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Migration of double imaginary characteristic roots under small
deviation of two delay parameters

Keqin Gu1 Dina Irofti2 Islam Boussaada2 Silviu-Iulian Niculescu2

Abstract— This paper studies the migration of double imag-
inary roots of the characteristic equation for systems with
two delays when the delay parameters are subjected to small
deviations. As the double roots are not differentiable with
respect to the delay parameters, Puiseux series is often used
in such a situation in the literature. In this article, we study
the “least degenerate” case, and a more traditional analysis was
used without Puiseux series. It was found that the local stability
crossing curve has a cusp at the point in the parameter space
that causes the double root, and it divides the neighborhood of
this point into a G-sector and an S-sector. When the parameters
move into the G-sector, one of the roots moves to the right half
plane, and the other moves to the left half plane. When the
parameters move into the S-sector, both roots move either to
the left half plane or the right half plane depending on the sign
of some value explicitly expressed in terms of derivatives of the
characteristic function up to the third order.

I. INTRODUCTION
An effective approach of stability analysis is D-

decomposition (also known as D-partitioning or D-
subdivision) method [6]. The method is especially important
for systems with time-delays, as shown in [1] [4] due to
difficulty of direct analysis for such systems. The main idea
of this method is to first identify the stability crossing set,
which divides the parameter space into regions, each of
which has a constant number of right half plane characteristic
roots. The particular case where these parameters are the
delays has been called τ -decomposition method by Lee and
Hsu [13] (see also [15]).

Most analysis in the literature discusses only the nonde-
generate cases. One degenerate case often excluded from
discussion is when there exist multiple imaginary roots for
some parameter values (see [10], [14], [7]). To be specific,
consider the system with characteristic equation

p(s, τ1, τ2) = p0(s) + p1(s)e−τ1s + p2(s)e−τ2s = 0, (1)

with two delays as the parameters discussed in [7]. Then
the stability crossing set consists of curves in the τ1-τ2
parameter space. If p(s, τ10, τ20) has a double root at jω0,
then the stability crossing set has a cusp at (τ10, τ20). Such
nonsmoothness means that conventional analysis based on
the first-order derivatives no longer applies. Indeed, “s” as
an implicit function of τ1 and τ2 defined by (1) is no longer
differentiable at s = s0 = jω0 and multivalued in its
neighborhood.

It has long been recognized that the roots of a polynomial
are continuous functions of coefficients as long as the leading
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coefficient does not vanish [12]. Furthermore, these functions
are differentiable in the case of simple roots. In the case of
multiple roots, differentiability is lost, and Puiseux series
may be used to analyze such cases (see [11] and Part II,
Chapter 5 of [12]). These conclusions are also valid for
time-delay systems of retarded type, and analysis based on
Puiseux series for time-delay systems can be found [2] [3]
[14].

In this article, we will study the case of double charac-
teristic imaginary roots when it is the “least degenerate”,
and show that a more conventional method without invoking
Puiseux series is still possible. A simple condition is derived
regarding how the double characteristic roots migrate as the
delay parameters deviate from the critical value (τ10, τ20).

II. PROBLEM STATEMENT

Consider a system with (1) as the characteristic equation,
where pk(s), k = 0, 1, 2 are polynomials of “s” with real
coefficients. For τ1 = τ10, τ2 = τ20, we assume p(s, τ1, τ2)
has a double root on the imaginary axis s = s0 = iω0. More
precisely, we assume

p(s0, τ10, τ20) = 0, (2)
∂p

∂s

∣∣∣∣ s=s0
τ1=τ10
τ2=τ20

= 0, (3)

∂2p

∂s2

∣∣∣∣ s=s0
τ1=τ10
τ2=τ20

6= 0. (4)

Furthermore, we will assume

D = =
(
∂p∗

∂τ1
· ∂p
∂τ2

)
s=s0
τ1=τ10
τ2=τ20

6= 0, (5)

where =(·) denotes the imaginary part, and (·)∗ denotes the
complex conjugate of a complex number. We will also use
<(·) to denote the real part. It is not difficult to see that D
may also be expressed as

