionic systems where a command
of the pilot has consequences on a specific component. In this critical domain, one usually adds
control mechanisms in specific points of the architecture in order to verify that nothing wrong
happens. Some events may only be observed by these mechanisms in order to decide if a situation
is abnormal, but they cannot be acted upon, meaning that they are uncontrollable. For instance,
the “spoiler activation”‡ command triggered by the pilot is sent by the panel to a control flight
system, and this leads finally to a specific event on the spoilers. Placing an EM directly on the
spoiler prevents events leading to an incoherent state by blocking them, according to the pilot
commands. The pilot commands are out of the scope of the EM, i.e. observable but uncontrol-
lable. In the timed setting, uncontrollable events may be urgent messages that cannot be delayed
by an enforcement mechanism. Similarly, when a data-dependency exists between two events
(e.g., between a write event that displays a value obtained from a previous read event), the first
read event is somehow uncontrollable as it cannot be delayed by the enforcement mechanism
without preventing the write event from occurring in the monitored program.

Challenges. Considering uncontrollable events in the timed setting induces new challenges. In-
deed, EMs may now receive events that cannot be buffered and have to be output immediately.
Since uncontrollable events influence the satisfaction of the property under scrutiny, the dates of
the controllable events stored in memory have to be recomputed upon the reception of each un-
controllable event to guarantee that the property is still satisfied after outputting them. Moreover,
it is necessary to prevent the system from reaching a bad state upon reception of any sequence of
uncontrollable events. Since uncontrollable events can occur at any time, the EM must take their
potential reception into account when computing the sequence to be emitted. Then, the occur-
rence of such events has to be anticipated, meaning that all possible sequences of uncontrollable
events have to be considered by the enforcement mechanism. It turns out that a property may not
be enforceable because of certain input sequences. Intuitively, enforceability issues arise because
some sequences of uncontrollable events that lead the property to be violated cannot be avoided.
Thus, new enforcement strategies are necessary for both untimed and timed properties.

Contributions. We introduce a framework for the enforcement monitoring of regular untimed
and timed properties with uncontrollable events. We define EMs at two levels of abstraction. The
synthesised EMs are sound, compliant and optimal. When considering uncontrollable events, it
turns out that the usual notion of transparency has to be weakened. As we shall see, the initial

† This notion of uncontrollable event should not be confused with the notion of uncontrollable transition used in some
supervision and game theory.
‡ The spoiler is a device used to reduce the lift of an aircraft.

Optimal Enforcement of (Timed) Properties with Uncontrollable Events 3

order between uncontrollable and controllable events can change in output, contrary to what is
prescribed by transparency. Thus, we replace transparency with a new notion, namely compli-
ance, prescribing that the order of controllable events is maintained while uncontrollable events
are output as soon as they are received. We define a property to be enforceable with uncontrol-
lable events when it is possible to obtain a sound and compliant EM for any input sequence. In the
timed setting, the executions are associated with dates from which the property is enforceable.

This paper revisits and extends a first approach in (Renard et al., 2015). Most definitions
were modified to ensure optimality of the EMs for any regular property. Some definitions have
been rewritten in a more formal, more modular, and clearer way. All the proofs of soundness,
compliance, optimality and equivalence between the different descriptions of the enforcement
mechanism are provided. This new framework can also be used without uncontrollable events.
Remark 1. There exist similarities between supervisory control theory (Ramadge and Wonham,
1987; Ramadge and Wonham, 1989) and runtime enforcement. For instance, a supervisor is
usually implemented as a monitor deciding at runtime if a command should be activated or not.
Supervisory control usually needs a model of the system, and consists in building a supervisor
from this model by cutting forbidden states and transitions of uncontrollable events leading to
them. Usually, an EM only uses a high-level property. In our work, an EM is equipped with a
memory providing many more possibilities of actions, such as keeping and releasing events.

Outline. Section 2 introduces preliminaries and notations. Sections 3 and 4 present the enforce-
ment framework with uncontrollable events in the untimed and timed settings, respectively. In
each setting, we define enforcement mechanisms at two levels of abstraction. Section 5 discusses
related work. Section 6 presents conclusions and perspectives. Proofs are in Appendix A.

2. Preliminaries and Notation

Untimed Notions. An alphabet is a finite, non-empty set of symbols. A word over an alphabet
Σ is a sequence over Σ. The set of finite words over Σ is denoted Σ∗. The length of a finite word
w is noted |w|, and the empty word is noted ε. Σ+ stands for Σ∗ \ {ε}. A language over Σ is any
subset L ⊆ Σ∗. The concatenation of two words w and w′ is noted w.w′ (the dot is omitted when
clear from the context). A word w′ is a prefix of a word w, noted w′ 4 w if there exists a word
w′′ s.t. w = w′.w′′. The word w′′ is called the residual of w after reading the prefix w′, noted
w′′ = w′

−1
.w. Note that w′.w′′ = w′.w′

−1
.w = w. These definitions are extended to languages

in the natural way. A language L ⊆ Σ∗ is extension-closed if for any words w ∈ L and w′ ∈ Σ∗,
w.w′ ∈ L. Given a word w and an integer i s.t. 1 ≤ i ≤ |w|, we note w(i) the i-th element of w.
Given a tuple e = (e1, e2, . . . , en) of size n, for an integer i such that 1 ≤ i ≤ n, we note Πi the
projection on the i-th coordinate, i.e. Πi(e) = ei. The tuple (e1, e2, . . . , en) is sometimes noted
〈e1, e2, . . . , en〉 in order to help reading. It can be used, for example, if a tuple contains a tuple.
Given a word w ∈ Σ∗ and Σ′ ⊆ Σ, we define the restriction of w to Σ′, noted w|Σ′ , as the word
w′ ∈ Σ′

∗ whose letters are the letters of w belonging to Σ′ in the same order. Formally, ε|Σ′ = ε

and ∀σ ∈ Σ∗,∀a ∈ Σ, (w.a)|Σ′ = w|Σ′ .a if a ∈ Σ′, and (w.a)|Σ′ = w|Σ′ otherwise. We also
note =Σ′ the equality of the restrictions of two words to Σ′: if σ and σ′ are two words, σ =Σ′ σ′

if σ|Σ′ = σ′|Σ′ . We define in the same way 4Σ′ : σ 4Σ′ σ′ if σ|Σ′ 4 σ′|Σ′ .

Renard, Falcone, Rollet, Jéron, Marchand 4

q0 q1 q2 q3
Auth

Auth, LockOff
Write

LockOn

Auth
LockOn

LockOff

Write, LockOn, LockOff

Write

Σ

Figure 2: Property ϕex modelling writes on
a shared storage device

Automata. An automaton is a tuple 〈Q, q0,Σ,

−→, F 〉, where Q is the set of states, q0 ∈ Q is
the initial state, Σ is the alphabet,−→⊆ Q×Σ×Q
is the transition relation and F ⊆ Q is the set
of accepting states. Whenever (q, a, q′) ∈ −→, we
note it q a−→ q′. Relation −→ is extended to words
σ ∈ Σ∗ by noting q σ.a−−→ q′ whenever there ex-
ists q′′ s.t. q σ−→ q′′ and q′′ a−→ q′. Moreover, for
any q ∈ Q, q ε−→ q always holds. An automaton

A = 〈Q, q0,Σ,−→, F 〉 is deterministic if ∀q ∈ Q,∀a ∈ Σ, (q
a−→ q′ ∧ q a−→ q′′) =⇒ q′ = q′′.

A is complete if ∀q ∈ Q,∀a ∈ Σ,∃q′ ∈ Q, q
a−→ q′. A word w is accepted by A if there ex-

ists q ∈ F such that q0
w−→ q. The language (i.e. set of all words) accepted by A is denoted

by L(A). A property is a language over an alphabet. A regular property is a language accepted
by an automaton. In the sequel, we assume that a property ϕ is represented by a deterministic
and complete automaton Aϕ. For example, in Fig. 2, Q = {q0, q1, q2, q3}, the initial state is
q0, Σ = {Auth,LockOff, LockOn,Write}, F = {q1, q2}, and the transition relation −→
contains for instance (q0,Auth, q1), (q1,LockOn, q2), and (q3,LockOn, q3).

Timed Languages. Let R≥0 be the set of non-negative real numbers, and Σ a finite alphabet of
actions. An event is a pair (t, a) ∈ R≥0 × Σ. We define date((t, a)) = t and act((t, a)) = a

the projections of events on dates and actions respectively. A timed word over Σ is a word over
R≥0 × Σ whose real parts are ascending, i.e. σ is a timed word if σ ∈ (R≥0 × Σ)∗ and ∀i ∈
[1; |σ| − 1],date(w(i)) ≤ date(w(i + 1)). tw(Σ) denotes the set of timed words over Σ. For a
timed word σ = (t1, a1).(t2, a2) . . . (tn, an) and an integer i s.t. 1 ≤ i ≤ n, ti is the time elapsed
before action ai occurs. We naturally extend the notions of prefix and residual to timed words.
We note time(σ) = date(σ(|σ|)) for σ 6= ε, and time(ε) = 0. We define the observation of σ at
time t as the timed word obs(σ, t) = max4({σ′ | σ′ 4 σ∧time(σ′) ≤ t}), corresponding to the
word that would be observed at date t if events were received at the date they are associated with.
We also define the remainder of the observation of σ at time t as nobs(σ, t) = (obs(σ, t))−1.σ,
which corresponds to the events that are to be received after date t. The untimed projection of σ is
ΠΣ(σ) = a1.a2 . . . an, it is the sequence of actions of σ with dates ignored. σ delayed by t ∈ R≥0

is the word noted σ+t t s.t. t is added to all dates: σ+t t = (t1 +t, a1).(t2 +t, a2) . . . (tn+t, an).
Similarly, we define σ−t t, when t1 ≥ t, to be the word (t1 − t, a1).(t2 − t, a2) . . . (tn − t, an).
We also extend the definition of the restriction of σ to Σ′ ⊆ Σ to timed words, s.t. ε|Σ′ = ε,
and for σ ∈ tw(Σ) and (t, a) s.t. σ.(t, a) ∈ tw(Σ), (σ.(t, a))|Σ′ = σ|Σ′ .(t, a) if a ∈ Σ′, and
(σ.(t, a))|Σ′ = σ|Σ′ otherwise. The notations =Σ′ and 4Σ′ are then naturally extended to timed
words. A timed language is any subset of tw(Σ). The notion of extension-closed languages is
naturally extended to timed languages. We also extend the notion of extension-closed languages
to sets of elements composed of a timed word and a date: a set S ⊆ tw(Σ) × R≥0 is time-
extension-closed if for any (σ, t) ∈ S, for all w ∈ tw(Σ) s.t. σ.w ∈ tw(Σ), for all t′ ≥ t,
(σ.w, t′) ∈ S. In other words, S is time-extension-closed if for every σ ∈ tw(Σ), there exists
a date t from which σ and all its extensions are in S, that is, associated with a date greater or
equal to t. Moreover, we define an order on timed words: we say that σ′ is a delayed prefix of σ,
noted σ′ 4d σ, whenever ΠΣ(σ′) 4 ΠΣ(σ) and ∀i ∈ [1; |σ′| − 1],date(σ(i)) ≤ date(σ′(i)).

Optimal Enforcement of (Timed) Properties with Uncontrollable Events 5

Note that the order is not the same in the different constraints: ΠΣ(σ′) is a prefix of ΠΣ(σ), but
dates in σ′ exceed dates in σ. As for the equality = and the prefix order 4, we note σ′ 4dΣ′ σ

whenever σ′|Σ′ 4d σ|Σ′ . We also define a lexical order ≤lex on timed words with identical
untimed projections, s.t. ε ≤lex ε, and for two words σ and σ′ s.t. ΠΣ(σ) = ΠΣ(σ′), and two
events (t, a) and (t′, a), (t′, a).σ′ ≤lex (t, a).σ if t′ < t ∨ (t = t′ ∧ σ′ ≤lex σ).

Consider for example the timed word σ = (1, a).(2, b).(3, c).(4, a) over the alphabet Σ =

{a, b, c}. Then, ΠΣ(σ) = a.b.c.a, obs(σ, 3) = (1, a).(2, b).(3, c), nobs(σ, 3) = (4, a), and
if Σ′ = {b, c}, σ|Σ′ = (2, b) . (3, c), and for instance (1, a) . (2, b) . (4, c) 4d σ, and
σ ≤lex (1, a).(3, b).(3, c).(3, a). Moreover, if w = (1, a).(2, b), then w−1.σ = (3, c).(4, a).

Timed Automata. Let X = {X1, X2, . . . , Xn} be a finite set of clocks, i.e. variables that in-
crease regularly with time. A clock valuation is a function ν from X to R≥0. The set of clock
valuations for the set of clocks X is noted V(X), i.e., V(X) = {ν | ν : X → R≥0}. We con-
sider the following operations on valuations: for any valuation ν, ν+ δ is the valuation assigning
ν(Xi) + δ to every clock Xi ∈ X; for any subset X ′ ⊆ X , ν[X ′ ← 0] is the valuation assigning
0 to each clock inX ′, and ν(Xi) to any other clockXi not inX ′. G(X) denotes the set of guards
consisting of boolean combinations of constraints of the form Xi ./ c with Xi ∈ X , c ∈ N,
and ./∈ {<,≤,=,≥, >}. Given g ∈ G(X) and a valuation ν, we write ν |= g when for every
constraint Xi ./ c in g, ν(Xi) ./ c holds.

Definition 1 (Timed automaton (Alur and Dill, 1992)). A timed automaton (TA) is a tuple A =

〈L, l0, X, Σ, ∆, G〉, s.t. L is a set of locations, l0 ∈ L is the initial location, X is a set of clocks,
Σ is a finite set of events, ∆ ⊆ L×G(X)×Σ× 2X ×L is the transition relation, and G ⊆ L is
a set of accepting locations. A transition (l, g, a,X ′, l′) ∈ ∆ is a transition from l to l′, labelled
with event a, with guard g, and with the clocks in X ′ to be reset.

The semantics of a timed automaton A is a timed transition system JAK = 〈Q, q0,Γ,→, FG〉
where Q = L × V(X) is the (infinite) set of states, q0 = (l0, ν0) is the initial state, with ν0 =

ν[X ← 0], FG = G× V(X) is the set of accepting states, Γ = R≥0 × Σ is the set of transition
labels, each one composed of a delay and an action. The transition relation→⊆ Q× Γ×Q is a

set of transitions of the form (l, ν)
(δ,a)−−−→ (l′, ν′) with ν′ = (ν + δ)[Y ← 0] whenever there is a

transition (l, g, a, Y, l′) ∈ ∆ s.t. ν + δ |= g, for δ ≥ 0.

A timed automaton A = 〈L, l0, X,Σ,∆, G〉 is deterministic if for any different transitions
(l, g1, a, Y1, l

′
1) and (l, g2, a, Y2, l

′
2) in ∆, g1∧g2 is unsatisfiable, meaning that only one transition

can be fired at any time. A is complete if for any l ∈ L and any a ∈ Σ, the disjunction of
the guards of all the transitions leaving l and labelled by a is valid (i.e., it holds for any clock
valuation). An example of a timed automaton is given in Fig. 3.

A run ρ from q ∈ Q is a valid sequence of transitions in JAK starting from q, of the form

ρ = q
(δ1,a1)−−−−→ q1

(δ2,a2)−−−−→ q2 . . .
(δn,an)−−−−−→ qn. The set of runs from q0 is noted Run(A) and

RunFG
(A) denotes the subset of runs accepted by A, i.e. ending in a state in FG. The trace of

the run ρ previously defined is the timed word (t1, a1).(t2, a2) . . . (tn, an), with, for 1 ≤ i ≤ n,
ti =

∑i
k=1 δk. Thus, given the trace σ = (t1, a1).(t2, a2) . . . (tn, an) of a run ρ from a state

q ∈ Q to q′ ∈ Q, we can define w = (δ1, a1).(δ2, a2) . . . (δn, an), with δ1 = t1, and ∀i ∈
[2;n], δi = ti − ti−1, and then q w−→ q′. To ease the notation, we will only consider traces and
note q σ−→ q′ whenever q w−→ q′ for the previously defined w. Note that to concatenate two traces

Renard, Falcone, Rollet, Jéron, Marchand 6

l0 l1 l2

l3

Auth

Auth,
LockOff x B 0,
Write x ≥ 2

LockOn

Auth,
LockOn

LockOff
x B 0

Write,
LockOn,
LockOff

Write
x < 2 Write

Σ

Figure 3: Property ϕt modelling writes on a shared storage device

σ1 and σ2, it is needed to delay σ2 to obtain a trace: the concatenation σ of σ1 and σ2 is the trace
defined as σ = σ1.(σ2 +t time(σ1)). Thus, if q σ1−→ q′

σ2−→ q′′, then q σ−→ q′′.

Timed Properties. A regular timed property is a timed language ϕ ⊆ tw(Σ) accepted by a timed
automaton. For a timed word σ, we say that σ satisfies ϕ, noted σ |= ϕwhenever σ ∈ ϕ. We only
consider regular timed properties whose associated automaton is complete and deterministic.

Given a complete and deterministic automaton A s.t. Q is the set of states of JAK and −→ its
transition relation, and a word σ, for q ∈ Q, we note q afterσ = q′, where q′ is s.t. q σ−→ q′. Since
A is complete and deterministic, there exists only one such q′. We note Reach(σ) = q0 after σ.
We extend these definitions to languages: if L is a language, q after L =

⋃
σ∈L q after σ and

Reach(L) = q0 afterL. These definitions are valid both in the untimed and timed cases. For the
timed case, we also allow to add an extra parameter to after and Reach, that represents an obser-
vation time. For q ∈ Q, t ∈ R≥0, and σ ∈ tw(Σ), q after (σ, t) = (l, ν + t− time(obs(σ, t))),
where (l, ν) = qafter(obs(σ, t)), and Reach(σ, t) = q0after(σ, t). This allows to consider states
of the semantics that are reached after the last action of the input word, by letting time elapse. In
particular, note that for (l, ν) ∈ Q, (l, ν)after(ε, t) = (l, ν+t) is the state reached from (l, ν) by
letting time elapse of t time units. Moreover, for (l, ν) ∈ Q, we note up((l, ν)) = {(l, ν+t) | t ∈
R≥0}. This definition is extended to sets of states: for S ⊆ Q, up(S) =

⋃
q∈S up(q). We also de-

fine a predecessor operator: for q ∈ Q and a ∈ Σ, Preda(q) = {q′ ∈ Q | q′ after a = q} for the
untimed setting, and Preda(q) = {q′ ∈ Q | q′ after(0, a) = q} for the timed setting. This defini-
tion is extended to words: if σ ∈ Σ∗ (or σ ∈ tw(Σ)), then Predσ(q) = {q′ ∈ Q | q′afterσ = q}.

Example 1 (Shared Data Storage). Consider the property ϕt described in Fig. 3 and representing
writes on a shared data storage. A more detailed description of this property is given in Sec-
tion 4.3. This property is similar to ϕex (Fig. 2), but a clock has been added to impose that writes
should not occur before two time units have elapsed since the reception of the last LockOff
event. Thus, the set of locations of ϕt is L = {l0, l1, l2, l3}, the initial location is l0, the set
of clocks is X = {x}, the alphabet is Σ = {Auth,LockOn,LockOff,Write}, the set of
accepting locations is G = {l1, l2}, and the set of transitions contains for instance transitions
(l0,>,Auth, ∅, l1), (l2,>,Auth, ∅, l2), and (l3,>,LockOn, ∅, l3), where > is the guard that
holds for every clock valuation.

Let Q = L × R≥0 be the set of states of the semantics of ϕt, where the clock valuations are

Optimal Enforcement of (Timed) Properties with Uncontrollable Events 7

replaced by the value of the unique clock x. Then, Reach((2,Auth)) = (l0, 0)after(2,Auth) =

(l1, 2), and, for example, (l2, 3) after ((2,LockOff), 4) = (l1, 2), because the clock is reset
when the LockOff action occurs, and then 4 − 2 = 2 time units remain to reach date 4. Also,
PredWrite((l1, 3)) = {(l1, 3)}, but, for instance, PredWrite((l1, 1)) = ∅ since the only transition
labelled by Write and leading to l1 has guard x ≥ 2.

3. Enforcement Monitoring of Untimed Properties

In this section, ϕ is a regular property defined by an automaton Aϕ = 〈Q, q0,Σ,−→, F 〉. Recall
that the general scheme of an enforcement mechanism (EM) is given in Fig. 1, where S represents
the running system, σ its execution, E the enforcement mechanism, ϕ the property to enforce,
and E(σ) the output of the enforcement mechanism, which should satisfy ϕ.

We consider uncontrollable events in the set Σu ⊆ Σ. These events cannot be modified by an
EM, i.e. they cannot be suppressed nor buffered, so they must be output by the EM whenever
they are received. Let us note Σc = Σ \Σu the set of controllable events, which can be modified
by the EM. An EM can decide to buffer them to delay their emission, but it cannot suppress them
(nevertheless, it can delay them endlessly, keeping their order unchanged).§ Thus, an EM may
interleave controllable and uncontrollable events.

In this section, for q ∈ Q, we note uPred(q) =
⋃
u∈Σu

Predu(q), and we extend this definition
to sets of states: for S ⊆ Q, uPred(S) =

⋃
q∈S uPred(q). For S ⊆ Q, we also note S = Q \ S.

3.1. Enforcement Functions and their Requirements

In this section, we consider an alphabet of actions Σ. An enforcement function is a description
of the input/output behaviour of an EM. Formally, we define enforcement functions as follows:

Definition 2 (Enforcement Function). An enforcement function is a function from Σ∗ to Σ∗, that
is increasing on Σ∗ with respect to 4: ∀(σ, σ′) ∈ (Σ∗)2, σ 4 σ′ =⇒ E(σ) 4 E(σ′).

An enforcement function is a function that modifies an execution, and that cannot remove
events it has already output.

In the sequel, we define the requirements on an EM and express them on enforcement func-
tions. As stated previously, an EM should ensure that the executions of a running system satisfy
ϕ, thus its enforcement function has to be sound, meaning that its output always satisfies ϕ:

Definition 3 (Soundness). An enforcement function E : Σ∗ → Σ∗ is sound with respect to ϕ in
an extension-closed set S ⊆ Σ∗ if ∀σ ∈ S,E(σ) |= ϕ.

