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Thanks to a new construction of the Chudnovsky and Chudnovsky multiplication algorithm, 
we design efficient algorithms for both the exponentiation and the multiplication in finite 
fields. They are tailored to hardware implementation and they allow computations to be 
parallelized, while maintaining a low number of bilinear multiplications.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

À partir d’une nouvelle construction de l’algorithme de multiplication de Chudnovsky 
et Chudnovsky, nous concevons des algorithmes efficaces pour la multiplication et 
l’exponentiation dans les corps finis. Ils sont adaptés à une implémentation matérielle 
et sont parallélisables, tout en gardant un nombre de multiplications bilinéaires très bas.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Multiplication in finite fields is a fundamental operation in arithmetic and finding efficient multiplication methods re-
mains a topical issue. Let q be a prime power, Fq the finite field with q elements and Fqn the degree n extension of Fq . If 
B = {e1, . . . , en} is a basis of Fqn over Fq then for x = ∑n

i=1 xiei and y = ∑n
i=1 yiei , we have the product

z = xy =
n∑

h=1

zheh =
n∑

h=1

( n∑
i, j=1

ti jhxi x j

)
eh, (1)

where eie j = ∑n
h=1 ti jheh , ti jh ∈ Fq being some constants. The complexity of a multiplication algorithm in Fqn depends on 

the number of multiplications and additions in Fq . There exist two types of multiplications in Fq: the scalar multiplication 
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and the bilinear multiplication. The scalar multiplication is the multiplication by a constant (in Fq ) that does not depend 
on the elements of Fqn that are multiplied. The bilinear multiplication is a multiplication of elements that depend on 
the elements of Fqn that are multiplied. The bilinear complexity is independent of the chosen representation of the finite 
field. For example, the direct calculation of z = (z1, . . . , zn) using (1) requires n2 non-scalar multiplications xi x j , n3 scalar 
multiplications, and n3 − n additions.

More precisely, the multiplication of two elements of Fqn is an Fq-bilinear application from Fqn × Fqn onto Fqn . Then, it 
can be considered as an Fq-linear application from the tensor product Fqn ⊗Fq Fqn onto Fqn . Consequently, it can also be 
considered as an element T of Fqn

� ⊗Fq Fqn
� ⊗Fq Fqn , where � denotes the dual. Set

T =
r∑

i=1

x�
i ⊗ y�

i ⊗ ci, (2)

where the r elements x�
i as well as the r elements y�

i are in the dual Fqn
� of Fqn , while the r elements ci are in Fqn . The 

following holds for any x, y ∈ Fqn : x · y = ∑r
i=1 x�

i (x)y�
i (y)ci . The decomposition (2) is not unique.

Definition 1.1. A bilinear multiplication algorithm U is an expression

x · y =
r∑

i=1

x�
i (x)y�

i (y)ci .

The number r of summands in this expression is called the bilinear complexity of the algorithm U and is denoted by μ(U).

Definition 1.2. The minimal number of summands in a decomposition of the tensor T of the multiplication is called the 
bilinear complexity of the multiplication and is denoted by μq(n):

μq(n) = min
U

μ(U),

where U is running over all bilinear multiplication algorithms in Fqn over Fq .

The bilinear complexity of the multiplication in Fqn over Fq has been widely studied. In particular, it was proved in [2]
that it is uniformly linear with respect to the degree n of the extension. This follows from the Chudnovsky and Chudnovsky 
multiplication algorithm (CCMA). This clever construction was originally introduced in 1987 in [3] and is based on the 
interpolation on algebraic curves.

There is benefit having a low bilinear complexity when considering hardware implementations mainly because it reduces 
the number of gates in the circuit. In this note, we consider three models.

– The non-scalar model (denoted NS), in which only the bilinear complexity is taken into account and it is assumed that 
all scalar operations are free. Indeed, this model does not reflect the reality and, since the bilinear complexity is not 
the whole complexity of the algorithm, the complexity of the linear part of the algorithm should also be taken into 
account.