D = det

(
<
(
∂p
∂τ1

)
<
(
∂p
∂τ2

)
=
(
∂p
∂τ1

)
=
(
∂p
∂τ2

)
)

s=s0
τ1=τ10
τ2=τ20

. (6)

Satisfaction of (2)-(5) will be the standing assumptions in
this article, and a system satisfying these equations will be
known as the least degenerate. Indeed, in view of (6), it can
be seen that (5) implies that the characteristic equation (1)
defines (τ1, τ2) in a small neighborhood of (τ10, τ20) as a
function of s in a sufficiently small neighborhood of s0 in
view of the implicit function theorem. Introduce the notation

Nε(x0) = {x | |x− x0| < ε} ,
N ◦ε (x0) = {x | 0 < |x− x0| < ε} ,



then the above can be more precisely stated as follows.
Proposition 1: There exists a ε > 0 and a sufficiently

small δ > 0 such that for all s ∈ Nδ(s0), we may
define τ1(s) and τ2(s) as the unique solution of (1) with
(τ1(s), τ2(s)) ∈ Nε(τ10, τ20). The functions so defined are
differentiable to an arbitrary order.

It should be pointed out that in general, (1) may have other
solutions outside of Nε(τ10, τ20).

The set

T(ω0,τ10,τ20) =

{(τ1(iω), τ2(iω)) ∈ Nε(τ10, τ20) | iω ∈ Nδ(iω0)}

represents a curve in the τ1-τ2 space that passes through the
point (τ10, τ20), and is the restriction of stability crossing
curves T defined in [7] in a neighborhood of (τ10, τ20).
Therefore, T(s0,τ10,τ20) will be known as the local stability
crossing curve. We will also denote

T +
(ω0,τ10,τ20) =

{(τ1(iω), τ2(iω)) ∈ Nε(τ10, τ20) | iω ∈ Nδ(iω0), ω > ω0, }

and

T −(ω0,τ10,τ20) =

{(τ1(iω), τ2(iω)) ∈ Nε(τ10, τ20) | iω ∈ Nδ(iω0), ω < ω0} .

The curves T +
(ω0,τ10,τ20) and T −(ω0,τ10,τ20) will be known as

the positive and negative local stability crossing curves,
respectively.

The purpose of this article is to study how these two
characteristic roots migrate as (τ1, τ2) varies in a small
neighborhood of (τ10, τ20) in the least degenerate case.

III. CUSP AND LOCAL BIJECTION

Let
s = s0 + ueiθ. (7)

Then u and θ parameterize a neighborhood of s0, and τ1 and
τ2 can be considered as functions of u and θ. For the sake
of convenience, write

γ = eiθ =
∂s

∂u
. (8)

We first fix the angular variable θ, i.e., fix γ, and calculate
the derivatives of τ1 and τ2 with respect to the radial variable
u. This can be easily achieved by differentiating (1), yielding

∂p

∂τ1

∂τ1
∂u

+
∂p

∂τ2

∂τ2
∂u

+
∂p

∂s
γ = 0. (9)

Setting u = 0 and using (3) in (9), we obtain<( ∂p
∂τ1

)
<
(
∂p
∂τ2

)
=
(
∂p
∂τ1

)
=
(
∂p
∂τ2

)
s=s0
τ1=τ10
τ2=τ20

(
∂τ1
∂u
∂τ2
∂u

)
u=0

= 0,

from which we conclude(
∂τ1
∂u
∂τ2
∂u

)
u=0

= 0, (10)

in view of (5) and (6). Equation (10) has two important
implications.