Since there are some uncontrollable events that are only observable by the EM, receiving un-
controllable events could lead to the property not being satisfied by the output of the enforcement
mechanism. Moreover, some uncontrollable sequences could lead to a state of the property that
would be a non-accepting sink state, leading to the enforcement mechanism not being able to
satisfy the property any further. Consequently, in Definition 3, soundness is not defined for all
words in Σ∗, but in a subset S, since it might happen that it is impossible to ensure it from the

§ This choice appeared to us as the most realistic one. Extending the notions presented in this section in order to handle
enforcement mechanisms with suppression is rather simple.

Renard, Falcone, Rollet, Jéron, Marchand 8

initial state. Thus for an EM to be effective, S needs to be extension-closed to ensure that the
property is always satisfied once it has been. If S were not extension-closed, soundness would
only mean that the property is sometimes satisfied (in particular, the identity function would be
sound in ϕ). In practice, there may be an initial period where the enforcement mechanism does
not ensure the property (which is unavoidable), but as soon as a safe state is reached, the property
becomes enforceable forever (and the property is guaranteed to hold). This approach appears to
be the closest to the usual one without uncontrollable events.

The usual notion of transparency (cf. (Schneider, 2000; Ligatti et al., 2009)) states that the
output of an EM is the longest prefix of the input satisfying the property. The name “trans-
parency” stems from the fact that correct executions are left unchanged. However, because of
uncontrollable events, events may be released in a different order from the one they are received.
Therefore, transparency can not be ensured, and we define the weaker notion of compliance.

Definition 4 (Compliance). E is compliant with respect to Σu and Σc, noted
compliant(E,Σu,Σc), if ∀σ ∈ Σ∗, E(σ) 4Σc σ ∧E(σ) =Σu σ ∧ ∀u ∈ Σu, E(σ).u 4 E(σ.u).

Intuitively, compliance states that the EM does not change the order of the controllable events
and emits uncontrollable events simultaneously with their reception, possibly followed by stored
controllable events. We chose to consider enforcement mechanisms that can delay controllable
events. To our opinion, it corresponds to the most common choice in practice. However, other
primitives, such as deletion or reordering of controllable events could be easily considered. Using
other enforcement primitives would require only few changes, especially adapting the definitions
of compliance and optimality, and the construction of G (see below). When clear from the con-
text, the partition is not mentioned: E is said to be compliant, and we note it compliant(E).

We say that a property ϕ is enforceable whenever there exists a compliant function that is
sound with respect to ϕ.

In addition, an enforcement mechanism should be optimal in the sense that its output se-
quences should be maximal while preserving soundness and compliance. In the same way we
defined soundness in an extension-closed set, we define optimality as follows:

Definition 5 (Optimality). An enforcement functionE : Σ∗ → Σ∗ that is compliant with respect
to Σu and Σc, and sound in an extension-closed set S ⊆ Σ∗ is optimal in S if:

∀E′ : Σ∗ → Σ∗,∀σ ∈ S, ∀a ∈ Σ,

(compliant(E′) ∧ E′(σ) = E(σ) ∧ |E′(σ.a)| > |E(σ.a)|)⇒ (∃σu ∈ Σ∗u, E
′(σ.a.σu) 6|= ϕ).

Intuitively, optimality states that if there exists a compliant enforcement function that outputs
a longer word than an optimal enforcement function, then there must exist a sequence of un-
controllable events that would lead the output of that enforcement function to violate ϕ. This
would imply that this enforcement function is not sound because of σ.a.σu. Thus, an enforce-
ment function that outputs a longer word than an optimal enforcement function can not be sound
and compliant. Since it is not always possible to satisfy the property from the beginning, this
condition is restrained to an extension-closed subset of Σ∗, as is for soundness (Definition 3).

Example 2. We consider a simple untimed shared storage device. After Authentication, a user can
write a value only if the storage is unlocked. (Un)locking the device is decided by another entity,
meaning that it is not controllable by the user. Property ϕex (see Fig. 2) formalises the above re-

Optimal Enforcement of (Timed) Properties with Uncontrollable Events 9

quirement.ϕex is not enforceable if the uncontrollable alphabet is {LockOn,LockOff,Auth}¶
since reading the word LockOn from q0 leads to q3, which is not an accepting state. However,
the existence of such a word does not imply that it is impossible to enforce ϕex for some other
input words. If word Auth is read, then state q1 is reached, and from this state, it is possible to
enforce ϕex by emitting Write only when in state q1.

3.2. Synthesising Enforcement Functions

Example 2 shows that some input words cannot be corrected by the EM because of uncontrollable
events. Nevertheless, since the received events may lead to a state from which it is possible to
ensure that ϕ will be satisfied (meaning that for any events received as input, the enforcement
mechanism can output a sequence that satisfies ϕ), it would then be possible to define a subset
of Σ∗ in which an enforcement function would be sound.

To be compliant, an enforcement mechanism can buffer the controllable events it has received
to emit them later (i.e. after having received another events). Thus, the set of states from which an
enforcement mechanism can ensure soundness, i.e. ensure it can always compute a prefix of the
buffer that leads to an accepting state, whatever uncontrollable events are received, depends on its
buffer. Thus, to synthesise a sound and compliant enforcement function, one needs to compute
the set of words that can be emitted from a certain state with a given buffer, ensuring that an
accepting state is always reachable. This set will be called G, and to define it, the set of states
from which the enforcement mechanism can wait some events knowing an accepting state will
always be reachable should be known (this set has to be a subset of F since it is possible that no
event is to be received). This set of states, which depends on the buffer, will be noted S, and is
defined in conjunction with another set of states, I, that is used only to compute S. Thus, for a
buffer σ ∈ Σ∗c , we define the sets of states I(σ) and S(σ), that represent the states from which the
enforcement mechanism can output the first event of σ, and the states in which the enforcement
mechanism can wait for another event, respectively.

Definition 6 (I, S). Given a sequence of controllable events σ ∈ Σ∗c , we define the sets of states
of ϕ, I(σ) and S(σ) by induction as follows: I(ε) = ∅, S(ε) = {q ∈ F | q after Σ∗u ⊆ F} and,
for σ ∈ Σ∗c and a ∈ Σc,

I(a.σ) = Preda(S(σ) ∪ I(σ)),

S(σ.a) = S(σ) ∪max⊆({Y ⊆ FG | Y ∩ uPred(Y ∪ I(σ.a)) = ∅}).

Intuitively, S(σ) is the set of “winning” states, i.e. if an enforcement mechanism has reached
a state in S(σ) with buffer σ, it will always be able to reach F , whatever events are received
afterwards, controllable or uncontrollable. Note that since there is a possibility of not receiving
any other event, S(σ) ⊆ F , because the EM could end in any of these states, thus this condition is
needed to ensure that the output of the EM satisfies the property. S(σ.a) is defined as the biggest
subset of F such that no uncontrollable event leads outside of it or I(σ.a), meaning that whatever
uncontrollable event is received from a state in S(σ.a), the state reached will be either in F (since

¶ Uncontrollable events are emphasised in italics.

Renard, Falcone, Rollet, Jéron, Marchand 10

it will be in S(σ.a)) or in I(σ.a). In both cases, this means that the enforcement mechanism can
reach an accepting state, whatever uncontrollable events are received.

I(σ) is the set of intermediate states, the states that can be “crossed” while emitting a prefix
of the buffer. The states in I(σ) do not need to be in F since no event can be received while the
EM is in these states, because it emits all the controllable word it wishes to emit at once. I(a.σ)

is defined as the set of all states from which following the transition labelled by a leads either
to I(σ) or S(σ), meaning that the EM can emit the first event of its buffer to be able to reach an
accepting state, whatever uncontrollable events are received.

Now, we can use S to define G, the set of words that can be emitted from a state q ∈ Q by an
enforcement mechanism with a buffer σ ∈ Σ∗c .

Definition 7 (G). For q ∈ Q, σ ∈ Σ∗c , G(q, σ) = {w ∈ Σ∗c | w 4 σ ∧ q after w ∈ S(w−1.σ)}.
Intuitively, G(q, σ) is the set of words that can be output by a compliant enforcement mech-

anism to ensure soundness from state q with buffer σ. When clear from context, the parameters
could be omitted: G is the value of the function for the state reached by the output of an enforce-
ment mechanism with its buffer.

Now, we use G to define the functional behaviour of the enforcement mechanism.

Definition 8 (Functions storeϕ, Eϕ). ‖ Function storeϕ : Σ∗ → Σ∗ × Σ∗ is defined as:

— storeϕ(ε) = (ε, ε);
— for σ ∈ Σ∗ and a ∈ Σ, let (σs, σc) = storeϕ(σ), then:

storeϕ(σ.a) =

{
(σs.a.σ

′
s, σ
′
c) if a ∈ Σu

(σs.σ
′′
s , σ

′′
c) if a ∈ Σc

, where:

κϕ(q, w) = max4(G(q, w) ∪ {ε}), for q ∈ Q and w ∈ Σ∗c ,
σ′s = κϕ(Reach(σs.a), σc), σ′c = σ′s

−1
.σc,

σ′′s = κϕ(Reach(σs), σc.a), σ′′c = σ′′s
−1
.(σc.a).

The enforcement function Eϕ : Σ∗ → Σ∗ is defined as Eϕ(σ) = Π1(storeϕ(σ)), for any σ ∈ Σ∗.

σ E
σc

σs

Figure 4: Enforcement
function

Figure 4 gives a scheme of the behaviour of the enforcement func-
tion. Intuitively, σs is the word that can be released as output, whereas
σc is the buffer containing the events that are already read/received, but
cannot be released as output yet because they lead to an unsafe state
from which it would be possible to violate the property reading only
uncontrollable events. Upon receiving a new event a, the enforcement

mechanism distinguishes two cases:

— If a belongs to Σu, then it is output, as required by compliance. Then, the longest prefix of
σc that satisfies ϕ and leads to a state in S for the associated buffer is also output.

— If a is in Σc, then it is added to σc, and the longest prefix of this new buffer that satisfies ϕ
and leads to a state in S for the associated buffer is emitted, if it exists.

In both cases, κϕ is used to compute the longest word that can be output, that is the longest word
in G for the state reached so far with the current buffer of the enforcement mechanism, or ε if this

‖ Eϕ and storeϕ depend on Σu and Σc, but we did not write it in order to lighten the notations.

Optimal Enforcement of (Timed) Properties with Uncontrollable Events 11

set is empty. The parameters of κϕ are those which are passed to G. They correspond to the state
reached so far by the output of the enforcement mechanism, and its current buffer, respectively.

As seen in Example 2, some properties are not enforceable, but receiving some events may
lead to a state from which it is possible to enforce. Therefore, it is possible to define a set of
words, called Pre(ϕ), such that Eϕ is sound in Pre(ϕ), as stated in Proposition 2:

Definition 9 (Pre). The set of input words Pre(ϕ) ⊆ Σ∗ is defined as follows:

Pre(ϕ) = {σ ∈ Σ∗ | G(Reach(σ|Σu
), σ|Σc

) 6= ∅}.Σ∗

Intuitively, Pre(ϕ) is the set of words in which Eϕ is sound. This set is extension-closed, as
required by Definition 3. In Eϕ, using S ensures that once G is not empty, then it will never be
afterwards, whatever events are received. Thus, Pre(ϕ) is the set of input words such that the
output of Eϕ would belong to G. Since Eϕ outputs only uncontrollable events until G becomes
non-empty, the definition of Pre(ϕ) considers that the state reached is the one that is reached
by emitting only the uncontrollable events of σ, and the corresponding buffer would then be the
controllable events of σ.
Example 3. Considering property ϕex (Fig. 2), with the uncontrollable alphabet Σu = {Auth,
LockOff,LockOn}, Pre(ϕex) = Write∗.Auth.Σ∗. Indeed, from the initial state q0, if an
uncontrollable event, say LockOff, is received, then q3 is reached, which is a non-accepting
sink state, and is thus not in S(ε). In order to reach a state in S (i.e. q1 or q2), it is necessary to
read Auth. Once Auth is read, q1 is reached, and from there, all uncontrollable events lead to
either q1 or q2. The same holds true from q2. Thus, it is possible to stay in the accepting states q1

and q2, by delaying Write events when in q2 until a LockOff event is received. Consequently,
q1 and q2 are in S(σ) for all σ ∈ Σ∗c , and thus Pre(ϕex) = Write∗.Auth.Σ∗, since Write
events can be buffered while in state q0 until event Auth is received, leading to q1 ∈ S(Write∗).

Eϕ, as defined in Definition 8, is an enforcement function that is sound with respect to ϕ in
Pre(ϕ), compliant with respect to Σu and Σc, and optimal in Pre(ϕ).

Proposition 1. Eϕ as defined in Definition 8 is an enforcement function.

Sketch of proof. We have to show that for all σ and σ′ in Σ∗, Eϕ(σ) 4 Eϕ(σ.σ′). Following the
definition of storeϕ, this holds provided that σ′ ∈ Σ (i.e. σ′ is a word of size 1). Since 4 is an
order, it follows that the proposition holds for all σ′ ∈ Σ′.

Proposition 2. Eϕ is sound with respect to ϕ in Pre(ϕ), as per Definition 3.

Sketch of proof. We have to show that if σ ∈ Pre(ϕ), then Eϕ(σ) |= ϕ. The proof is made by
induction on σ. In the induction step, considering a ∈ Σ, we distinguish three different cases:

— σ.a 6∈ Pre(ϕ). Then the proposition holds.
— σ.a ∈ Pre(ϕ), but σ 6∈ Pre(ϕ). Then the input reaches Pre(ϕ), and since it is extension-

closed, all extensions of σ also are in Pre(ϕ), and we prove that the proposition holds con-
sidering the definition of Pre(ϕ).

— σ ∈ Pre(ϕ) (and thus, σ.a ∈ Pre(ϕ) since it is extension-closed). Then, we prove that the
proposition holds, based on the definition of storeϕ, and more precisely on the definition of
S, that ensures that there always exists a compliant output that satisfies ϕ.

Proposition 3. Eϕ is compliant, as per Definition 4.

Renard, Falcone, Rollet, Jéron, Marchand 12

q0 q1 q2

u

c

u

c

u, c

Figure 5: Property that can be enforced by blocking all controllable events c.

Sketch of proof. The proof is made by induction on the input σ ∈ Σ∗. Considering σ ∈ Σ∗ and
a ∈ Σ, the proof is straightforward by considering the different values of storeϕ(σ.a), (σ.a)|Σu

,
and (σ.a)|Σc

when a ∈ Σc and a ∈ Σu.

Remark 2. Notice that for some properties, an enforcement function that would block all con-
trollable events may still be sound and compliant. Consider for instance the property represented
in Fig. 5, where c is a controllable event, and u an uncontrollable event. Then, outputting only the
events u and buffering all the c events allows to stay in state q0, which is accepting and in S(σ)

for every word σ ∈ c∗. This means that an enforcement mechanism that blocks all controllable
events would be sound and compliant. Nevertheless, if two controllable events c are received,
they can be output to reach state q2, which is also accepting and safe for all possible sequences.
Then it is possible to release more events. Therefore, an enforcement mechanism that would out-
put two c events when they are received would be “better” than the first one blocking all of them,
in the sense that its output would be longer (and thus closer to the input).

For any σ ∈ Pre(ϕ), Eϕ(σ) is the longest possible word that ensures soundness and compli-
ance, that is controllable events are blocked only when necessary. Thus, Eϕ is also optimal in
Pre(ϕ):

Proposition 4. Eϕ is optimal in Pre(ϕ), as per Definition 5.

Sketch of proof. The proof is made by induction on the input σ ∈ Σ∗. Once σ ∈ Pre(ϕ),
we know that Eϕ(σ) |= ϕ since Eϕ is sound in Pre(ϕ). Eϕ is optimal because in storeϕ, κϕ
provides the longest possible word. If a longer word were output, then either the output would
not satisfy ϕ, or it would lead to a state that is not in S for the corresponding buffer, meaning that
there would exist an uncontrollable word leading to a non-accepting state that would not be in S

for the buffer. Then, the enforcement mechanism would have to output some controllable events
from the buffer to reach an accepting state, but since the state is not in S, there would exist again
an uncontrollable word leading to a non-accepting state that is not in S for the updated buffer. By
iterating, the buffer would become ε whereas the output of the enforcement mechanism would
be leading to a non-accepting state. Therefore, outputting a longer word would mean that the
function is not sound. This means that Eϕ is optimal in Pre(ϕ), since it outputs the longest word
that allows to be both sound and compliant.

Example 4. Consider property ϕex (Fig. 2). We illustrate in table 1 the enforcement mechanism
by showing the evolution of σs and σc with input σ = Auth . LockOn . Write . LockOff.

3.3. Enforcement Monitors

Enforcement monitors are operational descriptions of EMs. We give a representation of an EM
for a property ϕ as an input/output transition system. The input/output behaviour of the enforce-

Optimal Enforcement of (Timed) Properties with Uncontrollable Events 13

Table 1: Example of the evolution of (σs, σc) = storeϕex(σ), with input
Auth.LockOn.Write.LockOff

σ σs σc

ε ε ε

Auth Auth ε
Auth.LockOn Auth.LockOn ε

Auth.LockOn.Write Auth.LockOn Write
Auth.LockOn.Write.LockOff Auth.LockOn.LockOff.Write ε

ment monitor is the same as the one of the enforcement function Eϕ defined in Section 3.2.
Enforcement monitors are purposed to ease the implementation of EMs.

Definition 10 (Enforcement Monitor). An enforcement monitor E for ϕ is a transition system
〈CE , cE0 ,ΓE , ↪→E〉 such that:

— CE = Q× Σ∗ is the set of configurations.
— cE0 = 〈q0, ε〉 is the initial configuration.
— ΓE = Σ∗ × {dump(.),pass-uncont(.), store-cont(.)} × Σ∗ is the alphabet, where the first,

second, and third members are an input sequence, an enforcement operation, and an output
sequence, respectively.

— ↪→E ⊆ CE × ΓE × CE is the transition relation, defined as the smallest relation obtained by
applying the following rules in order (where w/ ./ /w′ stands for (w, ./, w′) ∈ ΓE):

– Dump: 〈q, a.σc〉 ↪
ε/ dump(a)/a−−−−−−−−→E 〈q′, σc〉, if a ∈ Σc, G(q, a.σc) 6= ∅ and G(q, a.σc) 6=

{ε}, with q′ = q after a,

– Pass-uncont: 〈q, σc〉 ↪
a/ pass-uncont(a)/a−−−−−−−−−−−−→E 〈q′, σc〉, with a ∈ Σu and q′ = q after a,

– Store-cont: 〈q, σc〉 ↪
a/ store-cont(a)/ε−−−−−−−−−−−→E 〈q, σc.a〉, with a ∈ Σc.

In E , a configuration c = 〈q, σ〉 represents the current state of the enforcement mechanism. The
state q is the one reached so far in Aϕ with the output of the monitor. The word of controllable
events σc represents the buffer of the monitor, i.e. the controllable events of the input that it
has not output yet. Rule dump outputs the first event of the buffer if it can ensure soundness
afterwards (i.e. if there is a non-empty word in G, that must begin with this event). Rule pass-
uncont releases an uncontrollable event as soon as it is received. Rule store-cont simply adds a
controllable event at the end of the buffer. Compared to Section 3.2, the second member of the
configuration represents buffer σc in the definition of storeϕ, whereas σs is here represented by
state q which is the first member of the configuration, such that q = Reach(σs).

Proposition 5. The output of the enforcement monitor E for input σ is Eϕ(σ).

In Proposition 5, the output of the enforcement monitor is the concatenation of all the outputs
of the word labelling the path followed when reading σ. A more formal definition is given in the
proof of this proposition, in appendix A.1.
Sketch of proof. The proof is made by induction on the input σ ∈ Σ∗. We consider the rules
applied when receiving a new event. If the event is controllable, then rule store-cont() can be
applied, possibly followed by rule dump() applied several times. If the event is uncontrollable,
then rule pass-uncont() can be applied, again possibly followed by rule dump() applied several

Renard, Falcone, Rollet, Jéron, Marchand 14

times. Since rule dump() applies only when there is a non-empty word in G, then this word must
begin with the first event of the buffer, and the rule dump() can be applied again if there was a
word in G of size at least 2, meaning that there is another non-empty word in the new set G, and
so on. Thus, the output of all the applications of the rule dump() corresponds to the computation
of κϕ in the definition of storeϕ, and consequently the outputs of E and Eϕ are the same.
Remark 3. Enforcement monitors as per Definition 10 are somewhat similar to the configura-
tion description of EMs in (Falcone et al., 2011). The main difference with the EMs considered
in (Falcone et al., 2011) is that the rule to be applied depends on the memory (the buffer), whereas
in (Falcone et al., 2011) it only depends on the state and the event received.

4. Enforcement Monitoring of Timed Properties

We extend the framework in Section 3 to enforce timed properties. EMs and their properties
need to be redefined to fit with timed properties. Enforcement functions need an extra parameter
representing the date at which the output is observed. Soundness needs to be weakened so that,
at any time instant, the property is allowed not to hold, provided that it will hold in the future.

q1 q2
a,b,
x ≥ 2

a,b

Figure 6: A timed property enforceable
only if Σu = ∅.

Considering uncontrollable events with timed
properties raises several difficulties. First, as in the
untimed case, the order of events might be mod-
ified. Thus, previous definitions of transparency
(Pinisetty et al., 2012), stating that the output of
an enforcement function will eventually be a de-

layed prefix of the input, can not be used in this situation. Moreover, when delaying some events
to have the property satisfied in the future, one must consider the fact that some uncontrollable
events could occur at any moment (and cannot be delayed). Finally, some properties become not
enforceable because of uncontrollable events, meaning that for these properties it is impossible
to obtain sound EMs, as shown in Example 5.

In this section, ϕ is a timed property defined by a timed automaton Aϕ = 〈L, l0, X, Σ,∆, G〉
with semantics JAϕK = 〈Q, q0,Γ,−→, FG〉. As in the untimed setting, for q ∈ Q, we define
uPred(q) =

⋃
u∈Σu

Predu(q), and for S ⊆ Q, uPred(S) =
⋃
q∈S uPred(q) and S = Q \ S.

Example 5 (Non-Enforceable Property). Consider the property defined by the automaton in Fig. 6
with alphabet {a, b}. If all actions are controllable (Σu = ∅), the property is enforceable because
an EM just needs to delay events until clock x exceeds 2. Otherwise, the property is not enforce-
able. For instance, if Σu = {a}, word (1, a) cannot be corrected.

