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Exploiting Fully Convolutional Neural Networks for Fast Road Detection

Caio César Teodoro Mendes1,2, Vincent Frémont2 and Denis Fernando Wolf1

Abstract— Road detection is a crucial task in autonomous
navigation systems. It is responsible for delimiting the road area
and hence the free and valid space for maneuvers. In this paper,
we consider the visual road detection problem where, given an
image, the objective is to classify every of its pixels into road or
non-road. We address this task by proposing a convolutional
neural network architecture. We are especially interested in
a model that takes advantage of a large contextual window
while maintaining a fast inference. We achieve this by using
a Network-in-Network (NiN) architecture and by converting
the model into a fully convolutional network after training.
Experiments have been conducted to evaluate the effects of
different contextual window sizes (the amount of contextual
information) and also to evaluate the NiN aspect of the proposed
architecture. Finally, we evaluated our approach using the
KITTI road detection benchmark achieving results in line
with other state-of-the-art methods while maintaining real-time
inference. The benchmark results also reveal that the inference
time of our approach is unique at this level of accuracy, being
two orders of magnitude faster than other methods with similar
performance.

I. INTRODUCTION

Autonomous vehicle technology has the potential to im-
prove traffic safety, traffic flow in large cities, mobility for
the disabled and overall change the transport landscape. Road
detection is a key enabler of such systems, it provides not
only the free and valid space for navigation but also crucial
information for other tasks such as pedestrian and vehicle
detection. Most solutions employ multi-layer LIDAR sensors
for this purpose due to its reliable geometric information
output. However, these sensors are expensive and provide
limited information about color and texture which is essential
for some tasks (e.g. detection of traffic light state). Cameras,
on the other hand, cost a fraction of a LIDAR, are capable
of high-resolution outputs and are already a reality in com-
mercial vehicles. However, visual information, as opposed
to geometric one, is notoriously difficult to work with, as
numerous factors may alter the appearance of a scene.

In this paper, we tackle the problem of visual road detec-
tion where, given an image, the objective is to classify each
pixel as road or non-road. This constitutes a challenging task
since there are different types of roads and lane markings.
Illumination is also a critical issue as we are dealing with
an open environment where the natural illumination may
drastically alter the scene appearance. Furthermore, hardly
any (2D) geometrical prior is useful when dealing with
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Fig. 1: Overview of the proposed approach. A patch (marked
in orange) is feed to a convolutional neural network, its
output (road or non-road) is attributed to the center region
of the patch (marked in green).

images as roads may assume a wide range of sizes and shapes
on a single frame.

During the last years, this problem has been approached in
a number of different ways. For instance, the work [1] relies
on identifying abrupt changes in the appearance near the road
boundaries to delimit the road region. However, most works
pose the problem as a supervised machine learning one,
where the features of an image region (or the whole image)
are used as input to a model and the model outputs the class
(road or non-road) which is attributed to the pixels whose
input is referent. An example of such a work is given by
[2] where the image is divided into a grid and each squared
region is independently classified based on a selection of
hand-crafted features. Some works focus on creating or using
a set of features that are adequate to this specific task. For
example, the work [3] proposes a set of illumination invariant
features to improve the classification in shadowed areas.
However, as such works classifies regions independently,
they may misclassify regions of similar appearance.

A possible solution is to include contextual information,
that is including information not only of the pixel or region
being classified but also from its surroundings or even
the whole image (global context). Some efforts have been
made in this direction, [4] uses Conditional Random Fields
(CRF) and [5] spatial rays features to incorporate contextual
cues. Nevertheless, they are limited since first-order CRFs
only allow the direct influence of adjacent regions while
the spatial rays approach requires a pre-segmented image.
More effective approaches are presented in [6] and [7], the
former creates a hierarchical image segmentation and uses
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Fig. 2: Detailed view of the network architecture. The input to the model is a patch extracted from the image, its output is
the class (road or non-road) which is attributed to a 4×4 region in the center of the input patch.

the classification information of one level to inform the next
one. The later uses region-specific (De)convolutional Neural
Networks (DNNs) enabling the non-linear influence of dis-
tant regions. Both approaches, however, are computationally
costly and were not able to reach real-time even with parallel
implementations.