First, if we set γ = i, the equation (10) indicates that the
local stability crossing curve T(ω0,τ10,τ20) may have a cusp

at (τ10, τ20) [9]. Indeed, as will be confirmed by considering
the second-order derivative in the next section, T(ω0,τ10,τ20)

partitions a sufficiently small neighborhood of (τ10, τ20) into
a great sector (or G-sector) and a small sector1 (or S-sector)
as shown in Figure 1. We will investigate how the double
roots at iω0 migrate as (τ1, τ2) moves from (τ10, τ20) to the
G-sector or the S-sector.

Fig. 1. G-sector and S-sector.

To obtain the second implication, we first show the fol-
lowing.

Lemma 2: Consider sa ∈ N ◦δ (s0), δ > 0 sufficiently
small, and let τ1a = τ1(sa), τ2a = τ2(sa) as defined in
Proposition 1. Then

∂

∂s
p(s, τ1a, τ2a)

∣∣∣∣
s=sa

6= 0. (11)

Proof: Let

sa = s0 + uγ, |γ| = 1,

then,

∂p

∂s

∣∣∣∣ s=sa
τ1=τ1a
τ2=τ2a

=
∂

∂s
p(s)

∣∣∣∣ s=s0
τ1=τ10
τ2=τ20

+
∂2p

∂s2

∣∣∣∣ s=s0
τ1=τ10
τ2=τ20

γu

+
∂2p

∂s∂τ1

∣∣∣∣ s=s0
τ1=τ10
τ2=τ20

∂τ1
∂u

∣∣∣∣
u=0

u

+
∂2p

∂s∂τ2

∣∣∣∣
s=s0
τ1=τ10
τ2=τ20

∂τ2
∂u

∣∣∣∣
u=0

u+O(u2)

= 0 +
∂2p

∂s2

∣∣∣∣ s=s0
τ1=τ10
τ2=τ20

γu+ 0 + 0 +O(u2),

from which we may conclude (11) in view of (4).
The implicit function theorem allows us to conclude the

following from Lemma 2.
Proposition 3: Let sa, τ1a and τ2a be defined as in

Lemma 2. Then there exists a sufficiently small neighbor-
hood of (τ1a, τ2a) such that the equation (1) defines a unique
function s(τ1, τ2) with the function value restricted in a small
neighborhood of sa.

The second implication of the equation (10) may be
stated as the following corollary, which is a consequence

1We have used the word “small” in a sense analogous to “small solution”:
a small sector is contained by a sector with straight sides with arbitrarily
small angle when the neighborhood is sufficiently small.



of Propositions 1 and 3.
Corollary 4: Let sa, τ1a and τ2a be defined as in Lemma

2. Then equation (1) defines a bijection between s in a small
neighborhood of sa and (τ1, τ2) in a small neighborhood of
(τ1a, τ2a).

Obviously, the small neighborhoods referred in Proposi-
tion 3 and Corollary 4 above should not include s0 and
(τ10, τ20) in view of (3). In view of continuity of solutions
of (1) with respect to the parameters (τ1, τ2), Corollary 4
may be equivalently stated as follows.

Corollary 5: For all (τ1, τ2) ∈ N ◦ε (τ10, τ20) with ε > 0
sufficiently small, the characteristic equation (1) has exactly
two simple roots in a small neighborhood of s0.

IV. MAPPING IN A NEIGHBORHOOD OF DOUBLE ROOT

In this section, it will be shown that we can very clearly
describe the mapping between “s” and (τ1, τ2) in the neigh-
borhood of “s0” based on the second order derivative when
s−s0 is restricted to one quadrant. From this description, we
may obtain the information on how the double root migrates
as (τ1, τ2) moves from (τ10, τ20) to the G-sector or the S-
sector in Figure 1 according to the sign of D, and whether the
positive local stability crossing curve T +

(ω0,τ10,τ20) is on the
clockwise side or the counterclockwise side of T −(ω0,τ10,τ20)
in the S-sector.