4.1. Enforcement Functions and their Properties

An enforcement function takes a timed word and the current time as input, and outputs a timed
word:

Definition 11 (Enforcement Function). Given an alphabet of actions Σ, an enforcement function
is a function E : tw(Σ)× R≥0 → tw(Σ) s.t.:

∀σ ∈ tw(Σ),∀t ∈ R≥0,∀t′ ≥ t,
E(σ, t) 4 E(σ, t′) ∧ (σ.(t, a) ∈ tw(Σ) =⇒ E(σ, t) 4 E(σ.(t, a), t)).

Optimal Enforcement of (Timed) Properties with Uncontrollable Events 15

Definition 11 models physical constraints: an enforcement function can not remove something
already output. The two conditions correspond to letting time elapse and reading a new event,
respectively. In both cases, the new output must be an extension of what has been output so far.

Soundness states that the output of an enforcement function should eventually satisfy the prop-
erty:

Definition 12 (Soundness). An enforcement function E is sound with respect to ϕ in a time-
extension-closed set S ⊆ tw(Σ)× R≥0 if ∀(σ, t) ∈ S,∃t′ ≥ t, ∀t′′ ≥ t′, E(σ, t′′) |= ϕ.

An enforcement function is sound in a time-extension-closed set S if for any (σ, t) in S, the
value of the enforcement function with input σ from date t satisfies the property in the future.
As in the untimed setting, soundness is not defined for all words in tw(Σ), but in a set of words,
this time associated with dates. The reason is the same as in the untimed setting: the EM might
not be able to ensure soundness from the beginning, because of bad uncontrollable sequences.
Moreover, in the definition of soundness, the set S needs to be time-extension-closed to ensure
that the property remains satisfied once the EM starts to operate.
Remark 4. Soundness could have been defined in the same way as in the untimed setting, how-
ever, with such alternative stronger definition, where the output of the EM must always satisfy
the property, less properties could be enforced. Weakening soundness allows to enforce more
properties, and to let enforcement mechanisms produce longer outputs.

Compliance states that uncontrollable events should be emitted instantaneously upon recep-
tion, and that controllable events can be delayed, but their order must remain unchanged:

Definition 13 (Compliance). Given an enforcement functionE defined on an alphabet Σ, we say
thatE is compliant with respect to Σu and Σc, noted compliant(E,Σu,Σc), if ∀σ ∈ tw(Σ),∀t ∈
R≥0, E(σ, t) 4dΣc

σ ∧ E(σ, t) =Σu
obs(σ, t) ∧ ∀u ∈ Σu, E(σ, t).(t, u) 4 E(σ.(t, u), t).

Compliance is similar to the one in the untimed setting except that the controllable events can
be delayed. However, their order must not be modified by the EM, that is, when considering the
projections on controllable events, the output should be a delayed prefix of the input. Any uncon-
trollable event is released immediately when received, that is, when considering the projections
on uncontrollable events, the output should be equal to the input.

We say that a property is enforceable whenever there exists a sound and compliant enforcement
function for this property.

For a compliant enforcement function E : tw(Σ) × R≥0 → tw(Σ), and a timed word σ ∈
tw(Σ), we note E(σ) the value of E with input σ at infinite time (i.e. when it has stabilised).
More formally, E(σ) = E(σ, t), where t ∈ R≥0 is s.t. for all t′ ≥ t, E(σ, t′) = E(σ, t). Since σ
is finite, and E is compliant, the output of E with input word σ is finite, thus such a t must exist.

As in the untimed setting, we define a notion of optimality in a set:

Definition 14 (Optimality). We say that an enforcement function E : tw(Σ) × R≥0 → tw(Σ)

that is compliant with respect to Σc and Σu and sound in a time-extension-closed set S ⊆
tw(Σ) × R≥0 is optimal in S if for any enforcement function E′ : tw(Σ) × R≥0 → tw(Σ),
for all σ ∈ tw(Σ), for all (t, a) s.t. σ.(t, a) ∈ tw(Σ),

compliant(E′,Σu,Σc) ∧ (σ, t) ∈ S ∧ E′(σ, t) = E(σ, t) ∧ E(σ.(t, a)) ≺d E
′(σ.(t, a))

=⇒ (∃σu ∈ tw(Σu), E′(σ.(t, a).σu) 6|= ϕ).

Optimality states that outputting a greater word (with respect to 4d) than the output of an

Renard, Falcone, Rollet, Jéron, Marchand 16

optimal enforcement function leads to either compliance or soundness not being guaranteed. This
holds from the point where the input begins to belong to the set in which the function is optimal,
and since it is time-extension-closed, the input will belong to this set afterwards. In Definition 14,
E is an optimal enforcement function, and E′ is another compliant enforcement function, that
we consider having a greater output (with respect to 4d) than E for some input word σ.(t, a).
Then, since E is optimal, E′ is not sound, because there exists a word of uncontrollable events
s.t. the output of E′ after receiving it eventually violates ϕ.

An EM delaying events should buffer them until it can output them. Being able to enforce ϕ
depends on the possibility of computing a timed word with the events of the buffer, even when
receiving some uncontrollable events, that leads to an accepting state from the current one. Thus,
we define, for every sequence σ of controllable actions, two sets of states of the semantics of
Aϕ, S(σ) and I(σ). S(σ) is the largest set s.t. from any of its states, it is possible to wait before
emitting a word that leads to FG, knowing that all along the path, receiving an uncontrollable
event will not prevent from computing such a word again. I(σ) is the set of states from which it
is possible to emit the first event of σ and reach a state from which it is possible to compute a
word that leads to FG, again s.t. receiving uncontrollable events does not prevent from eventually
reaching FG.

Definition 15 (I, S). The sets of states of JAϕK, I(σ) and S(σ), are inductively defined over
sequences of controllable events as follows: I(ε) = ∅ and S(ε) = {q ∈ FG | q after tw(Σu) ⊆
FG} and, for σ ∈ Σ∗c and a ∈ Σc,

I(a.σ) = Preda(I(σ) ∪ S(σ)),

S(σ.a) = S(σ) ∪max⊆({X ∪ Y ⊆ Q | Y ⊆ FG ∧ Y = up(Y)∧
(∀x ∈ X,∃i ∈ I(σ.a),∃δ ∈ R≥0, x after (ε, δ) = i∧
∀t < δ, x after (ε, t) ∈ X)∧

(X ∪ Y) ∩ uPred(X ∪ Y ∪ I(σ.a)) = ∅})

Intuitively, in Definition 15, S(σ) is the set of states of the semantics of ϕ that our EM will be
allowed to reach with a buffer σ. It corresponds to the states from which the EM will be able to
reach FG, meaning that its output will satisfy the property, even if some uncontrollable events are
received. From any state in S(σ), the EM can compute a word of controllable events (taken from
its buffer σ) leading to FG, and if some uncontrollable events are received, it will also be able to
compute a new word to reach FG, with events taken from its (possibly modified due to previous
emissions of events) buffer. The set I(σ) is the set of states that the output of the enforcement
mechanism will be authorised to “traverse”, meaning that the enforcement mechanism can emit
the first event of its buffer σ immediately from these states, but not wait in them (contrary to the
states in S(σ), from which the EM could choose to wait before emitting a new event).

These sets are defined by induction on σ, which represents the buffer of the EM. If the EM
has its buffer empty (σ = ε), then the set of states from which it can emit a controllable event
is empty, since it can only emit events from its buffer: I(ε) = ∅. Nevertheless, some states in
FG can be s.t. all uncontrollable words lead to a state in FG, meaning that from these states,
the property will be satisfied even if some uncontrollable events are received. Consequently,
S(ε) = {q ∈ FG | q after tw(Σu) ⊆ FG}.

Optimal Enforcement of (Timed) Properties with Uncontrollable Events 17

If a new controllable event a is received, it is added to the buffer, and then the EM can decide
to emit the first event of its buffer to reach a state that is in S or I for its new buffer, this explains
the definition of I(a.σ). Adding a new event to the buffer gives more possibilities to the EM
(since it could act as if it had not received this event), thus S(σ) ⊆ S(σ.a). Moreover, S(σ.a) is
made of the union of two sets, X and Y . X is the set of states from which the EM can decide
to wait before emitting the first event of its buffer, thus waiting from a state of X has to lead
to a state in I(σ.a). Y is the set of states that are in FG and from which the EM can decide to
wait for a new uncontrollable event before doing anything. Since Y ⊆ FG, if no uncontrollable
event is to be received, the property is satisfied, and otherwise, the EM can decide what to emit to
reach FG. In order to ensure that receiving uncontrollable events do not prevent from being able
to reach FG with events from the buffer, X and Y are s.t. every uncontrollable event received
from a state in X or Y leads to a state in X , Y , or I(σ.a). This is the purpose of the condition
(X∪Y)∩uPred(X ∪ Y ∪ I(σ.a)) = ∅. On top of this, it is necessary to ensure that all the states
reached while waiting from X or Y are in X or Y , otherwise there could be a state reached by
the EM for which there is an uncontrollable event leading to a state from which it is impossible
to reach FG with events of the buffer, meaning that the enforcement would not be sound. This
is ensured by the conditions x after (ε, t) ∈ X , and Y = up(Y). To have the best EM possible,
these sets are as large as possible.

Note that ifX1 andX2 satisfy the conditions required forX , thenX1∪X2 also satisfies them.
Thus, the bigger set satisfying these properties exists. The same holds for Y .

For convenience, we also define G : Q × Σc → 2tw(Σ) which gives, for a state q and a
sequence of controllable events σ, the set of timed words made with the actions of σ that can be
output from q in a safe way (i.e. all the states reached while emitting the word are in the S set
corresponding to what remains from σ):

G(q, σ) = {w ∈ tw(Σ) | ΠΣ(w) 4 σ∧
q afterw ∈ FG ∧ ∀t ∈ R≥0, q after (w, t) ∈ S(ΠΣ(obs(w, t))−1.σ)}.

It is now possible to use G to define an enforcement function for ϕ, denoted as Eϕ:

Definition 16 (Functions storeϕ, Eϕ). Let storeϕ be the function : tw(Σ) × R≥0 → tw(Σ) ×
tw(Σc)× Σ∗c defined inductively by:
∀t ∈ R≥0, storeϕ(ε, t) = (ε, ε, ε),
and for σ ∈ tw(Σ), (t′, a) s.t. σ.(t′, a) ∈ tw(Σ), and t ≥ t′, if (σs, σb, σc) = storeϕ(σ, t′), then

storeϕ(σ.(t′, a), t) =

{
(σs.(t

′, a). obs(σ′b, t), σ
′
b, σ
′
c) if a ∈ Σu

(σs. obs(σ′′b , t), σ
′′
b , σ

′′
c) if a ∈ Σc

with:

κϕ(q, w) = min
lex

(max
4

(G(q, w) ∪ {ε})), for q ∈ Q and w ∈ Σ∗c ,

buffer c = ΠΣ(nobs(σb, t
′)).σc,

t1 =
min({t′′ ∈ R≥0 | t′′ ≥ t′∧

G(Reach(σs.(t
′, a), t′′), buffer c) 6= ∅} ∪ {+∞}),

σ′b = κϕ(Reach(σs.(t
′, a),min({t, t1})), buffer c) +t min({t, t1}),

σ′c = ΠΣ(σ′b)
−1.buffer c,

Renard, Falcone, Rollet, Jéron, Marchand 18

t2 =
min({t′′ ∈ R≥0 | t′′ ≥ t′∧

G(Reach(σs, t
′′), buffer c.a) 6= ∅} ∪ {+∞}),

σ′′b = κϕ(Reach(σs,min({t, t2})), buffer c.a) +t min({t, t2}),
σ′′c = ΠΣ(σ′′b)−1.(buffer c.a).

For σ ∈ tw(Σ), and t ∈ R≥0, we define Eϕ(σ, t) = (Π1(storeϕ(obs(σ, t), t))).
The function storeϕ takes a timed word σ and a date t as input, and outputs three words: σs, σb,

and σc. σs is the output of the enforcement function at time t. σb is the timed word, composed
of controllable events, that is to be output after the date of the last event of the input, if no
uncontrollable event is received. σc is the untimed word composed of the remaining controllable
actions of the buffer. When time elapses, after the last event of the input, σs is modified to
output the events of σb when the dates are reached. Since letting time elapse can disable some
transitions, it is possible to reach a state in S or I without emitting any event, and thus σb can
change at this moment, changing from ε to a word in G. This change of σb when letting time
elapse can only happen once, since G will not be empty anymore once it has become non-empty.
t1 and t2 are used for this purpose, they both represent the time at which G becomes non-empty,
if a ∈ Σu or a ∈ Σc respectively. Words are thus calculated from this point whenever G has
become non-empty, to ensure that what has already been output is not modified. If G is still
empty, then min({t, t1}) (or min({t, t2}), depending on whether a ∈ Σc or a ∈ Σu) equals to
t, meaning that σb = ε. Most of the time, t1, or t2 is equal to t′, it is not the case only when
G was still empty at time t′, but if G was not empty at date t′, then t1 (or t2) is equal to t′. σc
contains the controllable actions of the input that have not been output and do not belong to σb.
It is used to compute the new value of σb when possible. When receiving a new event in the
input, it is appended to σs if it is an uncontrollable event, or the action is appended to the buffer
if it is a controllable one. Then, σb is computed again, from the new state reached if it was an
uncontrollable event, or with the new buffer if it was controllable. Note that t1 and t2 may not
exist, since they are minima of an interval that can be open, depending on the strictness of the
considered guard. In this case, one should consider the infimum instead of the minimum, and add
an infinitesimal delay, s.t. the required transition is taken.

As mentioned previously, an EM may not be sound from the beginning of an execution, but
some uncontrollable events may lead to a state from which it becomes possible to be sound.
Whenever σb is in G, then it will always be, meaning that the output of Eϕ will eventually reach
a state in FG, i.e. it will eventually satisfy ϕ. Thus, Eϕ eventually satisfies ϕ as soon as the
state reached so far is in S(σb) or I(σb). This leads to the definition of Pre(ϕ, t), which is the
set of timed words for which Eϕ ensures soundness at time t. For σ ∈ tw(Σ), if (σs, σb, σc) =

storeϕ(σ, t), then σ is in Pre(ϕ, t) if and only if the set G(Reach(σs, t),ΠΣ(nobs(σb, t)).σc) is
not empty. Then, Pre(ϕ, t) is used to define Pre(ϕ), which is the set in which Eϕ is sound:
Definition 17 (Pre(ϕ)). Pre(ϕ) = {(σ, t) | σ ∈ Pre(ϕ, t)}, where, for σ ∈ tw(Σ) and t ∈ R≥0,

Pre(ϕ, t) = {σ ∈ tw(Σ) | ∃σ′ 4 σ, ∃t′ ≤ t,
G(Reach(obs(σ′, t′)|Σu

, t′),ΠΣ(obs(σ′, t′)|Σc
)) 6= ∅}.

Note that Pre(ϕ) is time-extension-closed, meaning that once Eϕ is sound, its output will
always eventually satisfy ϕ in the future.

Since the output of our enforcement function consists only of the uncontrollable events from

Optimal Enforcement of (Timed) Properties with Uncontrollable Events 19

the input, if G(Reach(obs(σ, t)|Σu
, t),ΠΣ(obs(σ, t)|Σc

)) is not empty, this means that the en-
forcement function becomes sound with input σ from time t, since there is a word that is safe to
emit. Thus, Pre(ϕ, t) is the set of inputs for which Eϕ is sound after date t, and then Eϕ is sound
for any input in Pre(ϕ) after its associated date.

Proposition 6. Eϕ as defined in Definition 16 is an enforcement function, as per Definition 11.

Sketch of proof. We have to show that for all σ ∈ tw(Σ), for all t ∈ R≥0 and t′ ≥ t, Eϕ(σ, t) 4
Eϕ(σ, t′), and for all (t, a) s.t. σ.(t, a) ∈ tw(Σ), Eϕ(σ, t) 4 Eϕ(σ.(t, a), t). To prove this, we
first show by induction that Eϕ(σ, t) 4 Eϕ(σ, t′). Considering (t′′, a) s.t. σ.(t′′, a) ∈ tw(Σ), we
distinguish different cases according to the values of t′′ compared to t and t′:

— t′′ ≤ t. Then, in the definition of storeϕ, t1 (or t2, if a is controllable) has the same value in
storeϕ(σ, t) and storeϕ(σ.(t′′, a), t′). Then, comparing t to t1, either Eϕ(σ.(t′′, a), t) = ε if
t < t1, and then Eϕ(σ.(t′′, a), t) 4 Eϕ(σ.(t′′, a), t′), or t ≥ t1, and then there exists σs and
σb s.t. Eϕ(σ.(t′′, a), t) = σs. obs(σb, t) and Eϕ(σ . (t′′, a), t′) = σs . obs(σb, t

′), meaning
that Eϕ(σ . (t′′, a), t) 4 Eϕ(σ . (t′′, a), t′).

— t′′ ≥ t′. Then the proposition holds because in the definition of Eϕ, only the observation of
the input word at the given time is considered, meaning that Eϕ(σ.(t′′, a), t) = Eϕ(σ, t) and
Eϕ(σ.(t′′, a), t′) = Eϕ(σ, t′). By induction hypothesis, the proposition thus holds.

— t < t′′ < t′. Then, Eϕ(σ . (t′′, a), t) = Eϕ(σ, t), and Eϕ(σ . (t′′, a), t′) = Π1(storeϕ(σ .

(t′′, a), t′)), meaning that, looking at the definition of storeϕ, Eϕ(σ . (t′′, a), t) 4 Eϕ(σ .

(t′′, a), t′).

Thus, Eϕ(σ, t) 4 Eϕ(σ, t′). Then, what remains to show is that if σ.(t, a) ∈ tw(Σ), then
Eϕ(σ, t) 4 Eϕ(σ.(t, a), t). Following the definition of storeϕ, it is clear that storeϕ(σ, t) 4
storeϕ(σ.(t, a), t), and thus Eϕ(σ, t) 4 Eϕ(σ.(t, a), t).

Proposition 7. Eϕ is sound with respect to ϕ in Pre(ϕ) as per Definition 12.

Sketch of proof. As in the untimed setting, the proof is made by induction on the input σ ∈
tw(Σ). Similarly to the untimed setting, considering σ ∈ tw(Σ), t ∈ R≥0, and (t′, a) s.t.
σ.(t′, a) ∈ tw(Σ), there are three possibilities:

— (σ.(t′, a), t) 6∈ Pre(ϕ). Then, the proposition holds.
— (σ.(t′, a), t) ∈ Pre(ϕ), but (σ, t′) 6∈ Pre(ϕ). Then, this is when the input reaches Pre(ϕ).

Considering the definition of Pre(ϕ), we then prove that it is possible to emit a word with
the controllable events seen so far, leading to an accepting state in S.

— (σ, t′) ∈ Pre(ϕ) (and thus (σ.(t′, a), t) too). Then, we prove again that there exists a con-
trollable word made with the events which have not been output yet leading to an accepting
state that is in S, but this time considering the definitions of S and I.

Proposition 8. Eϕ is compliant, as per Definition 13.

Sketch of proof. As in the untimed setting, the proof is made by induction on the input σ, con-
sidering the different cases where the new event is controllable or uncontrollable. The only dif-
ference with the untimed setting is that one should consider dates on top of actions.

Proposition 9. Eϕ is optimal in Pre(ϕ), as per Definition 14.

Sketch of proof. This proof is made by induction on the input σ. Whenever σ ∈ Pre(ϕ), since
Eϕ is sound in Pre(ϕ), then Eϕ(σ) is the maximal word (with respect to 4d) that satisfies ϕ and

Renard, Falcone, Rollet, Jéron, Marchand 20

is safe to output. It is maximal because in the definition of storeϕ, κϕ returns the longest word
with lower delays (for lexicographic order), which corresponds to the maximum with respect to
4d. Thus, outputting a greater word (with respect to 4d) would lead to G being empty, meaning
that the EM would not be sound. Thus, Eϕ is optimal in Pre(ϕ), since it outputs the maximal
word with respect to 4d that allows to be sound and compliant.

4.2. Enforcement Monitors

As in the untimed setting, we define an operational description of an EM whose output is exactly
the output of Eϕ, as defined in Definition 16.

Definition 18. An enforcement monitor E for ϕ is a transition system 〈CE , cE0 ,ΓE , ↪→E〉 s.t.:

— CE = tw(Σ)× Σ∗c ×Q× R≥0 × {>,⊥} is the set of configurations.
— cE0 = 〈ε, ε, q0, 0,⊥〉 ∈ CE is the initial configuration.
— ΓE = ((R≥0×Σ)∪{ε})×Op× ((R≥0×Σ)∪{ε}) is the alphabet, composed of an optional

input, an operation and an optional output.
The set of operations is {compute(.),dump(.),pass-uncont(.), store-cont(.),delay(.)}.
Whenever (σ, ./, σ′) ∈ ΓE , it will be noted σ/ ./ /σ′.

— ↪→E is the transition relation defined as the smallest relation obtained by applying the follow-
ing rules given by their priority order:

– Compute: 〈ε, σc, q, t,⊥〉 ↪
ε/ compute()/ε−−−−−−−−−→E 〈σ′b, σ′c, q, t,>〉, if G(q, σc) 6= ∅, with σ′b =

κϕ(q, σc) +tt, and σ′c = ΠΣ(σ′b)
−1.σc,

– Dump: 〈(tb, a).σb, σc, q, tb,>〉 ↪
ε/ dump(tb,a)/(tb,a)−−−−−−−−−−−−−→E 〈σb, σc, q′, tb,>〉, with q′ =

q after (0, a),

– Pass-uncont: 〈σb, σc, q, t, b〉 ↪
(t,a)/ pass-uncont(t,a)/(t,a)−−−−−−−−−−−−−−−−−−→E 〈ε,ΠΣ(σb).σc, q

′, t,⊥〉, with
q′ = q after (0, a),

– Store-cont: 〈σb, σc, q, t, b〉 ↪
(t,c)/ store-cont((t,c))/ε−−−−−−−−−−−−−−−→E 〈ε,ΠΣ(σb).σc.c, q, t,⊥〉,

– Delay: 〈σb, σc, (l, v), t, b〉 ↪ε/ delay(δ)/ε−−−−−−−−→E 〈σb, σc, (l, v + δ), t+ δ, b〉.
In a configuration 〈σb, σc, q, t, b〉, σb is the word to be output as time elapses; σc is the sequence

of controllable actions from the input that are not used in σb and have not been output yet; q is
the state of the semantics reached after reading what has already been output; t is the current
time instant, i.e., the time elapsed since the beginning of the run; and b indicates whether σb and
σc should be computed (due to the reception of a new event for example).