– The model S1, which takes into account the number of multiplications without distinguishing between the bilinear ones 
and the scalar ones.

– The model S2, which takes into account all operations (multiplications and additions) in Fq .

Notice that so far, practical implementations of multiplication algorithms over finite fields have failed to simultaneously 
optimize the number of scalar multiplications, additions, and bilinear multiplications.

Regarding exponentiation algorithms, the use of a normal basis is of interest because the qth power of an element is 
just a cyclic shift of its coordinates. A remaining question is how to implement multiplication efficiently in order to have 
simultaneously fast multiplication and fast exponentiation. In 2000, Gao et al. [6] showed that fast multiplication methods 
can be adapted to normal bases constructed with Gauss periods. They show that if Fqn is represented by a normal basis over 
Fq generated by a Gauss period of type (n, k), the multiplication in Fqn can be computed with O

(
nk log nk log log nk

)
and 

the exponentiation with O
(
n2k log k log log nk

)
operations in Fq (q being small). This result is valuable when k is bounded. 

However, in the general case, k is upper-bounded by O
(
n3 log2 nq

)
.

In 2009, Couveignes and Lercier constructed in [5, Theorem 4] two families of basis (called elliptic and normal elliptic) 
for finite field extensions, from which they obtained a model � defined as follows. With every couple (q, n), they associated 
a model, �(q, n), of the degree-n extension of Fq , such that the following holds: there is a positive constant K such that 
the following are true:

– elements in Fqn are represented by vectors for which the number of components in Fq is upper bounded by 
Kn(log n)2 log(log n)2;



JID:CRASS1 AID:5641 /FLA Doctopic: Number theory [m3G; v1.172; Prn:15/01/2016; 16:07] P.3 (1-5)

K. Atighehchi et al. / C. R. Acad. Sci. Paris, Ser. I ••• (••••) •••–••• 3
– there exists an algorithm that multiplies two elements at the expense of Kn(log n)4| log(log n)|3 multiplications in Fq;
– exponentiation by q consists of a circular shift of the coordinates.

Therefore, for each extension of finite field, they show that there exists a model that allows both fast multiplication and 
fast application of the Frobenius automorphism. Their model has the advantage of existing for all extensions. However, the 
bilinear complexity of their algorithm is not competitive compared with the best known methods, as pointed out in [5, 
Section 4.3.4]. Indeed, it is clear that such a model requires at least Kn(log n)2(log(log n))2 bilinear multiplications.

Note that here, the efficiency of the algorithms is described in terms of parallel time (depth of the circuit, in number of 
multiplications), number of processors (width), and total number of multiplications (size).

This article describes the main theoretical results of a more detailed forthcoming article, where an effective implemen-
tation for the case F1613 is presented (for a preliminary version, see [1]).

2. New results

We propose another model with the following characteristics:

– our model is based on CCMA, thus the multiplication algorithm has a bilinear complexity in O (n), which is optimal;
– our model is tailored to parallel computation. Hence, the computation time used to perform a multiplication or any 

exponentiation can easily be reduced with an adequate number of processors. Since our method has a bilinear com-
plexity of multiplication in O (n), it can be parallelized to obtain a constant time complexity using O

(
n
)

processors. The 
previous aforementioned works ([6] and [5]) do not give any parallel algorithm (such an algorithm is more difficult to 
conceive than a serial one);

– exponentiation by q is a circular shift of the coordinates and can be considered free. Thus, efficient parallelization can 
be done when doing exponentiation;

– the scalar complexity of our exponentiation algorithm is reduced, compare to a basic exponentiation using CCMA, 
thanks to a suitable basis representation of the Riemann–Roch space L(2D) in the second evaluation map. More pre-
cisely, the normal basis representation of the residue class field is carried in the associated Riemann–Roch space L(D), 
and the exponentiation by q consists of a circular shift of the n first coordinates of the vectors lying in the Riemann–
Roch space L(2D);

– our model uses the Coppersmith–Winograd [4] method (denoted CW) or any variants thereof to improve matrix prod-
ucts and to diminish the number of scalar operations. This improvement is particularly efficient for exponentiation.