Taking derivative of (9) with respect to the radial variable
u, we obtain

∂2p

∂τ2
1

(
∂τ1
∂u

)2

+ 2
∂2p

∂τ1∂τ2

∂τ1
∂u

∂τ2
∂u

+ 2
∂2p

∂τ1∂s

∂τ1
∂u

γ+

+
∂p

∂τ1

∂2τ1
∂u2

+
∂2p

∂τ2
2

(
∂τ2
∂u

)2

+ 2
∂2p

∂τ2∂s

∂τ2
∂u

γ+

+
∂p

∂τ2

∂2τ2
∂u2

+
∂2p

∂s2
γ2 = 0. (12)

Setting u = 0 and applying (10) in (12), we arrive at[
∂p

∂τ1

∂2τ1
∂u2

+
∂p

∂τ2

∂2τ2
∂u2

+
∂2p

∂s2
γ2

]
s=s0
τ1=τ10
τ2=τ20

= 0.

The above may be solved for ∂2τ1
∂u2 and ∂2τ2

∂u2 to obtain,(
∂2τ1
∂u2

∂2τ2
∂u2

)
s=s0
τ1=τ10
τ2=τ20

=

−

[<( ∂p
∂τ1

)
<
(
∂p
∂τ2

)
=
(
∂p
∂τ1

)
=
(
∂p
∂τ2

)−1<(∂2p
∂s2 γ

2
)

=
(
∂2p
∂s2 γ

2
)]

s=s0
τ1=τ10
τ2=τ20

,

(13)

which may also be written in a complex form(
∂2τ1
∂u2

∂2τ2
∂u2

)
s=s0
τ1=τ10
τ2=τ20

=
1

D

 =
(
∂p∗

∂τ2

∂2p
∂s2 γ

2
)

−=
(
∂p∗

∂τ1

∂2p
∂s2 γ

2
) 

s=s0
τ1=τ10
τ2=τ20

. (14)

In view of (10), the tangent of the curve describing (τ1, τ2)
as a function of u at (τ10, τ20) is determined by the second
order derivative given in (13) or (14).

Before proceeding further, it is helpful to recall the follow-
ing well known fact. It can be found in various elementary

books that deal with geometry, see for example [5].
Lemma 6: Let x(0) ∈ R2 and M ∈ R2×2 be fixed. For any

x ∈ R2, let θ be the angle to rotate x(0) to the direction of x
in the counterclockwise direction. Let φ(θ) be the angle to
rotate Mx(0) to the direction of Mx in the counterclockwise
direction if det(M) > 0, and in the clockwise direction if
det(M) < 0. Then the function φ(θ) satisfies the following:

i) φ(θ) is a continuous and increasing function of θ
ii) 0 < φ(θ) < π if and only if 0 < θ < π.
We now make the following two observations about the

second order derivative expression (13).
First, set γ = i and γ = −i, the expression determines

the tangent of T(ω0,τ10,τ20) as ω → ω0 from each side. As(
∂2τ1
∂u2

∂2τ2
∂u2

)T
given in (13) for γ = i and −i have the

same value, T −(ω0,τ10,τ20) and T +
(ω0,τ10,τ20) (AC and CB in

Figure 1) are tangent to each other at the point (τ10, τ20),
thus forming a cusp.

Second, as γ rotates through a 90◦ angle in a counter-
clockwise direction, ∂2p

∂s2 γ
2 rotates through a 180◦ angle in

the same direction; and
(

∂2τ1
∂u2

∂2τ2
∂u2

)T
given in (13) also

rotates through a 180◦ angle in a direction determined by the
sign of D, which is the determinant of the matrix inverted:
the rotation is counterclockwise if D > 0, and it is clockwise
if D < 0 (according to Lemma 6).

Fig. 2. The mapping (τ1(s), τ2(s)) with s− s0 in the first quadrant.