The timed word σb corresponds to nobs(σb, t) from the definition of storeϕ, whereas σc is the
same as in the definition of storeϕ. The state q represents σs, s.t. q = Reach(σs, t).

Proposition 10. The output of E for input σ is Eϕ(σ).

As in the untimed setting, in Proposition 10, the output of the enforcement monitor is the
concatenation of the outputs of the word labelling the path followed by the enforcement monitor
when reading σ. A formal definition is given in the proof of this proposition, in appendix A.2.
Sketch of proof. The proof is done by induction on σ. When receiving a new event, the rule
store-cont() can be applied if it is controllable, or rule pass-uncont() if it is uncontrollable.
Doing so, the last member of the configuration is set to ⊥, meaning that the word to be emitted

Optimal Enforcement of (Timed) Properties with Uncontrollable Events 21

Table 2: Values of (σs, σb, σc) = storeϕt((1,Auth) . (2,LockOn) . (4,Write) .

(5,LockOff) . (6,LockOn) . (7,Write) . (8,LockOff)) over time.

t σs σb σc

1 (1,Auth) ε ε

2 (1,Auth).(2,LockOn) ε ε
4 (1,Auth).(2,LockOn) ε Write
5 (1,Auth).(2,LockOn).(5,LockOff) (7,Write) ε

6 (1,Auth).(2,LockOn).(5,LockOff).(6,LockOn) ε Write
7 (1,Auth).(2,LockOn).(5,LockOff).(6,LockOn) ε Write . Write
8 (1,Auth).(2,LockOn).(5,LockOff).(6,LockOn).

(8,LockOff)

(10,Write).(10,Write) ε

10 (1,Auth).(2,LockOn).(5,LockOff).(6,LockOn).

(8,LockOff).(10,Write).(10,Write)

ε ε

can be computed. If the input is in Pre(ϕ), then rule compute() can be applied, and then the
second member of the configuration will have the same value as the second member of storeϕ,
and the same goes for the third members. Then, rule delay() can be applied, to reach the date
of the first event in the second member of the current configuration, and then rule dump() can
be applied to output it. This process can be repeated until the desired date is reached. Thus,
when date t is reached, what has been emitted since the last rule store-cont() or pass-uncont()

is obs(σb, t), where σb was computed by rule compute() as second member. Considering the
definition of storeϕ, it follows that the output of E with input σ at date t is Eϕ(σ, t).

4.3. Example

Consider Fig. 3, representing a property modelling the use of some shared writable device. We
can get the status of a lock through the uncontrollable events LockOn and LockOff indicat-
ing that the lock has been locked by someone else, and that it is unlocked, respectively. The
uncontrollable event Auth is sent by the device to authorise writings. Once the Auth event is
received, we are able to send the controllable event Write after having waited some time for
synchronisation. Each time the lock is taken and released, we must also wait before issuing a new
Write order. The sets of events are: Σc = {Write} and Σu = {Auth, LockOff, LockOn}.

l0 l1l2 l3

Write
2 ≤ x < 4

Write
x ≥ 4

Write x < 2

Σ ΣΣ \ {Write}

Write

Σ \ {Write}

Figure 7: Example of Property without uncontrol-
lable events

Now, let us follow the output of the storeϕ
function over time with the word σ =

(1,Auth) . (2,LockOn) . (4,Write) .

(5,LockOff).(6,LockOn).(7,Write).

(8,LockOff) as input: let (σs, σb, σc) =

storeϕ(obs(σ, t), t). Then the values taken
by σs, σb and σc over time are given in ta-
ble 2. To calculate them, notice that for all
valuation ν : {x} → R≥0, (l1, ν) ∈ S(ε),

and (l2, ν) ∈ S(ε), since all uncontrollable words from l1 and l2 lead to l1 or l2, which are both
accepting states.

We can also follow the execution of an enforcement monitor enforcing the property in Fig. 3,

Renard, Falcone, Rollet, Jéron, Marchand 22

watching the evolution of the configurations as semantic rules are applied. In a configuration,
the input is on the right, the output on the left, and the middle is the current configuration of
the enforcement monitor. The variable t defines the global time of the execution. Fig. 8 shows
the execution of the enforcement monitor with input (1,Auth) . (2,LockOn) . (4,Write) .

(5,LockOff) .(6,LockOn) .(7,Write) .(8,LockOff)). In Fig. 8, valuations are represented
as integers, giving the value of the only clock x of the property, LockOff is abbreviated as off,
LockOn as on, and Write as w. First column depicts the dates of events, then red text is the
current output (σs) of the EM, blue text shows the evolution of σb and green text depicts the
remaining input word at this date. We can observe that the final output is the same as the one of
the enforcement function: (1,Auth).(2,on).(5,off).(6,on).(8,off).(10,w).(10,w).
Remark 5. The EM in Definition 16 output longer timed words than the approach in (Pinisetty
et al., 2012) and (Pinisetty et al., 2014c) when applied only with controllable events thanks
to optimality considerations. Consider the property in Fig. 7 over the set of controllable actions
Σ ⊇ {Write}, and the input timed word (1,Write).(1.5,Write) input to the EM. The output
obtained with our approach at date t = 4 is (4,Write).(4,Write) whereas the output obtained
in (Pinisetty et al., 2012) would be (2,Write).

5. Related Work

Runtime enforcement was pioneered by the work of Schneider with security automata (Schnei-
der, 2000), a runtime mechanism for enforcing safety properties. In (Schneider, 2000), monitors
are able to stop the execution of the system once a deviation of the property has been detected.
Later, Ligatti et al. proposed edit-automata, a more powerful model of enforcement monitors
able to insert and suppress events from the execution. Later, more general models were proposed
where the monitors can be synthesised from regular properties (Falcone et al., 2011). More re-
cently, Bloem et al. (Bloem et al., 2015) presented a framework to synthesise enforcement mon-
itors for reactive systems, called shields, from a set of safety properties. A shield acts instan-
taneously and cannot buffer actions. Whenever a property violation is unavoidable, the shield
allows to deviate from the property for k consecutive steps (as in (Charafeddine et al., 2015)).
Whenever a second violation occurs within k steps, then the shield enters into a fail-safe mode,
where it ensures only correctness. Another recent approach by Dolzehnko et al. (Dolzhenko et al.,
2015) introduces Mandatory Result Automata (MRAs). MRAs extend edit-automata by refining
the input/output relationship of an EM and thus allowing a more precise description of the en-
forcement abilities of an EM in concrete application scenarios. All the previously mentioned
approaches considered untimed specifications, and do not consider uncontrollable events.

In the timed setting, several monitoring tools exist. RT-Mac (Sammapun et al., 2005) permits to
verify at runtime timeliness and reliability correctness. LARVA (Colombo et al., 2009a; Colombo
et al., 2009b) takes as input safety properties expressed with DATEs (Dynamic Automata with
Events and Timers), a timed model similar to timed automata.

In previous work, we introduced runtime enforcement for timed properties (Pinisetty et al.,
2012) specified by timed automata (Alur and Dill, 1992). We proposed a model of EMs that
work as delayers, that is, mechanisms that are able to delay the input sequence of timed events
to correct it. While (Pinisetty et al., 2012) proposed synthesis techniques only for safety and co-
safety properties, we then generalised the framework to synthesise an enforcement monitor for

Optimal Enforcement of (Timed) Properties with Uncontrollable Events 23

t = 0 ε/(ε, ε, (l0, 0), 0,⊥)/(1,Auth).(2,on).(4,w).(5,off).(6,on).(7,w).(8,off)

↓ delay(1)

t = 1 ε/(ε, ε, (l0, 1), 1,⊥)/(1,Auth).(2,on).(4,w).(5,off).(6,on).(7,w).(8,off)

↓ pass-uncont((1,Auth))

t = 1 (1,Auth)/(ε, ε, (l1, 1), 1,⊥)/(2,on).(4,w).(5,off).(6,on).(7,w).(8,off)

↓ compute()

t = 1 (1,Auth)/(ε, ε, (l1, 1), 1,>)/(2,on).(4,w).(5,off).(6,on).(7,w).(8,off)

↓ delay(1)

t = 2 (1,Auth)/(ε, ε, (l1, 2), 2,>)/(2,on).(4,w).(5,off).(6,on).(7,w).(8,off)

↓ pass-uncont((2,on))

t = 2 (1,Auth).(2,on)/(ε, ε, (l2, 2), 2,⊥)/(4,w).(5,off).(6,on).(7,w).(8,off)

↓ compute()

t = 2 (1,Auth).(2,on)/(ε, ε, (l2, 2), 2,>)/(4,w).(5,off).(6,on).(7,w).(8,off)

↓ delay(2)

t = 4 (1,Auth).(2,on)/(ε, ε, (l2, 4), 4,>)/(4,w).(5,off).(6,on).(7,w).(8,off)

↓ store-cont((4,w))

t = 4 (1,Auth).(2,on)/(ε, (4,w), (l2, 4), 4,⊥)/(5,off).(6,on).(7,w).(8,off)

↓ compute()

t = 4 (1,Auth).(2,on)/(ε, (4,w), (l2, 4), 4,>)/(5,off).(6,on).(7,w).(8,off)

↓ delay(1)

t = 5 (1,Auth).(2,on)/(ε, (4,w), (l2, 5), 5,>)/(5,off).(6,on).(7,w).(8,off)

↓ pass-uncont((5,off))

t = 5 (1,Auth).(2,on).(5,off)/(ε, (7,w), (l1, 0), 5,⊥)/(6,on).(7,w).(8,off)

↓ compute()

t = 5 (1,Auth).(2,on).(5,off)/((7,w), ε, (l1, 0), 5,>)/(6,on).(7,w).(8,off)

↓ delay(1)

t = 6 (1,Auth).(2,on).(5,off)/((7,w), ε, (l1, 1), 6,>)/(6,on).(7,w).(8,off)

↓ pass-uncont((6,on))

t = 6 (1,Auth).(2,on).(5,off).(6,on)/(ε, (7,w), (l2, 1), 6,⊥)/(7,w).(8,off)

↓ compute()

t = 6 (1,Auth).(2,on).(5,off).(6,on)/(ε, (7,w), (l2, 1), 6,>)/(7,w).(8,off)

↓ delay(1)

t = 7 (1,Auth).(2,on).(5,off).(6,on)/(ε, (7,w), (l2, 2), 7,>)/(7,w).(8,off)

↓ store-cont((7,w))

t = 7 (1,Auth).(2,on).(5,off).(6,on)/(ε, (7,w).(7,w), (l2, 2), 7,⊥)/(8,off)

↓ compute()

t = 7 (1,Auth).(2,on).(5,off).(6,on)/(ε, (7,w).(7,w), (l2, 2), 7,>)/(8,off)

↓ delay(1)

t = 8 (1,Auth).(2,on).(5,off).(6,on)/(ε, (7,w).(7,w), (l2, 3), 8,>)/(8,off)

↓ pass-uncont((8,off))

t = 8 (1,Auth).(2,on).(5,off).(6,on).(8,off)/(ε, (10,w).(10,w), (l1, 0), 8,⊥)/ε

↓ compute()

t = 8 (1,Auth).(2,on).(5,off).(6,on).(8,off)/((10,w).(10,w), ε, (l1, 0), 8,>)/ε

↓ delay(2)

t = 10 (1,Auth).(2,on).(5,off).(6,on).(8,off)/((10,w).(10,w), ε, (l1, 2), 10,>)/ε

↓ dump((10,w))

t = 10 (1,Auth).(2,on).(5,off).(6,on).(8,off).(10,w)/((10,w), ε, (l1, 2), 10,>)/ε

↓ dump((10,w))

t = 10 (1,Auth).(2,on).(5,off).(6,on).(8,off).(10,w).(10,w)/(ε, ε, (l1, 2), 10,>)/ε

Figure 8: Execution of an enforcement monitor with input (1,Auth) . (2,LockOn) .

(4,Write) . (5,LockOff) . (6,LockOn) . (7,Write) . (8,LockOff)

Renard, Falcone, Rollet, Jéron, Marchand 24

any regular timed property (Pinisetty et al., 2014b; Pinisetty et al., 2014c). In (Pinisetty et al.,
2014a), we considered parametric timed properties, that is timed properties with data-events con-
taining information from the execution of the monitored system. In our approach, the optimality
of the enforcement mechanism is based on the maximisation of the length of the output sequence.
When applied in the case of controllable events only, this improves the preceding results.

Basin et al. (Basin et al., 2011) introduced uncontrollable events for security automata (Schnei-
der, 2000). The approach in (Basin et al., 2011) allows to enforce safety properties where some
of the events in the specification are uncontrollable. More recently, they proposed a more general
approach (Basin et al., 2013) related to enforcement of security policies with controllable and
uncontrollable events. They presented several complexity results and how to synthesise EMs.
In case of violation of the property, the system stops the execution. They handle discrete time,
and clock ticks are considered as uncontrollable events. In our approach, we consider dense time
using the expressiveness of timed automata, any regular properties, and our monitor are more
flexible since they block the system only when delaying events cannot prevent from violating the
property, thus offering the possibility to correct many violations.

6. Conclusion and Future Work

This paper extends previous work on enforcement monitoring with uncontrollable events, which
are only observable by an EM. We present a framework for both untimed and timed regular prop-
erties, described with (untimed) automata and timed automata, respectively. We provide a func-
tional and an operational description of the enforcement mechanism, and show their equivalence.
Adding uncontrollable events leads to the necessity of changing the order between controllable
and uncontrollable events, which requires some existing notions to be adapted. Therefore, we
replace transparency with compliance, and then give EMs, i.e. enforcement functions and en-
forcement monitors, for regular properties and regular timed properties. Since not every property
can be enforced, we also give a condition, depending on the property and the input word, in-
dicating whether the EM is sound with respect to the property under scrutiny or not. The EMs
output immediately all the uncontrollable events received, and store the controllable ones, until
soundness can be guaranteed. Then, they output events only when they can ensure that soundness
will be satisfied. The proposed EMs are then sound and compliant, even with reception of some
uncontrollable events. They are also optimal in the sense that they output the longest possible
word, with the least possible dates in the timed setting.

One possible extension is to take some risks, outputting events even if some uncontrollable
events could lead to a bad state, and introducing for example some probabilities. Implementing
the given enforcement devices for the untimed setting is pretty straightforward, whereas imple-
mentation in the timed setting needs more attention due to computing in timed models. Another
interesting direction for further investigation is to use game theory in order to compute the be-
haviour of the EM. This approach should permit to compute the behaviour before the execution,
thus leading to an optimised implementation.

Optimal Enforcement of (Timed) Properties with Uncontrollable Events 25

References

Alur, R. and Dill, D. (1992). The theory of timed automata. In de Bakker, J., Huizing, C., de Roever, W.,
and Rozenberg, G., editors, Real-Time: Theory in Practice, volume 600 of Lecture Notes in Computer
Science, pages 45–73. Springer Berlin Heidelberg.

Basin, D., Jugé, V., Klaedtke, F., and Zălinescu, E. (2013). Enforceable security policies revisited. ACM
Trans. Inf. Syst. Secur., 16(1):3:1–3:26.

Basin, D., Klaedtke, F., and Zalinescu, E. (2011). Algorithms for monitoring real-time properties. In Khur-
shid, S. and Sen, K., editors, Proceedings of the 2nd International Conference on Runtime Verification
(RV 2011), volume 7186 of Lecture Notes in Computer Science, pages 260–275. Springer-Verlag.

Bloem, R., Könighofer, B., Könighofer, R., and Wang, C. (2015). Shield synthesis: - runtime enforcement
for reactive systems. In Tools and Algorithms for the Construction and Analysis of Systems - 21st In-
ternational Conference, TACAS 2015, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, pages 533–548.

Charafeddine, H., El-Harake, K., Falcone, Y., and Jaber, M. (2015). Runtime enforcement for component-
based systems. In Proceedings of the 30th Annual ACM Symposium on Applied Computing, 2015, pages
1789–1796.

Colombo, C., Pace, G. J., and Schneider, G. (2009a). LARVA — safer monitoring of real-time Java pro-
grams (tool paper). In Hung, D. V. and Krishnan, P., editors, Proceedings of the 7th IEEE International
Conference on Software Engineering and Formal Methods (SEFM 2009), pages 33–37. IEEE Computer
Society.

Colombo, C., Pace, G. J., and Schneider, G. (2009b). Safe runtime verification of real-time properties. In
Ouaknine, J. and Vaandrager, F. W., editors, Proceedings of the 7th International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS 2009), volume 5813 of Lecture Notes in Computer
Science, pages 103–117. Springer.

Dolzhenko, E., Ligatti, J., and Reddy, S. (2015). Modeling runtime enforcement with mandatory results
automata. International Journal of Information Security, 14(1):47–60.

Falcone, Y., Havelund, K., and Reger, G. (2013). A tutorial on runtime verification. In Broy, M., Peled,
D. A., and Kalus, G., editors, Engineering Dependable Software Systems, volume 34 of NATO Science
for Peace and Security Series, D: Information and Communication Security, pages 141–175. IOS Press.

Falcone, Y., Mounier, L., Fernandez, J., and Richier, J. (2011). Runtime enforcement monitors: composi-
tion, synthesis, and enforcement abilities. Formal Methods in System Design, 38(3):223–262.

Leucker, M. and Schallhart, C. (2009). A brief account of runtime verification. J. Log. Algebr. Program.,
78(5):293–303.

Ligatti, J., Bauer, L., and Walker, D. (2009). Run-time enforcement of nonsafety policies. ACM Trans. Inf.
Syst. Secur., 12(3):19:1–19:41.

Pinisetty, S., Falcone, Y., Jéron, T., and Marchand, H. (2014a). Runtime enforcement of parametric timed
properties with practical applications. In Lesage, J., Faure, J., Cury, J. E. R., and Lennartson, B., editors,
12th International Workshop on Discrete Event Systems, WODES 2014, Cachan, France, May 14-16,
2014., pages 420–427. International Federation of Automatic Control.

Pinisetty, S., Falcone, Y., Jéron, T., and Marchand, H. (2014b). Runtime enforcement of regular timed
properties. In Cho, Y., Shin, S. Y., Kim, S., Hung, C., and Hong, J., editors, Symposium on Applied
Computing, SAC 2014, Gyeongju, Republic of Korea - March 24 - 28, 2014, pages 1279–1286. ACM.

Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A., and Nguena-Timo, O. (2014c). Runtime
enforcement of timed properties revisited. Formal Methods in System Design, 45(3):381–422.

Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A., and Nguena-Timo, O. L. (2012). Runtime
enforcement of timed properties. In Qadeer, S. and Tasiran, S., editors, Runtime Verification, Third
International Conference, RV 2012, Istanbul, Turkey, September 25-28, 2012, Revised Selected Papers,
volume 7687 of Lecture Notes in Computer Science, pages 229–244. Springer.

Renard, Falcone, Rollet, Jéron, Marchand 26

Ramadge, P. J. and Wonham, W. M. (1987). Supervisory control of a class of discrete event processes.
SIAM journal on control and optimization, 25(1):206–230.

Ramadge, P. J. and Wonham, W. M. (1989). The control of discrete event systems. Proceedings of the
IEEE, 77(1):81–98.

Renard, M., Falcone, Y., Rollet, A., Pinisetty, S., Jéron, T., and Marchand, H. (2015). Enforcement of
(timed) properties with uncontrollable events. In Leucker, M., Rueda, C., and Valencia, F. D., editors,
Theoretical Aspects of Computing - ICTAC 2015, volume 9399 of Lecture Notes in Computer Science,
pages 542–560. Springer International Publishing.

Sammapun, U., Lee, I., and Sokolsky, O. (2005). RT-MaC: Runtime monitoring and checking of quantitative
and probabilistic properties. 2013 IEEE 19th International Conference on Embedded and Real-Time
Computing Systems and Applications, 0:147–153.

Schneider, F. B. (2000). Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3(1):30–50.

Appendix A. Proofs

A.1. Proofs for the Untimed Setting

In all this section, we will use the notations from Section 3, meaning that ϕ is a property whose associated
automaton is Aϕ = 〈Q, q0,Σ,−→, F 〉. In some proofs, we also use notations from Definition 8.

Proposition 1. Eϕ as defined in Definition 8 is an enforcement function.

Proof. Let us consider σ ∈ Σ∗, and σ′ ∈ Σ∗. If σ′ = ε, then Eϕ(σ) = Eϕ(σ.σ′) 4 Eϕ(σ.σ′).
Otherwise, let us consider (σs, σc) = storeϕ(σ), a = σ′(1), and (σt, σd) = storeϕ(σ.a). Then, if a ∈ Σu,
σt = σs.a.σ

′
s, where σ′s is defined in Definition 8, meaning that σs 4 σt. If a ∈ Σc, then σt = σs.σ

′′
s ,

where σ′′s is defined in Definition 8, thus again, σs 4 σt. In both cases, Eϕ(σ) = σs 4 σt = Eϕ(σ.a).
Since the order 4 is transitive, this means that Eϕ(σ) 4 Eϕ(σ.a) 4 Eϕ(σ.a.σ′(2)) 4 . . . 4 Eϕ(σ.σ′).
Thus Eϕ is an enforcement function.

Lemma 1. ∀σ ∈ Σ∗c , ∀a ∈ Σc, I(σ) ⊆ I(σ.a).

Proof. For σ ∈ Σ∗c , let P(σ) be the predicate “∀a ∈ Σc, I(σ) ⊆ I(σ.a)”. Let us show by induction that
P(σ) holds for every σ ∈ Σ∗c .

—Induction basis: if a ∈ Σc, then since I(ε) = ∅, I(ε) ⊆ I(a). Thus, P(ε) holds.
—Induction step: let us suppose that for n ∈ N, for all σ ∈ Σ∗c s.t. |σ| ≤ n, P(σ) holds. Let us then consider
σ ∈ Σ∗c s.t. |σ| = n+1, and a ∈ Σc. Let (h, σ0) ∈ Σc×Σ∗c be s.t. σ = h.σ0 (they must exist since |σ| >
0). Then, |σ0| = n, and by induction hypothesis, P(σ0) holds, meaning that I(σ0) ⊆ I(σ0.a). Moreover,
following the definition of S(σ0.a), S(σ0) ⊆ S(σ0.a). It follows that S(σ0)∪I(σ0) ⊆ S(σ0.a)∪I(σ0.a),
and thus I(σ) = I(h.σ0) = Predh(S(σ0)∪I(σ0)) ⊆ Predh(S(σ0.a)∪I(σ0.a)) = I(h.σ0.a) = I(σ.a).
This means that P(σ.a) holds.