This work proposes a road detection system based on
Convolutional Neural Networks (CNNs). It consists of ex-
tracting patches around a pixel or region of the image
and classifying those patches using a trained CNN. The
output class it attributed to the pixel or region from which
the patch was centered, as shown by Fig. 1. We hence
classify the pixel or region using not only its information
but also information about its surrounding, that is, contextual
information. The specific CNN architecture was designed to
allow its conversion to a Fully Convolutional Network (FCN)
at inference time. In turn, this conversion may allow the use
of a large contextual window while maintaining real-time
inference.

II. PROPOSED METHODOLOGY

A. Convolutional Neural Networks

The main component of the system is a Convolutional
Neural Network (CNN). CNNs are biologically inspired
models and belong to a group of methods usually referred as
“deep learning” due to the use of a relatively large number of
non-linear transformations. Although its initial theory dates
back to 1980 [8] its practical success started in 1998 with
LeCun’s improved design [9] and consolidated in 2012 with
the results obtained in the ImageNet competition [10]. The
later success popularized the method and was partially due to
the efficient use of Graphics Processing Units (GPUs) and a
new regularization technique called dropout [11]. Nowadays
CNNs are a sensible choice for many visual tasks including
object recognition, detection and image segmentation.

CNNs can be viewed as an enhancement of the standard
Multi-Layer Perceptrons (MLPs), where the main difference
is the addition of convolutional layers. Such layers perform a
similar operation as a standard image convolution but instead
of using hard-coded kernels or filter banks, these parameters

are learned through backpropagation jointly with the rest of
the network. Such layers allow the training of much larger
(deep) networks and are able to learn directly from images
(or raw input in general) avoiding, therefore, the need for
task-specific hand-crafted features. A convolutional layer can
be defined by the number of filters (Nf ), the filters’ size
(Fx×Fy) and their stride (Sx×Sy). The number of learnable
parameters of a layer is Ic ×Nf × Fx × Fy +Nb, where Ic
is the number of channels of the previous layer and the final
Nb refers to the additional bias parameter for each filter.
Given an input with size Ic × Ix × Iy , the output size can
be calculated according to:

Oc = N ; Ox =
Ix − Fx

Sx
+ 1; Oy =

Iy − Fy

Sy
+ 1. (1)

Convolutional layers tend to be followed by polling lay-
ers. Such layers reduce the dimensionality of the input by
performing non-parametric operations (e.g. average, max) in
local regions of the input. This layer tends to aggregate
similar regions, enforce translation invariance and avoid
overfitting. A typical CNN architecture consists of a repeated
sequence of convolutional and polling layers, referred by
some authors as the features extraction phase, followed
by a number of fully connected layers (as in an MLP)
where the final layer implements the loss function (e.g.
Softmax). After each convolutional and fully connected layer
a point-wise non-linearity, such as the rectified linear unit
(ReLU) function σ(x) = max (0, x), is usually applied.
The training is performed using stochastic gradient descent
and the gradients are computed according to the chain rule,
exactly as in a standard MLP.

B. Network Architecture

The proposed network architecture can be seen in Fig. 2.
The input to the network is a three-channel image patch and
its output is a class (road or non-road) that is attributed to the
4×4 region in the center of the patch. To classify a whole
image, a patch should be extracted and classified for every
4×4 region of the original image (i.e. patches are extracted



with a 4×4 stride). The network itself starts with a conv.
3×3 - 32 (32 filters sized 3×3 each) layer, followed by a
conv. 1×1 - 16 and a max-polling layer of 2×2. These three
layers are repeated in sequence with the same parameters.
Finally, there is a fully-connected layer with 1000 neurons
and a final layer with 2 neurons (one for each class). All
convolutional layers have a stride of 1×1, are followed by the
ReLU activation function and do not employ padding. The
first fully connected layer is followed by the ReLU function
while the final layer implements the Softmax loss function.