With the above observations, and the fact that(
τ1(s)
τ2(s)

)
=

(
τ10

τ20

)
+
u2

2

(
∂2τ1
∂u2

∂2τ2
∂u2

)
s=s0
τ1=τ10
τ2=τ20

+O(u3)

we may describe the local mapping (τ1(s), τ2(s)) in a very
informative manner when s−s0 is restricted to one quadrant.
The situation for s− s0 in the first quadrant

Q1 =
{
s = s0 + ueiθ | 0 < u < δ, 0 ≤ θ ≤ π/2

}
with D > 0 is illustrated in Figure 2: the line segment CE
(from s0 to s0 +δ) is mapped to the curve C ′E′ in the τ1-τ2
space, the arc EPB (s = s0 +δeiθ, 0 ≤ θ ≤ π/2) is mapped
to the curve E′P ′B′, and the line segment BC (from s0 +δi
to s0) is mapped to the curve B′C ′. In view of the second
order derivatives, B′C ′ and C ′E′ have the same tangent at
C ′. Continuity and local bijectivity (Corollary 4) imply that
the singly connected region bounded by the line segments
BC, CE and the arc EPB is mapped by (τ1(s), τ2(s))
bijectively to the singly connected region bounded by the
curves B′C ′, C ′E′ and E′P ′B′.



When D < 0, the curve E′P ′B′ is roughly clockwise
(instead of counterclockwise as in Figure 2) relative to the
point C ′. The mapping with s − s0 in the other three
quadrants are similar.

The complete mapping (τ1(s), τ2(s)) with s − s0 in all
four quadrants may be divided into four possible cases
depending on the sign of D and whether T −(ω0,τ10,τ20) is on
the counterclockwise or the clockwise side of T +

(ω0,τ10,τ20) in
the S-sector. The migration of the double roots in all case is
summarized in the following theorem.

Theorem 7 (Migration of Double Roots): If (τ1, τ2) is
in the G-sector in a sufficiently small neighborhood of
(τ10, τ20), then one root of (1) in the neighborhood of s0

is in the right half plane, the other is in the left half plane.
When (τ1, τ2) is in the S-sector, then the two roots are

either both in the left half plane or both in the right half
plane. Specifically,

Case i. If D > 0, and T −(ω0,τ10,τ20) is in the counterclock-
wise side of T +

(ω0,τ10,τ20) in the S-sector, then both roots are
in the left half plane.

Case ii. If D > 0, and T −(ω0,τ10,τ20) is in the clockwise
side of T +

(ω0,τ10,τ20) in the S-sector, then both roots are in
the right half plane.

Case iii. If D < 0, and T −(ω0,τ10,τ20) is in the counterclock-
wise side of T +

(ω0,τ10,τ20) in the S-sector, then both roots are
in the right half plane.

Case iv. If D < 0, and T −(ω0,τ10,τ20) is in the clockwise
side of T +

(ω0,τ10,τ20) in the S-sector, then both roots are in the
left half plane.

Proof: Consider case i. The situation is illustrated in
Figure 3. Let the region bounded by the arc EPB and line
segments BC and CE be denoted as I , and the region
bounded by the curves E′P ′B′, B′C ′ and C ′E′ be denoted
as I ′. Similarly, region II is bounded by BQF , FC, CB,
and region II ′ is bounded by B′Q′F ′, F ′C ′, C ′B′; region
III is bounded by FRA, AC, CF , and III ′ is bounded
by F ′R′A′, A′C ′, C ′F ′; region IV is bounded by ASE,
EC, CA, and region IV ′ is bounded by A′S′E′, E′C ′,
C ′A′. As discussed before the theorem, (τ1(s), τ2(s)) is a
bijection from I to I ′ when s is restricted to I . Similarly,
(τ1(s), τ2(s)) is a bijection from II to II ′ when restricted
to II , or from III to III ′ when restricted to III ′, or from
IV to IV ′ when restricted to IV . As the S-sector (in a
sufficiently small neighborhood) is contained in II ′ ∩ III ′,
we may conclude that for any (τ1, τ2) in the S-sector, one
of the two characteristic roots in the neighborhood of s0

must be in region II , the other must be in region III ,
and obviously both in the left half plane. Similarly, the G-
sector (in a sufficiently small neighborhood) is contained in
(I ′∪IV ′)∩(II ′∪IV ′). Therefore, for any (τ1, τ2) in the G-
sector, one of the two characteristic roots in the neighborhood
of s0 must be in I ∪ IV (in the right half plane), and the
other must be in II ∪ III (in the left half plane).