Thus, by induction on the size of σ ∈ Σ∗c , for all σ ∈ Σ∗c , P(σ) holds. This means that for all σ ∈ Σ∗c , for
all a ∈ Σc, I(σ) ⊆ I(σ.a).

Lemma 2. ∀σ ∈ Σ∗c , ∀q ∈ Q,∀u ∈ Σu, (q ∈ S(σ)) =⇒ (q after u ∈ S(σ) ∪ I(σ)).

Proof. For σ ∈ Σ∗c , let P(σ) be the predicate “∀q ∈ Q,∀u ∈ Σu, (q ∈ S(σ)) =⇒ (q after u ∈
S(σ) ∪ I(σ))”. Let us show by induction that P(σ) holds for any σ ∈ Σc.

—Induction basis: let us consider u ∈ Σu and q ∈ S(ε). Then, since u ∈ Σu, u ∈ Σ∗u, and following the
definition of S(ε), q after u ∈ S(ε). Thus, q after u ∈ S(ε) ∪ I(ε).

Optimal Enforcement of (Timed) Properties with Uncontrollable Events 27

—Induction step: let us suppose that for σ ∈ Σ∗c , P(σ) holds. Let us then consider u ∈ Σu, a ∈ Σc, and
q ∈ S(σ.a). Then, either q ∈ S(σ) or q ∈ max⊆({Y ⊆ FG | Y ∩ uPred(Y ∪ I(σ.a)) = ∅}). If
q ∈ S(σ), then by induction hypothesis, P(σ) holds, meaning that q after u ∈ S(σ) ∪ I(σ). Following
lemma 1, I(σ) ⊆ I(σ.a), and since S(σ) ⊆ S(σ.a), it follows that S(σ)∪ I(σ) ⊆ S(σ.a)∪ I(σ.a). Thus,
q after u ∈ S(σ.a) ∪ I(σ.a). Otherwise, q ∈ max⊆({Y ⊆ FG | Y ∩ uPred(Y ∪ I(σ.a)) = ∅}), and
thus q after u ∈ S(σ.a) ∪ I(σ.a). Thus, P(σ.a) holds.

By induction on σ, it follows that P(σ) holds for any σ ∈ Σ∗c . Thus, for all σ ∈ Σ∗c , for all u ∈ Σu, for
all q ∈ Q, (q ∈ S(σ)) =⇒ (q after u ∈ S(σ) ∪ I(σ)).

Lemma 3. ∀σ ∈ Σ∗c , ∀q ∈ S(σ) ∪ I(σ),G(q, σ) 6= ∅.

Proof. For σ ∈ Σ∗c , let P(σ) be the predicate “∀q ∈ S(σ) ∪ I(σ),G(q, σ) 6= ∅”. Let us show by
induction that P(σ) holds for any σ ∈ Σ∗c .

—Induction basis: let us consider q ∈ S(ε)∪ I(ε). Then, since I(ε) = ∅, q ∈ S(ε). Following the definition
of S(ε), this means that ε is s.t. ε 4 ε and q after ε = q ∈ S(ε) = S(ε−1.ε). Thus, ε ∈ G(q, ε), meaning
that G(q, ε) 6= ∅, and thus that P(ε) holds.

—Induction step: let us suppose that for n ∈ N, for all σ ∈ Σ∗c s.t. |σ| ≤ n, P(σ) holds. Let us then
consider σ ∈ Σ∗c s.t. |σ| = n, a ∈ Σc and q ∈ S(σ.a) ∪ I(σ.a). Then, we consider two cases:

–q ∈ S(σ.a), then ε is s.t. ε 4 σ.a and q after ε ∈ S(σ.a) = S(ε−1.(σ.a)), thus ε ∈ G(q, σ.a).

–q ∈ I(σ.a), then let (h, σ0) ∈ Σc × Σ∗c be s.t. h.σ0 = σ.a (they must exist since |σ.a| > 0). Then,
I(σ.a) = I(h.σ0) = Predh(S(σ0) ∪ I(σ0)), meaning that q ∈ Predh(S(σ0) ∪ I(σ0)). By induction
hypothesis, since |σ0| = |σ| = n, P(σ0) holds, meaning that G(q after h, σ0) 6= ∅. Let us then
consider w ∈ G(q after h, σ0). Then, w is s.t. w 4 σ0 and (q after h) after w ∈ S(w−1.σ0). Thus,
h.w 4 h.σ0 and q after (h.w) = (q after h) after w ∈ S(w−1.σ0) = S((h.w)−1.(h.σ0)). Thus,
h.w ∈ G(q, h.σ0) = G(q, σ.a).

In both cases, G(q, σ.a) 6= ∅, meaning that P(σ.a) holds. By induction on the size of σ ∈ Σ∗c , it follows
that P(σ) holds for any σ ∈ Σ∗c , meaning that for all σ ∈ Σ∗c , for all q ∈ S(σ) ∪ I(σ), G(q, σ) 6= ∅.

Lemma 4. ∀σ ∈ Σ∗, (σ 6∈ Pre(ϕ) ∧ (σs, σc) = storeϕ(σ)) =⇒ (σs = σ|Σu ∧ σc = σ|Σc).

Proof. For σ ∈ Σ∗, let P(σ) be the predicate “(σ 6∈ Pre(ϕ) ∧ (σs, σc) = storeϕ(σ)) =⇒ (σs =

σ|Σu ∧ σc = σ|Σc)”. Let us show by induction that P(σ) holds for any σ ∈ Σ∗.

—Induction basis: storeϕ(ε) = (ε, ε), and since ε|Σu = ε|Σc = ε, P(ε) holds.
—Induction step: let us suppose that for σ ∈ Σ∗, P(σ) holds. Let us then consider a ∈ Σ, (σs, σb) =

storeϕ(σ), and (σt, σd) = storeϕ(σ.a). Then, if σ.a ∈ Pre(ϕ), P(σ.a) holds. Let us now consider that
σ.a 6∈ Pre(ϕ). Then, since Pre(ϕ) is extension-closed, σ 6∈ Pre(ϕ), and thus, by induction hypothesis,
σs = σ|Σu and σc = σ|Σc . We consider two cases:

–a ∈ Σu, then σt = σs.a.σ
′
s, with σ′s ∈ G(Reach(σs.a), σc) ∪ {ε}. Since σ.a 6∈ Pre(ϕ), G(Reach((σ

.a)|Σu), (σ.a)|Σc) = ∅. Moreover, since a ∈ Σu, (σ.a)|Σu = σ|Σu .a = σs.a and (σ.a)|Σc = σ|Σc =

σc, thus G(Reach(σs.a), σc) = ∅. It follows that σ′s ∈ {ε}, meaning that σt = σs.a = σ|Σu .a =

(σ.a)|Σu , and σd = σ′−1
s .σc = σc = σ|Σc = (σ.a)|Σc .

–a ∈ Σc, then σt = σs.σ
′′
s , with σ′′s ∈ G(σs, σc.a) ∪ {ε}. Since σ.a 6∈ Pre(ϕ), G(Reach((σ

.a)|Σu), (σ.a)|Σc) = ∅. Moreover, since a ∈ Σc, (σ.a)|Σu = σ|Σu = σs and (σ.a)|Σc = σ|Σc .a =

σc.a. Thus, G(Reach(σs), σc.a) = ∅, meaning that σ′′s = ε. Thus, σt = σs = σ|Σu = (σ.a)|Σu and
σd = σ′′−1

s .(σc.a) = σc.a = σ|Σc .a = (σ.a)|Σc .

In both cases, P(σ.a) holds. By induction on σ ∈ Σ∗, for all σ ∈ Σ∗, if σ 6∈ Pre(ϕ) and (σs, σc) =

storeϕ(σ), then σs = σ|Σu and σc = σ|Σc .

Renard, Falcone, Rollet, Jéron, Marchand 28

Proposition 2. Eϕ is sound with respect to ϕ in Pre(ϕ), as per Definition 3.

Proof. Let P(σ) be the predicate: “(σ ∈ Pre(ϕ) ∧ (σs, σc) = storeϕ(σ)) =⇒ (Eϕ(σ) |= ϕ ∧
Reach(σs) ∈ S(σc))”. Let us prove by induction that for any σ ∈ Σ∗, P(σ) holds.

—Induction basis: if ε ∈ Pre(ϕ), then following the definition of Pre(ϕ), G(Reach(ε), ε) 6= ∅. Thus
ε ∈ G(Reach(ε), ε) (since ε is the only word satisying ε 4 ε). This means that Reach(ε) after ε =

Reach(ε) ∈ S(ε). Considering that storeϕ(ε) = (ε, ε), it follows that Eϕ(ε) = ε, and thus, since
S(ε) ⊆ FG, Eϕ(ε) |= ϕ. Thus P(ε) holds.

—Induction step: Suppose now that, for σ ∈ Σ∗, P(σ) holds. Let us consider a ∈ Σ, (σs, σc) = storeϕ(σ),
and (σt, σd) = storeϕ(σ.a). Let us prove that P(σ.a) holds. We consider three different cases:

–(σ.a) 6∈ Pre(ϕ). Then P(σ.a) holds.

–(σ.a) ∈ Pre(ϕ) ∧ σ 6∈ Pre(ϕ). Then, since Pre(ϕ) is extension-closed, it follows that σ . a ∈ {w ∈
Σ∗ | G(Reach(w|Σu), w|Σc) 6= ∅}, meaning that G(Reach((σ . a)|Σu), (σ . a)|Σc) 6= ∅. Moreover,
since σ 6∈ Pre(ϕ), following lemma 4, σs = σ|Σu and σc = σ|Σc . Now, we consider two cases:

•If a ∈ Σu, then (σ.a)|Σu = σ|Σu .a = σs.a, and (σ.a)|Σc = σ|Σc = σc. Thus, G(Reach(σs.a), σc)

6= ∅, meaning that σ′s = (σs.a)−1.σt ∈ G(Reach(σs.a), σc). Thus, following the definition of G,
Reach(σs.a) after σ′s = Reach(σs.a.σ

′
s) = Reach(σt) ∈ S(σ′s

−1
.σc) = S(σd). Moreover, since

S(σd) ⊆ FG, Eϕ(σ.a) = σt |= ϕ. This means that P(σ.a) holds.

•If a ∈ Σc, then (σ.a)|Σu = σ|Σu = σs, and (σ.a)|Σc = σ|Σc .a = σc.a. Thus, G(Reach(σs), σc.a)

6= ∅, meaning that σ′′s = σ−1
s .σt ∈ G(Reach(σs), σc.a). As in the case where a ∈ Σu, it follows

that Reach(σt) ∈ S(σd) and thus Eϕ(σ.a) |= ϕ. This means that P(σ.a) holds.

Thus, if σ.a ∈ Pre(ϕ) but σ 6∈ Pre(ϕ), P(σ.a) holds.

–σ ∈ Pre(ϕ) (and then (σ.a) ∈ Pre(ϕ) since Pre(ϕ) is extension-closed). Then, by induction hypothe-
sis, P(σ) holds, meaning that Reach(σs) ∈ S(σb) and Eϕ(σ) |= ϕ. Again, we consider two cases:

•If a ∈ Σu, then, since Reach(σs) ∈ S(σc), following lemma 2, Reach(σs) after a = Reach(σs.a)

∈ S(σc) ∪ I(σc). Following lemma 3, G(Reach(σs.a), σb) 6= ∅. Thus, σ′s = (σs.a)−1.σt ∈
G(Reach(σs.a), σc). It follows that Reach(σs.a.σ

′
s) = Reach(σt) ∈ S(σ′−1

s .σc) = S(σd), and
thus, since S(σd) ⊆ FG, Eϕ(σ.a) = σt |= ϕ. Henceforth, P(σ.a) holds.

•If a ∈ Σc, then, since Reach(σs) ∈ S(σc) and S(σc) ⊆ S(σc.a), Reach(σs) ∈ S(σc.a). Following
lemma 3, G(Reach(σs), σc.a) 6= ∅. Thus, σ′′s = σ−1

s .σt ∈ G(Reach(σs), σc.a). As in the case
where a ∈ Σu, this leads to σt ∈ S(σd) and Eϕ(σ.a) |= ϕ. Henceforth, P(σ.a) holds.

Thus, if σ ∈ Pre(ϕ), P(σ.a) holds.

In all cases, P(σ.a) holds. Thus, P(σ) =⇒ P(σ.a). By induction on σ, ∀σ ∈ Σ∗, (σ ∈ Pre(ϕ) ∧
(σs, σb) = storeϕ(σ)) =⇒ (Eϕ(σ) |= ϕ ∧ Reach(σs) ∈ S(σb)). In particular, for all σ ∈ Σ∗,
(σ ∈ Pre(ϕ)) =⇒ (Eϕ(σ) |= ϕ). This means that Eϕ is sound with respect to ϕ in Pre(ϕ).

Proposition 3. Eϕ is compliant, as per Definition 4.

Proof. For σ ∈ Σ∗, let P(σ) be the predicate: “((σs, σc) = storeϕ(σ)) =⇒ (σs|Σc .σc = σ|Σc ∧
σs|Σu = σ|Σu)”. Let us prove that for all σ ∈ Σ∗, P(σ) holds.

—Induction basis: storeϕ(ε) = (ε, ε), and ε|Σc = ε|Σc .ε, and ε|Σu = ε|Σu . Thus P(ε) holds.
—Induction step: Let us suppose that for σ ∈ Σ∗, P(σ) holds. Let us consider (σs, σc) = storeϕ(σ),
a ∈ Σ, and (σt, σd) = storeϕ(σ.a). Let us prove that P(σ.a) holds.

–Case 1: a ∈ Σu. Then, σt = σs.a.σ
′
s, where σ′s is defined in Definition 8, and σt.σd = σs.a.σc.

Therefore, σt|Σc .σd = (σt.σd)|Σc , since σd ∈ Σ∗c . Thus, σt|Σc .σd = σs|Σc .σc. Since P(σ) holds,
σt|Σc .σd = σ|Σc = (σ.a)|Σc .

Optimal Enforcement of (Timed) Properties with Uncontrollable Events 29

Moreover, since σ′s ∈ Σ∗c , σt|Σu = σs|Σu .a. Since P(σ) holds, this means that σt|Σu = σ|Σu .a =

(σ.a)|Σu .
Thus P(σ.a) holds.

–Case 2: a ∈ Σc. Then σt = σs.σ
′′
s , where σ′′s is defined in Definition 8, and σt.σd = σs.σc.a.

Therefore, σt|Σc .σd = (σt.σd)|Σc = (σs.σc.a)|Σc = σs|Σc .σc.a. Since P(σ) holds, this means that
σt|Σc .σd = σΣc .a = (σ.a)|Σc .
Moreover, since σ′′s ∈ Σ∗c , σt|Σu = σs|Σu . Since P(σ) holds, this means that σt|Σu = σ|Σu = (σ.a)|Σu .
Thus P(σ.a) holds.

In both cases, P(σ.a) holds. Thus, for all σ ∈ Σ∗, for all a ∈ Σ, P(σ) =⇒ P(σ.a).

By induction on σ, for all σ ∈ Σ∗, ((σs, σc) = storeϕ(σ)) =⇒ (σs|Σc .σc = σ|Σc ∧ σs|Σu = σ|Σu).
Moreover, if σ ∈ Σ∗, u ∈ Σu, (σs, σc) = storeϕ(σ), and (σt, σd) = storeϕ(σ.u), then σt = σs.u.σ

′
s,

where σ′s is defined in Definition 8. Thus σs.u 4 σt, and since σs = Eϕ(σ), and σt = Eϕ(σ.u), it
follows that Eϕ(σ).u 4 Eϕ(σ.u). Thus, for all σ ∈ Σ∗, Eϕ(σ)|Σc 4 σ|Σc ∧ Eϕ(σ)|Σu = σ|Σu ∧ ∀u ∈
Σu,Eϕ(σ).u 4 Eϕ(σ.u), meaning that Eϕ is compliant.

Lemma 5. ∀σ ∈ Σ∗c , ∀q ∈ Q, (q 6∈ S(σ)) =⇒ (∃σu ∈ Σ∗u, q after σu 6∈ F ∧ ∀σ′u 4 σu, σ
′
u 6= ε =⇒

q after σ′u 6∈ S(σ) ∪ I(σ)).

Proof. For σ ∈ Σ∗c and q ∈ Q, let P(σ, q) be the predicate “∀σu ∈ Σ∗u, q after σu ∈ F ∨ ∃σ′u 4
σu, σ

′
u 6= ε ∧ q after σ′u ∈ S(σ) ∪ I(σ)”. Let us show the contrapositive of the lemma, that is that for all

σ ∈ Σ∗c and q ∈ Q, P(σ, q) =⇒ q ∈ S(σ). We consider two cases:

—If σ = ε, let us consider q ∈ Q s.t. P(ε, q) holds. Then, since ε ∈ Σ∗u and there does not exist a word w
satisfyingw 4 ε∧w 6= ε, it follows that q = qafterε ∈ F . Let us consider σu ∈ Σ∗u. Then, since P(ε, q)

holds, either q after σu ∈ F , or there exists σ′u 4 σu such that σ′u 6= ε and q after σ′u ∈ S(ε) ∪ I(ε). In
this last case, since I(ε) = ∅, q after σ′u ∈ S(ε). Following the definition of S(ε), since σ′−1

u .σu ∈ Σ∗u,
(q afterσ′u)after (σ′−1

u .σu) = q afterσu ∈ F . Thus, in all cases q afterσu ∈ F . Thus, for all σu ∈ Σ∗u,
q after σu ∈ F , meaning that q ∈ S(ε).

—If σ 6= ε, there exists σ′ ∈ Σ∗c and a ∈ Σ s.t. σ = σ′.a, meaning that S(σ) is s.t. S(σ) = S(σ′) ∪
max⊆({Z ⊆ F | Z ∩ uPred(Z ∪ I(σ)) = ∅}). Let us consider q ∈ Q s.t. P(σ, q) holds. Then, we
define Y = {q afterσu | σu ∈ Σ∗u∧∀σ′u 4 σu, σ

′
u 6= ε =⇒ q afterσ′u 6∈ S(σ)∪ I(σ)}. Since P(σ, q)

holds, Y ⊆ F . Moreover, if y ∈ Y and u ∈ Σu, then:

–either y after u ∈ S(σ) ∪ I(σ), and then y after u ∈ (Y ∪ S(σ)) ∪ I(σ),

–or y after u 6∈ S(σ) ∪ I(σ). Then, if σu ∈ Σu is s.t. y = q after σu (σu exists since y ∈ Y), then
y after u = (q after σu) after u = q after (σu.u) 6∈ S(σ) ∪ I(σ). Since σu.u ∈ Σ∗u, y after u ∈ Y ⊆
(Y ∪ S(σ)) ∪ I(σ).

Thus, yafteru ∈ (Y ∪S(σ))∪I(σ), and since following lemma 2, S(σ)∩uPred(S(σ) ∪ I(σ)) = ∅, this
means that (Y ∪ S(σ)) ∩ uPred((Y ∪ S(σ)) ∪ I(σ)) = ∅. It follows that (Y ∪ S(σ)) ⊆ max⊆({Z ⊆
F | Z ∩ uPred(Z ∪ I(σ)) = ∅}) ⊆ S(σ). Since q ∈ Y ⊆ S(σ), this means that q ∈ S(σ).

Thus, for σ ∈ Σ∗c and q ∈ Q, P(σ, q) =⇒ q ∈ S(σ). This means that the contrapositive also holds,
thus q 6∈ S(σ) =⇒ ¬P(σ, q), meaning that q 6∈ S(σ) =⇒ (∃σu ∈ Σ∗u, q after σu 6∈ F ∧ ∀σ′u 4
σu, q after σ′u 6= ε =⇒ q after σ′u 6∈ S(σ) ∪ I(σ)).

Proposition 4. Eϕ is optimal in Pre(ϕ), as per Definition 5.

Proof. Let E be an enforcement function s.t. compliant(E,Σc,Σu), and let us consider σ ∈ Pre(ϕ)

and a ∈ Σ s.t. E(σ) = Eϕ(σ) and |E(σ.a)| > |Eϕ(σ.a)|. Let us also consider (σs, σc) = storeϕ(σ). Let
us show that there exists σu ∈ Σ∗u s.t. E(σ.a.σu) 6|= ϕ. We consider two cases:

Renard, Falcone, Rollet, Jéron, Marchand 30

—a ∈ Σu. Then, since E is compliant, and E(σ) = Eϕ(σ) = σs, there exists σ′s1 4 σc s.t. E(σ.a) =

E(σ).a.σs1 = σs.a.σ
′
s1. Moreover, there exists σ′s 4 σc s.t. Eϕ(σ.a) = Eϕ(σ).a.σ′s = σs.a.σ

′
s. Since

|E(σ.a)| > |Eϕ(σ.a)|, |σs1| > |σ′s|. Considering that σ′s = max4(G(Reach(σs.a), σc) ∪ {ε}), it
follows that σs1 6∈ G(Reach(σs.a), σc). Following the definition of G, this means that either σs1 64 σc,
but sinceE′ is compliant, this is not possible, or that Reach(σs.a)afterσs1 6∈ S(σ−1

s1 .σc). Let us consider
q = Reach(σs.a.σs1) and σc1 = σ−1

s1 .σc. Then, q 6∈ S(σc1). Following lemma 5, this means that there
exists σu ∈ Σ∗u s.t. q after σu 6∈ F and for all σ′u 4 σu, σ′u 6= ε =⇒ q after σ′u 6∈ S(σc1) ∪ I(σc1).
Then, we consider two cases:

–If E(σ.a.σu) = σs.a.σs1.σu, then Reach(E(σ.a.σu)) 6∈ F , meaning that E(σ.a.σu) 6|= ϕ.