Theorem 2.1. In the non-scalar model NS, there exist multiplication and exponentiation algorithms in Fqn such that:

– the multiplication is done in parallel time in O
(
1
)

multiplications in Fq with O
(
n
)

processors, for a total in O
(
n
)

multiplications;

– exponentiation is done in parallel time in O
(
logn

)
multiplications in Fq with O

(
n2/ log2 n

)
processors, for a total in O

(
n2/ log n

)
multiplications.

When considering models S1 and S2, two cases can be distinguished for the multiplication complexity. We might be 
interested either in the complexity of one multiplication or in the average (amortized) complexity of one multiplication 
when many multiplications are done simultaneously. Regarding exponentiation, a wise use of CW method allows complexity 
to be improved.

Theorem 2.2. In the model S1, there exist multiplication and exponentiation algorithms in Fqn such that:

– multiplication:
a) one multiplication is done in parallel time in O

(
1
)

multiplications in Fq with O
(
n2

)
processors, for a total in O

(
n2

)
multiplica-

tions;
b) in the amortized sense, the parallel time is in O

(
1
)

multiplications in Fq with O
(
n1+ε

)
processors, for a total in O

(
n1+ε

)
multiplications where the value of ε is approximately 0.38 for the best known matrix product methods;

– exponentiation is done in a parallel time of O
(
log n

)
multiplications in Fq with O

(
n2+ε/ log2ε n

)
processors, for a total in 

O
(
n2+ε log1−2ε n

)
multiplications.

Theorem 2.3. In the model S2, there exist multiplication and exponentiation algorithms in Fqn such that:

– multiplication:
a) one multiplication is done in parallel time in O

(
log n

)
operations in Fq with O

(
n2/ log n

)
processors, for a total in O

(
n2

)
operations;

b) in the amortized sense, the parallel time is in O
(
log n

)
operations in Fq with O

(
n1+ε/ log n

)
processors, for a total in O

(
n1+ε

)
operations; recall that the value of ε is approximately 0.38 for the best matrix product methods;
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– exponentiation is done in a parallel time of O
(
log2 n

)
operations in Fq with O

(
n2+ε/ log1+2ε n

)
processors, for a total in 

O
(
n2+ε log1−2ε n

)
operations.

2.1. Multiplication and exponentiation algorithms

Let F/Fq be an algebraic function field over the finite field Fq of genus g(F ). We denote by N1(F/Fq) the number of 
places of degree one of F over Fq . If D is a divisor, L(D) denotes the Riemann–Roch space associated with D . We denote 
by F Q the residue class field of the place Q which is isomorphic to Fqdeg(Q ) , where deg(Q ) is the degree of the place Q . 
The following theorem that makes effective the original algorithm groups some results of [2].

Theorem 2.4. Let F/Fq be an algebraic function field of genus g(F ) defined over Fq and n an integer. Let us suppose that there exists 
a place Q of degree n.

Then, if N1(F/Fq) > 2n + 2g − 2 there is an effective divisor D of degree n + g − 1 such that:

(i) Q is not in the support of D,
(ii) the evaluation map E defined by

E : L(D) → F Q

f �→ f (Q )

is an isomorphism of vector spaces over Fq,
(iii) there exist 2n + g − 1 places of degree one Pi which are not in the support of D such that the multi-evaluation map T defined by

T : L(2D) → (
Fq

)2n+g−1

f �→ (
f (P1) , . . . , f

(
P2n+g−1

))
is an isomorphism.