Case ii is illustrated in Figures 4. In this case, the S-sector
is contained in I ′∩IV ′, and therefore, the two characteristic
roots in the neighborhood of s0 must be in regions I and
IV , both in the right half plane. The G-sector can still be
expressed as (I ′ ∪ IV ′) ∩ (II ′ ∪ IV ′).

Case iii is illustrated in Figure 5, and case iv is illustrated
in Figure 6, and the conclusions can be drawn in a similar

manner.

Fig. 3. The mapping (τ1(s), τ2(s)) in a neighborhood of s0. Case i:
D > 0, and T −

(ω0,τ10,τ20)
is on the counterclockwise side of T +

(ω0,τ10,τ20)
in the S-sector.

Fig. 4. The mapping (τ1(s), τ2(s)) in a neighborhood of s0. Case ii:
D > 0, and T −

(ω0,τ10,τ20)
is on the clockwise side of T +

(ω0,τ10,τ20)
in the

S-sector.

Fig. 5. The mapping (τ1(s), τ2(s)) in a neighborhood of s0. Case iii:
D < 0, and T −

(ω0,τ10,τ20)
is on the counterclockwise side of T +

(ω0,τ10,τ20)
in the S-sector.

V. ALGEBRAIC S-SECTOR CONDITION AND GLOBAL
PERSPECTIVES

Theorem 7 indicates that the migration pattern of the
two roots in the G-sector is always the same for the least
degenerate case discussed in this article. However, judging
the migration pattern of the two roots in the S-sector requires
knowing the sign of D and which side of T +

(ω0,τ10,τ20)

the curve T −(ω0,τ10,τ20) is in the S-sector. Fortunately, by
considering the third order derivatives, an explicit algebraic
condition is possible.

Corollary 8 (S-sector Criterion): If (τ1, τ2) is in the S-
sector in a sufficiently small neighborhood of (τ10, τ20), then



Fig. 6. The mapping (τ1(s), τ2(s)) in a neighborhood of s0. Case iv:
D < 0, and T −

(ω0,τ10,τ20)
is on the clockwise side of T +

(ω0,τ10,τ20)
in the

S-sector.

the two characteristic roots in the neighborhood of s0 are
both in the left half plane if

κ < 0, (15)

where

κ =

<
[
∂2p

∂s2

(
−∂

3p

∂s3
+ 3

∂2p

∂τ1∂s

∂2τ1
∂u2

+ 3
∂2p

∂τ2∂s

∂2τ2
∂u2

)]
s=s0
τ1=τ10
τ2=τ20
γ=i

,

and
∂2τj
∂u2 , j = 1, 2 are evaluated by (14) or (13) with γ = i.

If
κ > 0 (16)

instead, then both roots are in the right half plane.