–Otherwise, since E is compliant, there exists σs2 4 σc1 and σu1 4 σu s.t. σs2 6= ε, σu1 6= ε, and
E(σ.a.σu1) = σs.a.σs1.σu1.σs2. Let us consider q′ = qafterσu1.σs2 and σc2 = σ−1

s2 .σc1. Then, since
σu1 4 σu and σu1 6= ε, q after σu1 6∈ S(σc1)∪ I(σc1). Thus, q′ = q after σu1.σs2 6∈ S(σc2)∪ I(σc2),
because otherwise, q afterσu1 = Predσs2(q′) ∈ Predσs2(S(σc2)∪ I(σc2)) ⊆ I(σc1), which is absurd.
Then, we can again use lemma 5 to find a word σu2 ∈ Σ∗u s.t. q′ after σu2 6∈ F and for any σ′u 4 σu2,
q′ after σ′u 6∈ S(σc2) ∪ I(σc2). Since σs2 6= ε, |σc2| < |σc1|, thus the operation can be repeated a finite
number of times (at most until all the controllable events of σ appear in the output of E). Thus, there
exists n ∈ N, there exists (σu1, σu2, . . . , σun), and (σs1, σs2, . . . , σsn), s.t. E(σ . a . σu1 . σu2 . · · · .
σun) = σs .a.σs1 .σu1 .σs2 .σu2 .· · ·.σsn .σun, and Reach(σs .a.σs1 .σu1 .σs2 .σu2 .· · ·.σsn .σun) 6∈ F .
This means that, if σu = σu1 . σu2 . · · · . σun, then σu ∈ Σ∗u and E(σ . a . σu) 6|= ϕ.

Thus, in call cases, there exists σu ∈ Σ∗u s.t. E(σ . a . σu) 6|= ϕ.
—a ∈ Σc. The proof is the same as in the case where a ∈ Σu, by replacing occurrences of “σs.a” by “σs”,

and occurrences of “σb” by “σb.a”.

Thus, ifE is an enforcement function s.t. there exists σ ∈ Pre(ϕ), and a ∈ Σ s.t. compliant(E,Σu,Σc),
E(σ) = Eϕ(σ), and |E(σ.a)| > |Eϕ(σ.a)|, then there exists σu ∈ Σ∗u s.t. E(σ.a.σu) 6|= ϕ. This means
that Eϕ is optimal in Pre(ϕ).

Proposition 5. The output of the enforcement monitor E for input σ is Eϕ(σ).

Proof. Let us introduce some notation for this proof: for a word w ∈ ΓE∗, we note input(w) =

Π1(w(1)).Π1(w(2)) . . .Π1(w(|w|)), the word obtained by concatenating the first members (the inputs)
of w. In a similar way, we note output(w) = Π3(w(1)).Π3(w(2)) . . .Π3(w(|w|)), the word obtained by
concatenating all the third members (outputs) of w. Since all configurations are not reachable from cE0 , for
w ∈ ΓE∗, we note Reach(w) = c whenever cE0 ↪

w−→E c, and Reach(w) = ⊥ if such a c does not exist. We
also define the Rules function as follows:

Rules :

{
Σ∗ → ΓE∗

σ 7→ max4({w ∈ ΓE∗ | input(w) = σ ∧ Reach(w) 6= ⊥})

For a word σ ∈ Σ∗, Rules(σ) is the trace of the longest valid run in E , i.e. the sequence of all the rules
that can be applied with input σ. We then extend the definition of output to words in Σ∗: for σ ∈ Σ∗,
output(σ) = output(Rules(σ)). We also note ε the empty word of Σ∗, and εE the empty word of ΓE∗. For
σ ∈ Σ∗, let P(σ) be the predicate: “Eϕ(σ) = output(σ)∧(((σs, σc) = storeϕ(σ)∧Reach(Rules(σ)) =

〈q, σEc 〉) =⇒ (q = Reach(σs) ∧ σc = σEc))”.
Let us prove by induction that for all σ ∈ Σ∗, P(σ) holds.

—Induction basis: Eϕ(ε) = ε = output(ε). Moreover, storeϕ(ε) = (ε, ε), and Reach(εE) = cE0 . There-
fore, as cE0 = 〈q0, ε〉, P(ε) holds, because Reach(ε) = q0.

—Induction step: Let us suppose now that for some σ ∈ Σ∗, P(σ) holds. Let us consider (σs, σc) =

storeϕ(σ), q = Reach(σs), a ∈ Σ, and (σt, σd) = storeϕ(σ.a). Let us prove that P(σ.a) holds.

Optimal Enforcement of (Timed) Properties with Uncontrollable Events 31

Since P(σ) holds, Reach(Rules(σ)) = 〈q, σc〉 and σs = output(σ). We consider two cases:

–a ∈ Σu. Then, considering σ′s = (σs.a)−1.σt, σt = σs.a.σ
′
s. Since a ∈ Σu, rule pass-uncont can be

applied: let us consider q′ = q after a. Then, 〈q, σc〉 ↪
a/ pass-uncont(a)/a−−−−−−−−−−−−→E 〈q′, σc〉. Then, if σ′s = ε,

G(q′, σc) = ∅ or G(q′, σc) = {ε}, meaning that no other rule can be applied, and thus P(σ.a) would
hold. Otherwise, σ′s 6= ε, and thus σ′s ∈ G(q′, σc), meaning that G(q′, σc) 6= ∅ and G(q′, σc) 6= {ε},
thus rule dump(σc(1)) can be applied. Since σ′s 4 σc, σ′s(1) = σc(1), thus if q1 = q′ after σc(1),
q1 = q′ after σ′s(1). If σ′s(1)−1.σ′s 6= ε, then σ′s(1)−1.σ′s ∈ G(q1, σc(1)−1.σc), meaning that rule
dump can be applied again. Rule dump can actually be applied |σ′s| times, since for all w 4 σ′s, if
w 6= σ′s, then w−1.σ′s 6= ε and w−1.σ′s ∈ G(q′ after w,w−1.σc). Thus, after rule dump has been
applied |σ′s| times, the configuration reached is 〈q′ after σ′s, σ

′−1
s .σc〉. Moreover, the output produced

by all the rules dump is σ′s. Since no rule can be applied after the |σ′s| applications of the rule dump,
output(σ.a) = output(σ).a.σ′s = σt, and Reach(Rules(σ.a)) = 〈q′ after σ′s, σ

′−1
s .σc〉 = 〈q after

a after σ′s, σd〉 = 〈Reach(σs) after a after σ′s, σd〉 = 〈Reach(σs.a.σ
′
s), σd〉 = 〈Reach(σt), σd〉.

Thus, if a ∈ Σu, P(σ.a) holds.

–a ∈ Σc. Then, considering σ′′s = σ−1
s .σt, σt = σs.σ

′′
s . Since a ∈ Σc, it is possible to apply the

store-cont rule, and 〈q, σc〉 after a/ store-cont(a)/ε = 〈q, σc.a〉. Then as in the case where a ∈ Σu,
rule dump can be applied |σ′′s | times, meaning that the configuration reached would then be 〈q after

(σc.a)(1) . (σc.a)(2) . · · · . (σc.a)(|σ′′s |), (σc.a)(|σ′′s | + 1) . (σc.a)(|σ′′s | + 2) . · · · . (σc.a)(|σc.a|)〉.
Since σ′′s 4 σc.a, (σc.a)(1) . (σc.a)(2) . · · · . (σc.a)(|σ′′s |) = σ′′s , thus Reach(Rules(σ.a)) = 〈q after

σ′′s , σ
′′−1
s . (σc.a)〉 = 〈Reach(σt), σd〉. Moreover, output(σ.a) = output(σ).σ′′s = σs.σ

′′
s = σt =

Eϕ(σ.a).

Thus, if a ∈ Σc, P(σ.a) holds. This means that P(σ) =⇒ P(σ.a). Thus, by induction on σ, for all
σ ∈ Σ∗, P(σ) holds. In particular, for all σ ∈ Σ∗, Eϕ(σ) = output(σ).

A.2. Proofs for the Timed Setting

Proposition 6. Eϕ as defined in Definition 16 is an enforcement function, as per Definition 11.

Proof. For σ ∈ tw(Σ), let P(σ) be the predicate: “∀t ∈ R≥0, ∀t′ ≥ t,Eϕ(σ, t) 4 Eϕ(σ, t′)”. Let us
show by induction that for all σ ∈ tw(Σ), P(σ) holds.

—Induction basis: σ = ε. Then, let us consider t ∈ R≥0, and t′ ≥ t. Then, Eϕ(ε, t) = ε 4 ε = Eϕ(ε, t′).
Thus, P(ε) holds.

—Induction step: let us suppose that, for σ ∈ tw(Σ), P(σ) holds. Let us consider (t′′, a) s.t. σ.(t′′, a) ∈
tw(Σ), t ∈ R≥0, and t′ ≥ t.
–If t ≥ t′′, then let us consider (σs, σb, σc) = storeϕ(σ, t′′), (σt1, σd1, σe1) = storeϕ(σ.(t′′, a), t), and
(σt2, σd2, σe2) = storeϕ(σ.(t′′, a), t′). Then, Eϕ(σ.(t′′, a), t) = σt1 and Eϕ(σ.(t′′, a), t′) = σt2.

•If a ∈ Σu, then considering t1 as defined in Definition 16, t1 = min({t0 ∈ R≥0 | t0 ≥ t′′

∧G(Reach(σs.(t
′′, a), t0),ΠΣ(nobs(σb, t

′′)).σc) 6= ∅}). Then, σd1 = minlex(max4(G(Reach(σs.

(t′′, a),min({t, t1})),ΠΣ(nobs(σb, t
′′)).σc) ∪ {ε})) +t min({t, t1}), and σd2 = minlex(max4

(G(Reach (σs.(t
′′, a),min({t′, t1})),ΠΣ(nobs(σb, t

′′)).σc) ∪ {ε})) +t min({t′, t1}).

·Case 1: t ≥ t1. Since t′ ≥ t, then t′ ≥ t1, thus min({t′, t1}) = min({t, t1}) = t1, thus σd1 = σd2.
It follows that:
σt1 = σs.(t

′′, a). obs(σd1, t) 4 σs.(t
′′, a). obs(σd1, t

′) = σs.(t
′′, a). obs(σd2, t

′) = σt2.

·Case 2: t < t1. Then, min({t, t1}) = t. Since t < t1, by definition of t1, this means that G(Reach(σs.

(t′′, a), t),ΠΣ(nobs(σb, t
′′)).σc) = ∅, and thus σd1 = ε. Since σd1 = ε, σt1 = σs.(t

′′, a) 4
σs.(t

′′, a). obs(σd2, t
′) = σt2.

Renard, Falcone, Rollet, Jéron, Marchand 32

Thus, if t′ ≥ t ≥ t′′ and a ∈ Σu, P(σ) =⇒ Eϕ(σ.(t′′, a), t) 4 Eϕ(σ.(t′′, a), t′).

•Otherwise, a ∈ Σc, and then considering t2 as defined in Definition 16, t2 = min({t0 ∈ R≥0 | t0 ≥
t′′ ∧ G(Reach(σs, t0),ΠΣ(nobs(σb, t

′′)).σc.a) 6= ∅}). Then, σd1 = minlex(max4(G(Reach(σs,

min({t, t2})), ΠΣ(nobs(σb, t
′′)) . σc . a) ∪ {ε})) +t min({t, t2}), and:

σd2 = minlex(max4(G(Reach(σs,min({t′, t2})),ΠΣ(nobs(σb, t
′′)).σc.a)∪{ε}))+tmin({t′, t2}).

·Case 1: t ≥ t2. Since t′ ≥ t, t′ ≥ t2, meaning that min({t, t2}) = min({t′, t2}) = t2, and thus
σd1 = σd2. It follows that σt1 = σs. obs(σd1, t)) 4 σs. obs(σd1, t

′) = σs. obs(σd2, t
′) = σt2.

·Case 2: t < t2. Then, G(Reach(σs,min({t, t2})),ΠΣ(nobs(σb, t
′′)).σc.a) = ∅, meaning that

σd1 = ε. Thus, σt1 = σs 4 σs. obs(σd2, t
′) = σt2.

Thus, if t′ ≥ t ≥ t′′ and a ∈ Σc, P(σ) =⇒ Eϕ(σ.(t′′, a), t) 4 Eϕ(σ.(t′′, a), t′).

Therefore, if t′ ≥ t ≥ t′′, for all a ∈ Σ, P(σ) =⇒ Eϕ(σ.(t′′, a), t) 4 Eϕ(σ.(t′′, a), t′).

–If t′ < t′′, then t < t′′, and obs(σ.(t′′, a), t) = obs(σ, t), and obs(σ.(t′′, a), t′) = obs(σ, t′). Thus,
Eϕ(σ.(t′′, a), t) = storeϕ(obs(σ.(t′′, a), t), t) = storeϕ(obs(σ, t), t) = Eϕ(σ, t), and Eϕ(σ.(t′′, a),

t′) = storeϕ(obs(σ.(t′′, a), t′), t′) = storeϕ(obs(σ, t′), t′) = Eϕ(σ, t′). Since P(σ) holds, then
Eϕ(σ.(t′′, a), t) = Eϕ(σ, t) 4 Eϕ(σ, t′) = Eϕ(σ.(t′′, a), t′).

–If t < t′′ ≤ t′, then obs(σ.(t′′, a), t) = obs(σ, t). Since P(σ) holds, then Eϕ(σ, t) 4 Eϕ(σ, t′′).
Let (σs, σb, σc) = storeϕ(σ, t′′) and (σt, σd, σe) = storeϕ(σ.(t′′, a), t′). Then, σt = σs.(t

′′, a).

obs(σe, t
′) if a ∈ Σu, and σt = σs. obs(σe, t

′) if a ∈ Σc. In both cases, σs 4 σt. This means that
Eϕ(σ, t′′) 4 Eϕ(σ.(t′′, a), t′). Thus, Eϕ(σ.(t′′, a), t) = Eϕ(σ, t) 4 Eϕ(σ, t′′) 4 Eϕ(σ.(t′′, a), t′).
Thus, if t < t′′ ≤ t′, then P(σ) =⇒ Eϕ(σ.(t′′, a), t) 4 Eϕ(σ.(t′′, a), t′).

Consequently, in all cases, if t ≤ t′, then P(σ) =⇒ Eϕ(σ.(t′′, a), t) 4 Eϕ(σ.(t′′, a), t′). Finally,
P(σ) =⇒ P(σ.(t′′, a)).

By induction, for all σ ∈ tw(Σ), P(σ) holds. Thus, for all σ ∈ tw(Σ), for all t ∈ R≥0, for all t′ ≥ t,
Eϕ(σ, t) 4 Eϕ(σ, t′).

Now, let us consider σ ∈ tw(Σ), and (t, a) s.t. σ.(t, a) ∈ tw(Σ). Then, if (σs, σb, σc) = storeϕ(σ, t),
and (σt, σd, σe) = storeϕ(σ.(t, a), t), then either σt = σs.(t, a).σ′s, or σt = σs.σ

′′
s , whether a is

controllable or uncontrollable respectively, where σ′s and σ′′s are defined in Definition 16. In both cases,
σs 4 σt. Thus, Eϕ(σ, t) = Π1(storeϕ(obs(σ, t), t)) = σs 4 σt = Π1(storeϕ(obs(σ.(t, a), t))) =

Eϕ(σ.(t, a), t). This holds because, since σ.(t, a) ∈ tw(Σ), time(σ) ≤ t, thus obs(σ, t) = σ. Thus, for
all σ ∈ tw(Σ), for all t ∈ R≥0 and t′ ≥ t, Eϕ(σ, t) 4 Eϕ(σ, t′) and Eϕ(σ, t) 4 Eϕ(σ.(t, a), t). This
means that Eϕ is an enforcement function.

Lemma 6. ∀t ∈ R≥0, ∀σ ∈ tw(Σ), (σ 6∈ Pre(ϕ, t) ∧ (σs, σb, σc) = storeϕ(σ, t)) =⇒ (σs =

σ|Σu ∧ σb = ε ∧ σc = ΠΣ(σ|Σc)).

Proof. For σ ∈ tw(Σ), let P(σ) be the predicate “∀t ≥ time(σ), (σ 6∈ Pre(ϕ, t) ∧ (σs, σb, σc) =

storeϕ(σ, t)) =⇒ (σs = σ|Σu ∧ σb = ε ∧ σc = ΠΣ(σ|Σc))”. Let us prove by induction that for all
σ ∈ tw(Σ), P(σ) holds.

—Induction basis: for σ = ε, let us consider t ∈ R≥0. Then, storeϕ(ε, t) = (ε, ε, ε). Considering that
ε ∈ tw(Σu), and ε = ΠΣ(ε|Σc), P(ε) trivially holds (whether ε ∈ P(ϕ, t) or not).

—Induction step: suppose that for σ ∈ tw(Σ), P(σ) holds. Let us consider (t′, a) s.t. σ.(t′, a) ∈ tw(Σ),
and t ≥ t′. Let us also consider (σs, σb, σc) = storeϕ(σ, t′) and (σt, σd, σe) = storeϕ(σ.(t′, a), t).
Then, if σ.(t′, a) ∈ Pre(ϕ, t), P(σ.(t′, a)) trivially holds. Thus, let us suppose that σ.(t′, a) 6∈ Pre(ϕ, t).
Since σ 4 σ.(t′, a) and t ≥ t′, it follows that σ 6∈ Pre(ϕ, t′). By induction hypothesis, this means that
σs = σ|Σu , σb = ε, and σc = ΠΣ(σ|Σc). Then, since σ.(t′, a) 6∈ Pre(ϕ, t), following the definition of
Pre(ϕ, t), this means that for all t′′ ≤ t, G(Reach(obs(σ.(t′, a), t′′)|Σu , t

′′),ΠΣ(obs(σ.(t′, a), t′′)|Σc))

Optimal Enforcement of (Timed) Properties with Uncontrollable Events 33

= ∅. In particular, G(Reach((σ.(t′, a))|Σu , t),ΠΣ((σ.(t′, a))|Σc)) = ∅ (since t ≥ t′, obs(σ.(t′, a), t) =

σ.(t′, a)). Then, there are two cases:

–Case 1: a ∈ Σu. Then, since (σ.(t′, a))|Σu = σ|Σu .(t
′, a) = σs.(t

′, a), and ΠΣ((σ.(t′, a))|Σc) =

ΠΣ(σ|Σc) = ΠΣ(nobs(σb, t
′)).σc, we have G(Reach(σs.(t

′, a), t),ΠΣ(σb, t
′).σc) = ∅. This means

that t < t1, where t1 is defined in Definition 16, and thus σd = ε. Since σt = σs.(t
′, a). obs(σd, t),

σt = σs.(t
′, a) = (σ.(t′, a))|Σu , and σe = σc = σ|Σc = (σ.(t′, a))|Σc . Thus, P(σ.(t′, a)) holds if

a ∈ Σu.

–Case 2: a ∈ Σc. Then, (σ.(t′, a))|Σu = σ|Σu = σs, and ΠΣ((σ.(t′, a))|Σc) = ΠΣ(σ|Σc).a =

ΠΣ(nobs(σb, t
′)).σc.a. Thus, G(Reach(σs, t),ΠΣ(nobs(σb, t

′).σc.a)) = ∅. This means that t < t2,
where t2 is defined in Definition 16, and thus σd = ε. Since σt = σs. obs(σd, t), σt = σs =

σ|Σu = (σ.(t′, a))|Σu , and σe = ΠΣ(nobs(σb, t
′)).σc.a = ΠΣ(σ|Σc).a = ΠΣ((σ.(t′, a))|Σc). Thus,

P(σ.(t′, a)) holds if a ∈ Σc.

Thus, P(σ) =⇒ P(σ.(t′, a)).

By induction, for all σ ∈ tw(Σ), P(σ) holds. Thus, for all σ ∈ tw(Σ), for all t ∈ R≥0, if (σs, σb, σc) =

storeϕ(σ, t) and (σ, t) 6∈ Pre(ϕ), then σs = σ|Σu , σb = ε, and σc = ΠΣ(σ|Σc).

Lemma 7. ∀σ ∈ Σ∗c , ∀a ∈ Σc, I(σ) ⊆ I(σ.a).

Proof. For σ ∈ Σ∗c , let P(σ) be the predicate “∀a ∈ Σc, I(σ) ⊆ I(σ.a)”. Let us show by induction that
P(σ) holds for all σ ∈ Σ∗c .

—Induction basis: let us consider a ∈ Σc. Then, I(ε) = ∅ ⊆ I(a).
—Induction step: suppose now that for σ ∈ Σ∗c , for all σ′ ∈ Σ∗c s.t. |σ′| ≤ |σ|, P(σ′) holds. Let us then

consider a ∈ Σc, a′ ∈ Σc, and (h, σ0) ∈ Σc × Σ∗c s.t. h.σ0 = σ.a (h and σ0 exist because σ.a 6= ε).
Then, I(σ.a.a′) = I(h.σ0.a

′) = Predh(S(σ0.a
′) ∪ I(σ0.a

′)), and I(σ.a) = I(h.σ0) = Predh(S(σ0) ∪
I(σ0)). Following the definition of S, S(σ0) ⊆ S(σ0.a

′). Moreover, by induction hypothesis, since |σ0| ≤
|σ|, P(σ0) holds, meaning that I(σ0) ⊆ I(σ0.a

′). Thus, S(σ0)∪ I(σ0) ⊆ S(σ0.a
′)∪ I(σ0.a

′). It follows
that I(σ.a) = Predh(S(σ0)∪ I(σ0)) ⊆ Predh(S(σ0.a

′)∪ I(σ0.a
′)) = I(σ.a.a′). Thus, for all a′ ∈ Σc,

I(σ.a) ⊆ I(σ.a.a′), meaning that P(σ.a) holds.

By induction, P(σ) holds for every σ ∈ Σ∗c , meaning that for all σ ∈ Σ∗c , for all a ∈ Σc, I(σ) ⊆ I(σ.a).

Lemma 8. ∀q ∈ Q,∀σ ∈ Σ∗c , (q ∈ S(σ)) =⇒ (∀u ∈ Σu, q after (0, u) ∈ S(σ) ∪ I(σ)).

Proof. For σ ∈ Σ∗c , let P(σ) be the predicate “∀q ∈ Q, (q ∈ S(σ)) =⇒ (∀u ∈ Σu, q after (0, u) ∈
S(σ) ∪ I(σ))”. Let us show by induction on σ that P(σ) holds for every σ ∈ Σ∗c .

—Induction basis: let us consider q ∈ S(ε). Then, for all u ∈ Σu, since (0, u) ∈ tw(Σu), considering the
definition of S(ε), q after (0, u) ∈ S(ε). Thus, q ∈ S(ε) ∪ I(ε). Thus, P(ε) holds.