2.1.1. Strategy of implementation
The construction of the algorithm is based on the choice of the place Q of degree n, the effective divisor D of degree 

n + g − 1, the bases of spaces L(D) and L(2D), and the basis of the residue class field F Q of the place Q . The place Q of 
degree n is lying above a normal primitive polynomial in Fq[X], which is totally decomposed in the algebraic function field 
F/Fq .

As the residue class field F Q of the place Q is isomorphic to the finite field Fqn , we identify Fqn to F Q . Indeed, deg(D) =
n + g − 1, dim(D − Q ) = 0 yet L(D − Q ) = Ker(E). In particular, we choose for basis of L(D), the reciprocal image BD of 
the basis BQ = (φ1, . . . , φn) of F Q by the evaluation map E , namely BD = (E−1(φ1), . . . , E−1(φn)).

Note that as the divisor D is an effective divisor, we have L(D) ⊂ L(2D). Let P be the map from L(2D) to L(2D) defined 
in the following way: if f ∈ L(2D) then f (Q ) is in the residue field F Q of the place Q ; define P ( f ) = J ◦ E−1

(
f (Q )

)
, 

where J is the injection map from L(D) into L(2D). Then P is a linear map from L(2D) into L(2D) whose image is L(D). 
More precisely, P is a projection from L(2D) onto L(D). Let M be the kernel of P . Then L(2D) = L(D) ⊕M.

2.1.2. Product of two elements in Fqn

Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two elements of Fqn given by their components over Fq relative to the 
chosen basis BQ . According to the previous notation, we can consider that x and y are identified to the following elements 
of L(D):

fx =
n∑

i=1

xi f i and f y =
n∑

i=1

yi f i .

We will consider that x and y are respectively the elements fx and f y of L(2D) where the n + g − 1 last components are 0. 
Now it is clear that knowing x or fx by their coordinates is the same thing.

Denote the Hadamard product in 
(
Fq

)2n+g−1 by:

(u1, . . . , u2n+g−1) 	 (v1, . . . , v2n+g−1) = (u1 v1, . . . , u2n+g−1 v2n+g−1).

Theorem 2.5. The product of x by y is such that

fxy = P
(

T −1 (
T ( fx) 	 T ( f y)

))
.
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We can now present the setup algorithm (which is only done once) and the multiplication algorithm.

Algorithm 1 Setup algorithm.
INPUT: F/Fq, Q , D, P1, . . . , P2n+g−1.
OUTPUT: T and T −1.

(i) The elements x of the field Fqn are known by their components relatively to a fixed basis: x = (x1, . . . , xn) (where xi ∈ Fq ).
(ii) The function field F/Fq , the place Q , the divisor D and P1, . . . , P2n+g−1 are as in Theorem 2.4.

(iii) Construct a basis ( f1, . . . , fn, fn+1, . . . , f2n+g−1) of L(2D) where ( f1, . . . , fn) is the basis of L(D) defined in section 2.1.1 and ( fn+1, . . . , f2n+g−1) a 
basis of M.

(iv) Any element x = (x1, . . . , xn) in Fqn is identified to the element fx = ∑n
i=1 xi f i of L(D).

(v) Compute the matrices T and T −1.

Algorithm 2 Multiplication algorithm.
INPUT: x = (x1, . . . , xn) and y = (y1, . . . , yn).
OUTPUT: xy.

(i) Compute

z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1

.

.

.

zn

zn+1

.

.

.

z2n+g−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= T

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

.

.

.

xn

0
.
.
.

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and t =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1

.

.

.

tn

tn+1

.

.

.

t2n+g−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= T

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

.

.

.

yn

0
.
.
.

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(ii) Compute u = (u1, . . . , u2n+g−1) where u = z 	 t .
(iii) Compute w = (w1, . . . , w2n+g−1) = T −1(u).
(iv) Return (xy = (w1, . . . , wn)) (in the previous step just the n first components have to be computed).

Our exponentiation is based on our multiplication and a modified algorithm from von Zur Gathen [7].
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