Proof: Differentiate (12) with respect to u, we obtain

∂3p

∂τ3
1

(
∂τ1
∂u

)3

+ 3
∂3p

∂τ2
1 τ2

(
∂τ1
∂u

)2
∂τ2
∂u

+

+3
∂3p

∂τ2
1 ∂s

(
∂τ1
∂u

)2

γ + 3
∂2p

∂τ2
1

∂τ1
∂u

∂2τ1
∂u2

+

+3
∂3p

∂τ1∂τ2
2

∂τ1
∂u

(
∂τ2
∂u

)2

+

+6
∂3p

∂τ1∂τ2∂s

∂τ1
∂u

∂τ2
∂u

γ + 3
∂2p

∂τ1∂τ2

∂2τ1
∂u2

∂τ2
∂u

+

+3
∂2p

∂τ1∂τ2

∂τ1
∂u

∂2τ2
∂u2

+ 3
∂3p

∂τ1∂s2

∂τ1
∂u

γ2+

+3
∂2p

∂τ1∂s

∂2τ1
∂u2

γ +
∂p

∂τ1

∂3τ1
∂u3

+
∂3p

∂τ3
2

(
∂τ2
∂u

)3

+

+3
∂2p

∂τ2∂s

∂2τ2
∂u2

γ +
∂p

∂τ2

∂3τ2
∂u3

+
∂3p

∂s3
γ3 = 0.

(17)

Setting u = 0 and using (10) in the above yields[
3
∂2p

∂τ1∂s

∂2τ1
∂u2

γ +
∂p

∂τ1

∂3τ1
∂u3

+ 3
∂2p

∂τ2∂s

∂2τ2
∂u2

γ+

+
∂p

∂τ2

∂3τ2
∂u3

+
∂3p

∂s3
γ3

]
s=s0
τ1=τ10
τ2=τ20

= 0,

which can be solved to obtain(
∂3τ1
∂u3

∂3τ2
∂u3

)
s=s0
τ1=τ10
τ2=τ20

=

−

<( ∂p
∂τ1

)
<
(
∂p
∂τ2

)
=
(
∂p
∂τ1

)
=
(
∂p
∂τ2

)−1

s=s0
τ1=τ10
τ2=τ20

(
< (B)
= (B)

)
, (18)

where

B =

[
∂3p

∂s3
γ3 + 3

∂2p

∂τ1∂s

∂2τ1
∂u2

γ

+3
∂2p

∂τ2∂s

∂2τ2
∂u2

γ

]
s=s0
τ1=τ10
τ2=τ20

. (19)

Let (
∂kτ1
∂uk
∂kτ2
∂uk

)
±

=

(
∂kτ1
∂uk
∂kτ2
∂uk

)
s=s0
τ1=τ10
τ2=τ20
γ=±i

, k = 1, 2, 3,

and (
τ1
τ2

)
±

=

(
τ1(s0 ± δi)
τ2(s0 ± δi)

)
.

Then Taylor series gives(
τ1
τ2

)
±

=

(
τ10

τ20

)
+ δ

(
∂τ1
∂u
∂τ2
∂u

)
±

+
δ2

2

(
∂2τ1
∂u2

∂2τ2
∂u2

)
±

+
δ3

6

(
∂3τ1
∂u3

∂3τ2
∂u3

)
±

+O(δ4).

But according to (10) and (13), we have(
∂τ1
∂u
∂τ2
∂u

)
±

= 0,(
∂2τ1
∂u2

∂2τ2
∂u2

)
+

=

(
∂2τ1
∂u2

∂2τ2
∂u2

)
−

.

Therefore, (
∆τ1
∆τ2

)
∆
=

(
τ1
τ2

)
+

−
(
τ1
τ2

)
−

=
δ3

6

[(
∂3τ1
∂u3

∂3τ2
∂u3

)
+

−

(
∂3τ1
∂u3

∂3τ2
∂u3

)
−

]
+O(δ4).

= −δ
3

6

<( ∂p
∂τ1

)
<
(
∂p
∂τ2

)
=
(
∂p
∂τ1

)
=
(
∂p
∂τ2

)−1

s=s0
τ1=τ10
τ2=τ20

(
<(∆B)
= (∆B)

)