—Induction step: let us suppose that for σ ∈ Σ∗c , P(σ) holds. Let us consider a ∈ Σc and q ∈ S(σ.a).
Then, considering the definition of S(σ.a), two cases are possible:

–Either q ∈ S(σ), and then, by induction hypothesis, for all u ∈ Σu, q after (0, u) ∈ S(σ) ∪ I(σ).
S(σ) ⊆ S(σ.a), and following lemma 7, I(σ) ⊆ I(σ.a), thus, q after (0, u) ∈ S(σ.a) ∪ I(σ.a).

–or q ∈ S(σ.a) \ S(σ), and then, since (S(σ.a) \ S(σ)) ∩ uPred((S(σ.a) \ S(σ)) ∪ I(σ.a)) = ∅, it
follows that if u ∈ Σu, q after (0, u) ∈ (S(σ.a) \ S(σ)) ∪ I(σ.a) ⊆ S(σ.a) ∪ I(σ.a).

In both cases, for all u ∈ Σu, q after (0, u) ∈ S(σ.a) ∪ I(σ.a), meaning that P(σ.a) holds. Thus, by
induction, for all σ ∈ Σ∗c , P(σ) holds. Thus, for all σ ∈ Σ∗c , for all q ∈ S(σ), for all u ∈ Σu, qafter(0, u) ∈
S(σ) ∪ I(σ).

Renard, Falcone, Rollet, Jéron, Marchand 34

Lemma 9. For all σ ∈ Σ∗c , for all q ∈ Q, (q ∈ S(σ) ∪ I(σ)) =⇒ (G(q, σ) 6= ∅).

Proof. For σ ∈ Σ∗c , let P(σ) be the predicate “∀q ∈ Q, (q ∈ S(σ) ∪ I(σ)) =⇒ (G(q, σ) 6= ∅)”. Let
us then prove by induction on σ that P(σ) holds for every σ ∈ Σ∗c .

—Induction basis: let us consider q ∈ S(ε)∪I(ε). Since I(ε) = ∅, this means that q ∈ S(ε). Then, ε satisfies
ε 4 ΠΣ(ε). Moreover, since S(ε) ⊆ FG, q after ε = q ∈ FG, and for all t ∈ R≥0, q after (ε, t) ∈ S(ε),
because otherwise there would exist σu ∈ tw(Σu) s.t. q after (ε, t) after σu 6∈ FG, meaning that
q after(σu+t t) 6∈ FG, and thus q would not be in S(ε). Thus, ε ∈ G(q, ε). This means thatG(q, ε) 6= ∅,
and thus that P(ε) holds.

—Induction step: let us suppose that for n ∈ N, for all σ ∈ Σ∗c , |σ| ≤ n =⇒ P(σ). Let us consider
σ ∈ Σ∗c s.t. |σ| = n, a ∈ Σc, and q ∈ S(σ.a) ∪ I(σ.a).

–If q ∈ I(σ.a), let us consider (h, σ0) ∈ Σc ×Σ∗c s.t. σ.a = h.σ0. Then, q ∈ I(h.σ0) = Predh(S(σ0)∪
I(σ0)), and since |σ0| = |σ| = n ≤ n, by induction hypothesis, G(q after (0, h), σ0) 6= ∅. Let us
considerw ∈ G(qafter(0, h), σ0). Then, (0, h).w satisfies ΠΣ((0, h).w) 4 h.σ0, qafter((0, h).w) =

q after (0, h) after w ∈ FG, and for all t ∈ R≥0, q after ((0, h).w, t) = q after (0, h) after (w, t) ∈
S(ΠΣ(w)−1.σ0) = S(ΠΣ((0, h).w)−1.(h.σ0)). Thus, (0, h).w ∈ G(q, h.σ0) = G(q, σ.a). Thus,
G(q, σ.a) 6= ∅.

–If q ∈ S(σ.a), then there are again two cases:

•if q ∈ S(σ), then by induction hypothesis, G(q, σ) 6= ∅. Since G(q, σ) ⊆ G(q, σ.a), it follows that
G(q, σ.a) 6= ∅.
•otherwise, q ∈ X ∪ Y , where X and Y are defined in the definition of S(σ.a).

·If q ∈ X , then there exists i ∈ I(σ.a) and δ ∈ R≥0 s.t. q after (ε, δ) = i, and for all t ≤ δ,
q after (ε, t) ∈ X ⊆ S(σ.a). Since i ∈ I(σ.a), we showed previously that G(i, σ.a) 6= ε. Let us
consider w ∈ G(i, σ.a). Then, w+t δ satisfies ΠΣ(w+t δ) 4 σ.a, q after(w+t δ) = iafterw ∈ FG,
and for all t ∈ R≥0, if t < δ, then q after (w +t δ, t) = q after (ε, t) ∈ X ⊆ S(σ.a), otherwise,
q after (w +t δ, t) = i after (w, t− δ) ∈ S(σ.a). Thus, w +t δ ∈ G(q, σ.a). Thus, G(q, σ.a) 6= ∅.
·Otherwise, q ∈ Y , and then ε satisfies ΠΣ(ε) 4 σ.a, qafterε ∈ FG, and for all t ∈ R≥0, qafter(ε, t) ∈
up(q) ⊆ up(Y) = Y ⊆ S(σ.a). Thus, ε ∈ G(q, σ.a). Thus, G(q, σ.a) 6= ∅.

Thus, for all q ∈ S(σ.a) ∪ I(σ.a), G(q, σ.a) 6= ∅. Thus, P(σ.a) holds. By induction on σ, P(σ) holds for
ever σ ∈ Σ∗c , meaning that for all σ ∈ Σ∗c , for all q ∈ S(σ) ∪ I(σ), G(q, σ) 6= ∅.

Proposition 7. Eϕ is sound with respect to ϕ in Pre(ϕ) as per Definition 12.

Proof. Notation from Definition 16 is to be used in this proof:

κϕ(q, w) = min
lex

(max
4

(G(q, w) ∪ {ε})), for q ∈ Q and w ∈ Σ∗c ,

bufferc = ΠΣ(nobs(σb, t
′)).σc,

t1 =
min({t′′ ∈ R≥0 | t′′ ≥ t′∧

G(Reach(σs.(t
′, a), t′′), bufferc) 6= ∅} ∪ {+∞}),

σ′b = κϕ(Reach(σs.(t
′, a),min({t, t1})), bufferc) +t min({t, t1}),

σ′c = ΠΣ(σ′b)
−1.bufferc,

t2 =
min({t′′ ∈ R≥0 | t′′ ≥ t′∧

G(Reach(σs, t
′′), bufferc.a) 6= ∅} ∪ {+∞}),

σ′′b = κϕ(Reach(σs,min({t, t2})), bufferc.a) +t min({t, t2}),
σ′′c = ΠΣ(σ′′b)−1.(bufferc.a).

Optimal Enforcement of (Timed) Properties with Uncontrollable Events 35

For σ ∈ tw(Σ), and t ≥ time(σ), let P(σ, t) be the predicate “(σ ∈ Pre(ϕ, t) ∧ (σs, σb, σc) =

storeϕ(σ, t)) =⇒ (Eϕ(σ) |= ϕ ∧ nobs(σb, t) −t t ∈ G(Reach(σs, t),ΠΣ(nobs(σb, t)).σc)). Let
also P(σ) be the predicate: “∀t ≥ time(σ),P(σ, t)”. Let us show that for all σ ∈ tw(Σ), P(σ) holds.

—Induction basis: for σ = ε, let us consider t ∈ R≥0.

–Case 1: ε 6∈ Pre(ϕ, t). Then, P(ε) trivially holds.

–Case 2: ε ∈ Pre(ϕ, t). Then, there exists t′ ≤ t s.t. G(Reach(obs(ε, t′)|Σu , t
′), ε) 6= ∅, meaning that

G(Reach(ε, t′), ε) 6= ∅. Thus, following the definition of G(Reach(ε, t′), ε), ε ∈ G(Reach(ε, t′), ε),
and Reach(ε) ∈ FG. Since Eϕ(ε) = ε, and Reach(ε) ∈ FG, Eϕ(ε) |= ϕ. Thus, because storeϕ(ε) =

(ε, ε, ε), P(ε, t) holds.

Thus, in both cases, P(ε, t) holds, meaning that P(ε) holds.
—Induction step: suppose that for σ ∈ tw(Σ), P(σ) holds. Let us consider (t′, a) s.t. σ.(t′, a) ∈ tw(Σ),

and t ≥ t′ = time(σ.(t′, a)). Let us also consider (σs, σb, σc) = storeϕ(σ, t′) and (σt, σd, σe) =

storeϕ(σ.(t′, a), t).

–Case 1: σ.(t′, a) 6∈ Pre(ϕ, t). Then, P(σ.(t′, a), t) trivially holds.

–Case 2: σ.(t′, a) ∈ Pre(ϕ, t) ∧ σ 6∈ Pre(ϕ, t′). Then, σ 6∈ Pre(ϕ, t′), thus, following lemma 6, σs =

σ|Σu , σb = ε, and σc = ΠΣ(σ|Σc). Since σ.(t′, a) ∈ Pre(ϕ, t), and σ 6∈ Pre(ϕ, t′), there exists t′′ ∈
R≥0 s.t. t′ ≤ t′′ ≤ t, and G(Reach(obs(σ.(t′, a), t′′)|Σu , t

′′),ΠΣ(obs(σ.(t′, a), t′′)|Σc)) 6= ∅. Since
t′′ ≥ t′ = time(σ.(t′, a)), then obs(σ.(t′, a), t′′) = σ.(t′, a). This means that G(Reach((σ.(t′, a))|Σu ,

t′′),ΠΣ((σ.(t′, a))|Σc)) 6= ∅.

•If a ∈ Σu, then considering that (σ.(t′, a))|Σu = σ|Σu .(t
′, a) = σs.(t

′, a), σb = ε, and σc =

ΠΣ(σ|Σc), this means that G(Reach(σs.(t
′, a), t′′),ΠΣ(nobs(σb, t

′)).σc) 6= ∅.
Thus, t1 ≤ t′′ ≤ t, meaning that σd −t t1 ∈ G(Reach(σs.(t

′, a), t1),ΠΣ(σb).σc). Thus, considering
the definition of G, it follows that nobs(σd, t)−t t ∈ G(Reach(σs.(t

′, a). obs(σd, t), t),ΠΣ(obs(σd,

t))−1.(ΠΣ(nobs(σb, t
′)).σc)). Moreover, ΠΣ(nobs(σb, t

′)).σc = σ|Σc , thus ΠΣ(obs(σd,

t))−1.(ΠΣ(nobs(σb, t
′)).σc) = ΠΣ(nobs(σd, t)).σe, meaning that nobs(σd, t)−tt ∈ G(Reach(σt, t),

ΠΣ(nobs(σd, t)).σe). Thus, P(σ.(t′, a), t) holds.

•Otherwise, a ∈ Σc. Then, (σ.(t′, a))|Σu = σ|Σu = σs, σb = ε, and σc = ΠΣ((σ . (t′, a))|Σc) =

ΠΣ(σ|Σc) . a. This means that G(Reach(σs, t
′′),ΠΣ(nobs(σb, t

′)) . σc . a) 6= ∅. Thus, t2 ≤ t′′ ≤ t,
therefore σd −t t2 ∈ G(Reach(σs, t2),ΠΣ(nobs(σb, t

′)) . σc . a). It follows that nobs(σd, t)−t t ∈
G(Reach(σs .obs(σd, t), t),ΠΣ(obs(σd, t))

−1 .(ΠΣ(nobs(σb, t
′)) .σc .a)). Moreover, ΠΣ(nobs(σb,

t′)).σc.a = ΠΣ((σ.(t′, a))|Σc) = ΠΣ(σd).σe. Thus, ΠΣ(obs(σd, t))
−1 .(ΠΣ(nobs(σb, t

′)) .σc .a) =

ΠΣ(nobs(σd, t)) . σe. Thus, nobs(σd, t) −t t ∈ G(Reach(σt, t),ΠΣ(nobs(σd, t)).σe). This means
that P(σ.(t′, a), t) holds.

Thus, if σ.(t′, a) ∈ Pre(ϕ, t) ∧ σ 6∈ Pre(ϕ, t′), P(σ, t) =⇒ P(σ.(t′, a), t).

–Case 3: σ.(t′, a) ∈ Pre(ϕ, t) and σ ∈ Pre(ϕ, t′). Then, considerwb = nobs(σb, t
′)−tt

′. By the induc-
tion hypothesis, since σ ∈ Pre(ϕ, t′), Eϕ(σ) |= ϕ, and wb ∈ G(Reach(σs, t

′),ΠΣ(nobs(σb, t
′)).σc).

•If a ∈ Σu, then since wb ∈ G(Reach(σs, t
′),ΠΣ(nobs(σb, t

′)) . σc), Reach(σs, t
′) after (wb, 0) =

Reach(σs, t
′) ∈ S(ΠΣ(nobs(σb, t

′)).σc). Thus, following lemma 8, since a ∈ Σu, Reach(σs, t
′)after

(0, a) = Reach(σs.(t
′, a)) ∈ S(ΠΣ(nobs(σb, t

′)).σc) ∪ I(ΠΣ(nobs(σb, t
′)).σc). Then, following

lemma 9, this means that G(Reach(σs.(t
′, a)),ΠΣ(nobs(σb, t)).σc) 6= ∅. It follows that t1 = t′, thus

min({t, t1}) = t1 = t′, and σd−t t
′ ∈ G(Reach(σs . (t

′, a), t′),ΠΣ(nobs(σb, t
′)) . σc). This implies

that Reach(σs . (t
′, a) . σd) = Reach(Eϕ(σ . (t′, a))) ∈ FG, meaning that Eϕ(σ.(t′, a)) |= ϕ. More-

over, following the definition of G, nobs(σd, t)−tt ∈ G(Reach(σs.(t
′, a). obs(σd, t), g),ΠΣ(obs(σd,

t))−1.(ΠΣ(nobs(σb, t
′)).σc)). Thus, since σt = σs.(t

′, a).obs(σd, t), and ΠΣ(σd).σe = ΠΣ(nobs(σb,

Renard, Falcone, Rollet, Jéron, Marchand 36

t′)).σc, it follows that nobs(σd, t) −t t ∈ G(Reach(σt, t),ΠΣ(nobs(σd, t)).σe). This means that
P(σ.(t′, a), t) holds.

•Otherwise, a ∈ Σc. Since wb ∈ G(Reach(σs, t
′),ΠΣ(nobs(σb, t

′)).σc), wb satisfies ΠΣ(wb) 4
ΠΣ(nobs(σb, t

′)).σc 4 ΠΣ(nobs(σb, t
′)).σc.a, Reach(σs, t

′) after wb ∈ FG, and for all t′′ ∈ R≥0,
Reach(σs, t

′) after (wb, t
′′) ∈ S(ΠΣ(nobs(σb, t

′)).σc). Since ΠΣ(nobs(σb, t
′)).σc 4 ΠΣ(nobs(σb,

t′)).σc.a, S(ΠΣ(nobs(σb, t
′)).σc) ⊆ S(ΠΣ(nobs(σb, t

′)).σc.a). Thus, for all t′′ ∈ R≥0, Reach(σs,

t′) after (wb, t
′′) ∈ S(ΠΣ(nobs(σb, t

′)).σc.a). This means that wb ∈ G(Reach(σs, t
′),ΠΣ(nobs(σb,

t′)) . σc . a). It follows that G(Reach(σs, t
′),ΠΣ(nobs(σb, t

′)).σc.a) 6= ∅, and thus, using the same
reasoning as in the case where a ∈ Σu, t2 = t′, and σd is s.t. Reach(σs, t

′) after σd ∈ FG, mean-
ing that Eϕ(σ.(t′, a)) |= ϕ, and nobs(σd, t) −t t ∈ G(Reach(σt, t), ΠΣ(nobs(σd, t)).σe). Thus,
P(σ.(t′, a), t) holds.

Thus, in all cases, for all t ≥ t′,P(σ) =⇒ P(σ.(t′, a), t). This means that P(σ) =⇒ ∀t ≥
t′,P(σ.(t′, a), t). Thus, P(σ) =⇒ P(σ.(t′, a)). By induction, for all σ ∈ tw(Σ), P(σ) holds. In
particular, for all (σ, t) ∈ Pre(ϕ),Eϕ(σ) |= ϕ. This means that Eϕ is sound in Pre(ϕ).

Proposition 8. Eϕ is compliant, as per Definition 13.

Proof. For σ ∈ tw(Σ), let P(σ) be the predicate: “∀t ≥ time(σ), (σs, σb, σc) = storeϕ(σ, t) =⇒
σs|Σu = σ|Σu ∧ ΠΣ(σs|Σc . nobs(σb, t)).σc = ΠΣ(σ|Σc) ∧ σs|Σc 4d σ|Σc”. Let us prove by induction
that for all σ ∈ tw(Σ),P(σ) holds.

—Induction basis: for σ = ε. storeϕ(ε) = (ε, ε, ε), and ε|Σc = ε|Σu = ΠΣ(ε) = ε. Thus, P(ε) trivially
holds.

—Induction step: suppose now that for some σ ∈ tw(Σ),P(σ) holds. Let us consider (t′, a) s.t. σ.(t′, a) ∈
tw(Σ), t ≥ time(σ), (σs, σb, σc) = storeϕ(σ, t′), and (σt, σd, σe) = storeϕ(σ.(t′, a), t). Then, by
induction hypothesis, σs|Σu = σ|Σu , ΠΣ(σs|Σc .σb).σc = ΠΣ(σ|Σc), and σs|Σc 4d σ|Σc .

–a ∈ Σu. By construction, σd satisfies ΠΣ(σd) 4 ΠΣ(nobs(σb, t
′)).σc and σd 6= ε =⇒ date(σd(1)) ≥

t′.

•Projection on Σu: Since a ∈ Σu, σt|Σu = (σs.(t
′, a). obs(σd, t))|Σu . σd ∈ tw(Σc), thus σt|Σu =

σs|Σu .(t
′, a) = σ|Σu .(t

′, a) = (σ.(t′, a))|Σu .

•Projection on Σc: ΠΣ(σt|Σc . nobs(σd, t)) . σe = ΠΣ((σs . (t
′, a) . obs(σd, t))|Σc . nobs(σd, t)) . σe

= ΠΣ(σs|Σc . σd) . σe = ΠΣ(σs|Σc) .ΠΣ(σd) . σe. By construction, ΠΣ(σd) . σe = ΠΣ(nobs(σb, t
′)).

σc. Thus, ΠΣ(σt|Σc .σd).σe = ΠΣ(σs|Σc).ΠΣ(nobs(σb, t
′)).σc = ΠΣ(σs|Σc . nobs(σb, t

′)).σc =

ΠΣ(σ|Σc) = ΠΣ((σ.(t′, a))|Σc). Moreover, σt ∈ tw(Σ), and since σt = σs.(t
′, a). obs(σd, t), it fol-

lows that for all i ∈ [1; | obs(σd, t)|], date(σd(i)) ≥ t′. Since σs|Σc 4d σ|Σc , for all i ∈ [1; |σs|Σc |],
date(σs|Σc(i)) ≥ date(σ|Σc(i)). Thus, for all i ∈ [1; |σt|Σc |], date(σt|Σc(i)) ≥ date(σ|Σc(i)). Since
ΠΣ(σt|Σc .σd).σe = ΠΣ(σ|Σc), ΠΣ(σt|Σc) 4 ΠΣ(σ|Σc). Thus σt|Σc 4d σ|Σc = (σ.(t′, a))|Σc .

This means that if a ∈ Σu, P(σ.(t′, a)) holds.

–a ∈ Σc. By construction, σd satisfies ΠΣ(σd) 4 ΠΣ(σb).σc.a, and σd 6= ε =⇒ date(σd(1)) ≥ t′.
•Projection on Σu: σt|Σu = (σs . obs(σd, t))|Σu . Since σd ∈ tw(Σc), σt|Σu = σs|Σu = σ|Σu =

(σ.(t′, a))|Σu .

•Projection on Σc: ΠΣ(σt|Σc . nobs(σd, t)) . σe = ΠΣ((σs . obs(σd, t))|Σc . nobs(σd, t)) . σe =

ΠΣ(σs|Σc . σd) . σe = ΠΣ(σs|Σc) .ΠΣ(σd) . σe. By construction, it is ensured that ΠΣ(σd).σe =

ΠΣ(nobs(σb, t
′)).σc.a. It follows that ΠΣ(σt|Σc .σd).σe = ΠΣ(σs|Σc).ΠΣ(nobs(σb, t

′)).σc.a =

ΠΣ(σs|Σc . nobs(σb, t
′)).σc.a = ΠΣ(σ|Σc).a = ΠΣ((σ.(t′, a))|Σc). Moreover, considering t2 as de-

fined in Definition 16, t2 ≥ t′, and t ≥ t′, thus min({t, t2}) ≥ t′, which means that since there exists

Optimal Enforcement of (Timed) Properties with Uncontrollable Events 37

wd ∈ tw(Σ) s.t. σd = wd+tmin({t, t2}), if σd 6= ε, then date(σd(1)) ≥ t′. Thus, for all i ∈ [1; |σd|],
date(σd(i)) ≥ t′ = time(σ.(t′, a)). This still holds if σd = ε, because then [1; |σd|] = ∅. Since
σs|Σc 4d σ|Σc , for all i ∈ [1; |σs|Σc |], date(σs|Σc(i)) ≥ date(σ|Σc(i)). Thus, for all i ∈ [1; |σt|Σc |],
date(σt|Σc(i)) ≥ date((σ . (t′, a))|Σc(i)). Since ΠΣ(σt|Σc . nobs(σd, t)) . σe = ΠΣ((σ.(t′, a))|Σc),
ΠΣ(σt|Σc) 4 ΠΣ((σ.(t′, a))|Σc). Thus σt|Σc 4d (σ.(t′, a))|Σc .

Thus if a ∈ Σc, P(σ.(t, a)) holds.

Thus P(σ) =⇒ P(σ.(t, a)). By induction, for all σ ∈ tw(Σ), for all t ≥ time(σ), (σs, σb, σc) =

storeϕ(σ, t) =⇒ σs|Σu = σ|Σu ∧ ΠΣ(σs|Σc . nobs(σb, t)).σc = ΠΣ(σ|Σc) ∧ σs|Σc 4d σs|Σc . Thus Eϕ
is compliant.