+O(δ4) (20)

where

∆B = B|γ=i −B|γ=−i

= 2i

[
−∂

3p
∂s3 + 3 ∂2p

∂τ1∂s

(
∂2τ1
∂u2

)
+

+ 3 ∂2p
∂τ2∂s

(
∂2τ2
∂u2

)
+

]
s=s0
τ1=τ10
τ2=τ20

As the tangent direction of the local stability crossing curve



T(ω0,τ10,τ20) at the cusp (τ10, τ20) is
(
∂2τ1
∂u2 ,

∂2τ2
∂u2

)T
+

, it can

be easily seen that the T −(ω0,τ10,τ20) is in the counterclock-
wise side of T +

(ω0,τ10,τ20) if we may reach the direction

of
(
∂2τ1
∂u2 ,

∂2τ2
∂u2

)T
+

by rotating (∆τ1,∆τ2) counterclockwise

through an angle θ ∈ (0, π) as is shown in Figure 7. Let(
−∂

2p
∂s2

)
0

=
(
−∂

2p
∂s2

)
s=s0
τ1=τ10
τ2=τ20

. Comparing the expressions

(20) and (13) and using Lemma 6, we can see that the above
can be achieved if we can reach the direction of

(
−∂

2p
∂s2

)
0

by

rotating ∆B counterclockwise through an angle of θ ∈ (0, π)
if D > 0 (which is case i in Theorem 7). The rotation
from ∆B to

(
−∂

2p
∂s2

)
0

needs to be clockwise if D < 0

(which is case iii). The counterclockwise rotation from ∆B

to
(
−∂

2p
∂s2

)
0

may be expressed as

<(∆B)=
(
−∂

2p

∂s2

)
0

−=(∆B)<
(
−∂

2p

∂s2

)
0

> 0,

which is equivalent to (15), and the conclusion is valid in
this case in view of case i in Theorem 7. It can be similarly
shown that if we can rotate ∆B to the direction of

(
−∂

2p
∂s2

)
0

clockwise through an angle of θ ∈ (0, π), then (16) is
satisfied, and the conclusion is valid in this case also in view
of case iii in Theorem 7.

Similarly, we can show that κ > 0 and D > 0, or κ < 0
and D < 0 can guarantee that we can reach the direction

of
(
∂2τ1
∂u2 ,

∂2τ2
∂u2

)T
+

by rotating (∆τ1,∆τ2) clockwise through

an angle θ ∈ (0, π), and the conclusions are true in view
of case ii and case iv in Theorem 7. We have exhausted all
possibilities, and the corollary is proven.

Fig. 7. T −
(ω0,τ10,τ20)

is on the counterclockwise side of T +
(ω0,τ10,τ20)

, and

the angle φ needed to rotate A′B′ to the direction of
(
∂2τ1
∂u2 ,

∂2τ2
∂u2

)T
γ=i

must satisfy 0 < φ < π.

If κ = 0, higher order derivatives may be used to evaluate
conditions in Theorem 7.

It should be noticed that the roots of the characteristics
discussed in Theorem 7 and Corollary 8 are restricted to the
neighborhood of s0 = jω0. Because characteristic roots are
distributed symmetrically with respect to the real axis, there
is also a double root at s∗0 = −jω0 when τ1 = τ10, τ2 = τ20.
When (τ1, τ2) deviates from (τ10, τ20), the migration of the
two roots in the neighborhood of s∗0 follows the same pattern
as those in the neighborhood of s0.

There may also be roots on the imaginary axis outside
of the neighborhoods of s0 and s∗0. The migration of these
imaginary roots need to be analyzed separately.

Finally, the roots on the right half plane remain on the right
half plane as long as (τ1, τ2) stay within a sufficiently small
neighborhood of (τ10, τ20). Similarly, the roots on the left
half plane remain on the left half plane when the deviation
of (τ1, τ2) is sufficiently small.

VI. CONCLUSIONS

The migration pattern of a double characteristic root can
be studied without using the Puiseux series in the “least
degenerate” case. The local stability crossing curve has a
cusp, and divides the neighborhood of the critical point into
a G-sector and an S-sector in the delay parameter space. As
the delay parameter pair moves to the G-sector, one root
moves to the left half plane and the other moves to the right
half plane. If the delay parameter pair moves to the S-sector,
a simple algebraic criterion may be used to judge whether
both roots move to the right half plane or the left half plane.
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