Lemma 10. ∀σ ∈ Σ∗c , ∀q ∈ Q, (q 6∈ S(σ)) =⇒ (∃σu ∈ tw(Σu), (q after σu 6∈ Fg) ∧ (∀t >
0, q after (σu, t) 6∈ S(σ) ∪ I(σ)) ∧ (∀σ′u 4 σu, σ

′
u 6= ε =⇒ q after σ′u 6∈ S(σ) ∪ I(σ)))

Proof. For σ ∈ Σ∗c and q ∈ Q, let P(σ, q) be the predicate “∀σu ∈ tw(Σu), (q afterσu ∈ FG)∨ (∃t >
0, q after (σu, t) ∈ S(σ) ∪ I(σ)) ∨ (∃σ′u 4 σu, σ

′
u 6= ε ∧ q after σ′u ∈ S(σ) ∪ I(σ))”. Let us show the

contrapositive of the proposition, that is that for all σ ∈ Σ∗c , for all q ∈ Q, (P(σ, q)) =⇒ (q ∈ S(σ)).

—If σ = ε, let us consider q ∈ Q s.t. P(ε, q) holds. Then, since ε ∈ tw(Σu), q after ε = q ∈ FG, or there
exists t > 0 s.t. qafter(ε, t) ∈ S(ε)∪I(ε), or there exists σ′u 4 ε s.t. σ′u 6= ε and qafterσ′u ∈ S(ε)∪I(ε).
Since σ′u 4 ε, σ′u = ε, meaning that this last condition does not hold for σu = ε. Thus, q ∈ FG or there
exists t ∈ R≥0 s.t. q after (ε, t) ∈ S(ε) ∪ I(ε). Since I(ε) = ∅ and S(ε) ⊆ FG, if the second condition
holds, then q after (ε, t) ∈ FG, meaning that q ∈ FG. Thus, q ∈ FG.
Moreover, since P(ε, q) holds, for all σu ∈ tw(Σu), q after σu ∈ FG or there exists t ∈ R≥0 s.t.
q after (σu, t) ∈ S(ε) ∪ I(ε) ⊆ FG, meaning that q after σu ∈ FG, or there exists σ′u 4 σu s.t.
q after σ′u ∈ S(ε) ∪ I(ε). If the last condition holds, since I(ε) = ∅, then q after σ′u ∈ S(ε). Then,
following the definition of S(ε), since σ′u

−1
.σu ∈ tw(Σu), it follows that q after σ′u after σ′u

−1
.σu =

q after σu ∈ FG. Thus, for all σu ∈ tw(Σu), q after σu ∈ FG, meaning that q ∈ S(ε).
—If σ 6= ε, there exists (σ′, a) ∈ Σ∗c × Σc s.t. σ = σ′.a. Let us consider q ∈ Q s.t. P(σ, q) holds. Then,

for all σu ∈ tw(Σu), q after σu ∈ FG, or there exists t > 0 s.t. q after (σu, t) ∈ S(σ) ∪ I(σ), or there
exists σ′u 4 σu s.t. σ′u 6= ε and q after σ′u ∈ S(σ) ∪ I(σ). Let Xs and Ys be s.t. S(σ) = S(σ′.a) =

S(σ′) ∪Xs ∪ Ys, with:

–∀x ∈ Xs, ∃i ∈ I(σ′.a), ∃δ ∈ R≥0, x after (ε, δ) = i ∧ ∀t ≤ δ, x after (ε, t) ∈ Xs,
–Ys ⊆ FG ∧ up(Ys) = Ys, and

–(Xs ∪ Ys) ∩ uPred(Xs ∪ Ys ∪ I(σ′.a)) = ∅.
Xs and Ys correspond to the sets X and Y in the definition of S(σ′.a), respectively. Let us consider
X0 = {q after (σu, t) | σu ∈ tw(Σu)∧ t ∈ R≥0 ∧∀t′ ∈]0; t] , q after (σu, t

′) 6∈ S(σ)∪ I(σ)∧∀σ′u 4
σu, σ

′
u 6= ε =⇒ q afterσ′u 6∈ S(σ)∪ I(σ)}, and Y0 = {y ∈ X0 | up(y) ⊆ X0 ∪Ys}. Then, Y0 ⊆ X0,

and up(Y0) = Y0. Moreover, if y ∈ Y0, then up(y) ⊆ X0 ∪ Ys, and more precisely, up(y) ⊆ Y0 ∪ Ys,
since all the states in up(y) are also in Y0 if y ∈ Y0. Since up(Ys) = Ys, either up(y) ⊆ Y0 or there
exists t ∈ R≥0 s.t. for all t′ < t, y after (ε, t′) ∈ Y0 and up(y after (ε, t)) ⊆ Ys. Since P(σ, q) holds,
and Ys ⊆ FG, in both cases, y ∈ FG, meaning that Y0 ⊆ FG. Let us now consider Y = Ys ∪ Y0,
X = Xs∪ (X0 \Y0), and x ∈ X . Let us suppose that x 6∈ Xs, meaning that x ∈ X0 \Y0. Following the
definition ofX0 and Y0, this means that there exists δ > 0 and i ∈ S(σ)∪I(σ) such that xafter(ε, δ) = i,
and they can be chosen such that for all t < δ, x after (ε, t) ∈ X0. Suppose now that i ∈ S(σ), and more
precisely that i ∈ Ys. Then, up(i) ⊆ Ys and up(i) ∩ uPred(Xs ∪ Ys ∪ I(σ)) = ∅, and since for all
t < δ, xafter(ε, t) ∈ X0, it follows that up(x) ⊆ X0∪Ys, meaning that x ∈ Y0, which is absurd. Thus,
i 6∈ Ys. This means that either i ∈ I(σ), or i ∈ Xs. Thus, there exists δ′ ∈ R≥0 s.t. i after (ε, δ′) ∈ I(σ)

and for all t < δ′, i after (ε, t) ∈ Xs ⊆ X (if i ∈ I(σ), then δ′ = 0). Then, x after (ε, δ + δ′) = i,

Renard, Falcone, Rollet, Jéron, Marchand 38

and for all t < δ + δ′, x after (ε, t) ∈ X . Moreover, (X ∪ Y) ∩ uPred(X ∪ Y ∪ I(σ)) = ∅ since
Y = Ys ∪ Y0 ⊆ S(σ)∪X0, X ⊆ Xs ∪X0, and X ∪ Y = X0 ∪ S(σ). This means that X ∪ Y ⊆ S(σ),
and since X0 ⊆ X ∪ Y , X0 ⊆ S(σ). Since q = q after (ε, 0), with ε ∈ tw(Σu) and t ∈ R≥0, q ∈ X0,
and thus q ∈ S(σ). Thus, if σ 6= ε and q ∈ Q, P(σ, q) =⇒ q ∈ S(σ).

Thus, for all σ ∈ Σ∗c , for all q ∈ Q, P(σ, q) =⇒ q ∈ S(σ). Thus, the contrapositive also holds,
meaning that for all σ ∈ Σ∗c , for all q ∈ Q, q 6∈ S(σ) =⇒ ¬P(σ, q), that is q 6∈ S(σ) =⇒ (∃σu ∈
tw(Σu), q afterσu 6∈ FG ∧∀t > 0, q after (σu, t) 6∈ S(σ)∪ I(σ)∧∀σ′u 4 σu, σ

′
u 6= ε =⇒ q afterσ′u 6∈

S(σ) ∪ I(σ)).

Proposition 9. Eϕ is optimal in Pre(ϕ), as per Definition 14.

Proof. Let us consider E′ : tw(Σ) × R≥0 → tw(Σ), that is compliant with respect to Σc and Σu.
Let us also consider σ ∈ tw(Σ), and (t′, a) s.t. σ.(t′, a) ∈ tw(Σ). Suppose now that (σ, t′) ∈ Pre(ϕ),
E′(σ, t′) = Eϕ(σ, t′), and that Eϕ(σ.(t′, a)) ≺d E′(σ.(t′, a)). Consider (σs, σb, σc) = storeϕ(σ, t′),
and (σt, σd, σe) = storeϕ(σ.(t′, a), t), where t is s.t. σt = Eϕ(σ.(t′, a)). Then, considering proof of
soundness, since (σ, t′) ∈ Pre(ϕ), nobs(σb, t

′)−t t
′ ∈ G(Reach(σs, t

′),ΠΣ(nobs(σb, t
′)).σc).

—If a ∈ Σu, this means that σd −t t
′ ∈ G(Reach(σs.(t

′, a)),ΠΣ(nobs(σb, t
′)).σc). Let us consider q =

Reach(σs.(t
′, a)), and buffc = ΠΣ(nobs(σb, t

′)).σc. Then, σd−tt
′ = minlex(max4(G(q, buffc))).E′

is compliant with respect to Σc and Σu, thus, since Eϕ(σ, t′) = E′(σ, t′), there exists σd2 ∈ tw(Σ) s.t.
E′(σ.(t′, a)) = σs.(t

′, a).σd2. Since Eϕ(σ.(t′, a)) ≺d E
′(σ.(t′, a)), then σd ≺d σd2, thus σd−t t

′ ≺d

σd2 −t t
′ = wd2, meaning that wd2 6∈ G(q, buffc). Then, following the definitions of G and S, there are

several cases:

–ΠΣ(wd2) 64 buffc. But, since E′ is compliant, and E′(σ) = Eϕ(σ), this is not possible.

–q after wd2 6∈ FG, meaning that E′(σ.(t′, a)) 6|= ϕ.

–There exists t′′ ∈ R≥0 s.t. qafter(wd2, t
′′) 6∈ S(ΠΣ(obs(wd2, t

′′))−1.buffc). Let us then note buffc2 =

ΠΣ(obs(wd2), t′′)−1.buffc, and q2 = q after (wd2, t
′′). Then, following lemma 10, there exists σu ∈

tw(Σu) s.t. q2 afterσu 6∈ FG, for all t > 0, qafter(σu, t) 6∈ S(buffc2)∪I(buffc2), and for all σ′u 4 σu,
σ′u 6= ε =⇒ q2 after σ′u 6∈ S(buffc2) ∪ I(buffc2). Then, considering that E′ is compliant, either
E′(σ.(t′, a).(σu +t t

′′)) = σs.(t
′, a). obs(wd2 +t t

′, t′′).(σu +t t
′′), meaning that E′(σ.(t′, a).σu) 6|=

ϕ, or there exists σ′u 4 σu, wd3 6= ε such that ΠΣ(wd3) 4 ΠΣ(buffc2) and Reach(E′(σ.(t′, a).(σ′u+t

(t′ + t′′)))) = q2 after σ′u after wd3. Since σ′u 4 σu, q2 after (σ′u, date(wd3(1))) 6∈ S(buffc2) ∪
I(buffc2). Considering the definition of I, q2 after σ′u after wd3(1) 6∈ S(ΠΣ(wd3(1))−1.buffc2) ∪
I(ΠΣ(wd3(1))−1.buffc2), because otherwise q2 after σ′u ∈ Predwd3(1)(S(ΠΣ(wd3(1))−1 . buffc2) ∪
I(ΠΣ(wd3(1))−1 . buffc2)) = I(buffc2), which is wrong. In the same way, q2 after σ′u after (wd3,

date(wd3(1))) 6∈ S(ΠΣ(obs(wd3, date(wd3(1))))−1 . buffc2) ∪ I(ΠΣ(obs(wd3, date(wd3(1))))−1.

buffc2). Thus, since it is not in S, we can find again a word in tw(Σu) s.t. the output of E′ will never
be in S nor I, and end up outside of FG. Whatever controllable events E′ will output, its output will
never reach S nor I, and since E′ can only output a limited number of controllable events (no more
than |buffc|), at some point it will not be able to output controllable events anymore, and then there will
be an uncontrollable word leading its output outside of FG. Concatenating all the uncontrollable words
obtained from lemma 10, there would be σug ∈ tw(Σu) s.t. E′(σ.(t′, a).σug) 6|= ϕ.

Thus, if a ∈ Σu, there exists σu ∈ tw(Σu) such that E′(σ.(t′, a).σu) 6|= ϕ.
—If a ∈ Σc, then since (σ, t′) ∈ Pre(ϕ), σd−t t

′ ∈ G(Reach(σs, t
′),ΠΣ(nobs(σb, t

′)).σc.a). Consider-
ing q = Reach(σs) and buffc = ΠΣ(nobs(σb, t

′)).σc.a, the previous proof (when a ∈ Σu) still holds.
Thus, if a ∈ Σc, there also exists σu ∈ tw(Σu) s.t. E′(σ.(t′, a).σu) 6|= ϕ.

This means that whenever E′(σ) = Eϕ(σ)∧Eϕ(σ.(t′, a)) ≺d E
′(σ.(t′, a)), then there exists σu ∈ Σu

s.t. E′(σ.(t′, a).σu) 6|= ϕ. Thus, Eϕ is optimal.

Optimal Enforcement of (Timed) Properties with Uncontrollable Events 39

Proposition 10. The output of E for input σ is Eϕ(σ).

Proof. In this proof, we use some notation from Section 4.2:

—CE = tw(Σ)× Σ∗c ×Q× R≥0 × {>,⊥} is the set of configurations,
—cE0 = 〈ε, ε, q0, 0,⊥〉 ∈ CE is the initial configuration,
—ΓE = ((R≥0 × Σ) ∪ {ε})× Op × ((R≥0 × Σ) ∪ {ε}) is the alphabet, composed of an optional input,

an operation and an optional output,
—The set of operations, to be applied in the given order, is:
{compute , dump , pass-uncont , store-cont , delay }.

Let us also introduce some specific notation. For a sequence of rules w ∈ ΓE∗, we note input(w) =

Π1(w(1)).Π1(w(2)) . . .Π1(w(|w|)) the concatenation of all inputs from w. In the same way, we define
output(w) = Π3(w(1)).Π3(w(2)) . . .Π3(w(|w|)) the concatenation of all outputs from w. Since all
configurations are not reachable from cE0 , for a wordw ∈ ΓE∗, we will say that Reach(w) = c if cE0 ↪

w−→E c,
or Reach(w) = ⊥ if such a c does not exist. Let us also define function Rules which, given a timed word
and a date, returns the longest sequence of rules that can be applied with the given word as input at the
given date:

Rules :

{
tw(Σ)× R≥0 → ΓE

(σ, t) 7→ max4({w ∈ ΓE | input(w) = σ ∧ Reach(w) 6= ⊥ ∧Π4(c) = t})

Since time is not discrete, the rule delay can be applied an infinite number of times by slicing time. Thus,
we consider that the rule delay is always applied a minimum number of times, i.e., when two rules delay

are consecutive, they are merged into one rule delay, whose parameter is the sum of the parameters of
the two rules. The runs obtained are equivalent, but it allows to consider the maximum (for prefix order)
of the set used in the definition of Rules. We then extend output to timed words with a date: for σ ∈
tw(Σ), and a date t, output(σ, t) = output(Rules(σ, t)). For σ ∈ tw(Σ) and t ∈ R≥0, let P(σ, t) be
the predicate: “Eϕ(σ, t) = output(σ, t) ∧ (((σs, σb, σc) = storeϕ(obs(σ, t), t) ∧ 〈σEb , σEc , qE , t, b〉 =

Reach(Rules(σ, t))) =⇒ σEb = nobs(σb, t) ∧ σEc = σc ∧ qE = Reach(σs, t) ∧ (b = > =⇒
G(qE , σEc) 6= ∅))”. Let P(σ) be the predicate “∀t ∈ R≥0,P(σ, t) holds”. Let us then prove that for all
σ ∈ tw(Σ),P(σ) holds.

—Induction basis: For σ = ε, let us consider t ∈ R≥0. Then, storeϕ(ε, t) = (ε, ε, ε), and Reach(ε, t) =

〈l0, v0 + t〉. On the other hand, the only rules that can be applied are delay, and possibly compute,
since there is not any input, nor any element to dump. Thus, Rules(ε, t) = ε/ delay(t)/ε, or there exists
t′ ≥ t s.t. Rules(ε, t) = ε/delay(t′)/ε . ε/ compute()/ε . ε/delay(t − t′)/ε. Let us consider c =

Reach(Rules(ε, t)). Then, c = 〈ε, ε, 〈l0, v0 + t〉, t, b〉. If rule compute appears in Rules(ε, t), then
b = >, meaning that G(q0 after (ε, t′), ε) 6= ∅, and thus that G(q0 after (ε, t), ε) 6= ∅ since t ≥
t′. Otherwise b = ⊥. All the other values remain unchanged between the two cases. In both cases,
output(Rules(ε, t)) = ε = Eϕ(ε, t). Thus, P(ε) holds.

—Induction step: Let us suppose now that for some σ ∈ tw(Σ), P(σ) holds. Let us consider (t′, a) ∈
R≥0 × Σ s.t. σ.(t′, a) ∈ tw(Σ). Let us then prove that P(σ.(t′, a)) holds. Let us consider t ∈ R≥0,
c = 〈σEb , σEc , qE , t′, b〉 = Reach(Rules(σ, t′)), (σs, σb, σc) = storeϕ(σ, t′), and (σt, σd, σe) =

storeϕ(obs(σ.(t′, a), t), t). If t < t′, then obs(σ.(t′, a), t) = obs(σ, t), and P(σ.(t′, a), t) trivially
holds, since P(σ) holds. Thus, in the following, we consider that t ≥ t′, so that storeϕ(obs(σ.(t′, a), t), t)

= storeϕ(σ.(t′, a), t):

–If a ∈ Σu, rule pass-uncont can be applied. Let us consider c′ = c after ((t′, a)/ pass-uncont((t′,

a))/(t′, a)). Then, c′ = 〈ε,ΠΣ(σEb).σEc , q
′, t′,⊥〉, with q′ = qE after (0, a). Then, if t ≥ tE1 , where

tE1 = min({t′′ | t′′ ≥ t′ ∧G(q′ after (ε, t′′ − t′),ΠΣ(σEb).σEc) 6= ∅}), then rule delay(tE1 − t′) can be
applied, followed by rule compute. Since qE = Reach(σs, t

′), σEb = nobs(σb, t
′), and σEc = σc (by in-

Renard, Falcone, Rollet, Jéron, Marchand 40

duction hypothesis), then G(q′after(ε, t′′−t′),ΠΣ(σEb).σEc) = G(Reach(σs.(t
′, a), t′′),ΠΣ(nobs(σb,

t′)).σc), thus tE1 = t1, where t1 is defined in Definition 16. Thus, c′ after ((ε/delay(tE1 − t′)/ε) .

(ε/ compute /ε)) = 〈σEd , σEe , q′after(ε, t1−t′), t1,>〉, with σEd = κϕ(q′after(ε, t1−t′),ΠΣ(σEb).σEc)

+tt1 = κϕ(Reach(σs.(t
′, a), t1),ΠΣ(σb).σc) +t t1 = σd, and thus σEe = σe. Then, rules delay and

dump can be applied until date t is reached. In the end, Reach(Rules(σ.(t′, a), t)) = c′ after w,
where w is composed of an alternation of rules delay and dump, thus Reach(Rules(σ.(t′, a), t)) =

〈nobs(σEd , t), σ
E
e , q
′after(obs(σEd , t)−t t

′, t−t′), t,>〉 = 〈nobs(σd, t), σe,Reach(σt, t), t,>〉. Then,
output(Rules(σ.(t′, a), t)) = output(Rules(σ, t′)).(t′, a).obs(σEd , t) = σs .(t

′, a).obs(σd, t) = σt.
Thus, if t ≥ t1, P(σ.(t′, a), t) holds. Otherwise, t < t1, and then rule dump cannot be applied,
since Π5(c′) = ⊥, and rule compute also cannot be applied. Thus, the only rule that can be ap-
plied is delay, so that Reach(Rules(σ.(t′, a), t)) = 〈ε,ΠΣ(σEb).σEc , q

′ after (ε, t − t′), t′,⊥〉. Since
t < t1, this means that σd = ε, and σe = ΠΣ(σb) . σc. Thus, output(Rules(σ . (t′, a), t)) =

output(Rules(σ, t′)).(t′, a) = σs.(t
′, a) = σt, and σEd = σd, and σEe = σe. This means that

P(σ.(t′, a), t) holds when t < t1. Thus, if a ∈ Σu, then P(σ.(t′, a), t) holds for all t ≥ t′.
–Otherwise, a ∈ Σc. Then, rule store-cont can be applied. Let us consider c′ = c after ((t′, a)/

store-cont(a)/ε). Then, c′ = 〈ε,ΠΣ(σEb).σEc .a, q
E , t′,⊥〉. Let us consider tE2 = min({t′′ ∈ R≥0 |

t′′ ≥ t′∧G(qE after(ε, t′′−t′),ΠΣ(σEb).σEc .a) 6= ∅}). Since G(qE after(ε, t′′−t′),ΠΣ(σEb).σEc .a) =

G(Reach(σs, t
′′),ΠΣ(nobs(σb, t

′)).σc.a), it follows that tE2 = t2 as defined in Definition 16. If t ≥
tE2 = t2, then rule delay(t2−t′) can be applied, followed by rule compute. Then, c′after((ε/delay(t2−
t′)/ε).(ε/ compute()/ε)) = 〈σEd , σEe , q after (ε, t2 − t′), t2,>〉, where σEd = κϕ(q after (ε, t2 −
t′),ΠΣ(σEb).σEc .a)+t t2 = κϕ(Reach(σs, t2),ΠΣ(σb).σc.a)+t t2 = σd. Then, σEe = σe. Then, an al-
ternation of rules delay and dump can be applied until date t is reached. This leads to Reach(Rules(σ .

(t′, a), t)) = 〈nobs(σEd , t), σ
E
e , q after (obs(σEd , t), t), t, >〉 = 〈nobs(σd, t), σe, Reach(σt, t),

t, >〉. Moreover, output(Rules(σ . (t′, a), t)) = output(σ, t′). obs(σd, t) = σs. obs(σd, t) =

Eϕ(σ.(t′, a), t). Thus, if t ≥ t2, P(σ.(t′, a), t) holds. Otherwise, t < t2, meaning that σEd = ε =

σd, and σEe = ΠΣ(σEb).σEc .a = ΠΣ(nobs(σb, t
′)) . σc . a = σe, and output(σ . (t′, a), t) =

output(σ, t′) = σs = Eϕ(σ.(t′, a), t). Thus, P(σ.(t′, a), t) holds.

Thus, P(σ) =⇒ P(σ.(t, a)).

Thus, by induction, for all σ ∈ tw(Σ),P(σ) holds. In particular, for all σ ∈ tw(Σ), and for all t ∈ R≥0,
output(σ, t) = Eϕ(σ, t), meaning that the output of the enforcement monitor E with input σ at time t is
exactly the output of function Eϕ with the same input and the same date.