This architecture was inspired by the LeNet-5 architecture
(convolutions followed by polling) and by the more recent
“Network-in-Network” (NiN) [12] architecture which adds
additional 1×1 convolution layers before polling. The reason
for adding this 1×1 convolutional layer in our network
is threefold: (I) it increases the network depth allowing
it to learn high-level features; (II) it reduces the number
of channels by a factor of half, speeding up training and
inference and (III) it does not reduce the channel size which
is important since we do not use padding between layers.
We did not increase the number of convolution filters after
the first polling (as it is usually the case) since preliminary
experiments showed little to no benefit of doing so. Further
design decisions will be clarified in the next section.

C. Inference

CNN architectures, as the one proposed, can be converted
into a Fully Convolutional Network (FCNs) by converting
the fully connected layers into convolutional layers. The
benefit of doing so is that, instead of inputting only a patch,
the whole image could be used as input and the network
would output the classes for every image region. The use of
FCNs for inference is especially important in cases where
the contextual window or patch is large and there is a lot of
overlap between subsequent patches, which is the case of the
proposed architecture. Although we could directly train an
FCN, instead of using it only for inference, we have chosen
not to do so for the following reasons: (I) its training is
unstable due to the lack of fine batch size control (i.e. the
minimum batch size is an entire image) and (II) our sampling
approach (we use only 25% of all samples) would reduce the
speed advantage of directly training a FCN.

To convert a standard CNN architecture (with fully con-
nected layers) to a FCN there are at least three constraints
that should be followed so that the FCN produces the exact
same results as a per patch classification: (I) there could be
no padding between layers, as the padding in the FCN and
the regular CNN would be placed in different places; (II)
the size of the channels to the first fully connected layer
should be odd sized and (III) the output class should be
upsampled to compensated the effects of the polling layers
present in the network. These constraints further clarify the
design decisions involving the proposed model, for instance,
that is why we attribute the classification result to a 4×4
region of the image (we have 2 polling layers of 2×2 each).

Concretely, at inference time, we convert the two fully
connected layer in our model to convolutional layers. Taking,

for example, an input patch of 66×66, the first fully-
connected layer with 1000 neurons would be converted
into a 15×15 - 1000 convolutional layer. This conversion
is possible because both layers share the same number of
weights. The last fully connected layer would become a
1×1 - 2 convolutional layer. It should be clear that both
networks produce the same results using effectively the same
operations, the only difference is that the FCN network is
able to deal arbitrarily sized inputs and outputs hence being
able to classify the whole image at once. This inference
scheme allows efficient inference even when using large
contextual window sizes.

III. EXPERIMENTS

A. Dataset and Setup

To train and evaluate our approach we employed the
KITTI Vision Benchmark Suite [13] or, more specifically,
the road detection benchmark. This benchmark provides 289
training images alongside their ground-truth and 290 test
images. Both sets of images are divided into three categories:
urban marked (UM), urban multiple marked lanes (UMM)
and urban unmarked (UU). The benchmark ranks methods
by their maximum F-measure on the Bird’s-eye view (BEV)
transformation of the test set. The benchmark also provides
LIDAR, stereo and GPS data. In this work, we only made
use of the monocular color images and we do not distinguish
between the three road categories.

We divided the 298 training images into two different
sets, one for training with 260 images and one for validation
containing 29 images. All the quantitative results reported in
this paper, excluding our benchmark submission, are referent
to these 29 images. We perform the evaluation in the same
way as the benchmark server: the prediction and the ground
truth images are both transformed to the BEV space and
are compared pixel-wise. We use the images at half of their
original resolution and the results are linearly interpolated
back to the original resolution for evaluation.

We implemented our work using the Python language,
the OpenCV1 library and a modified version of the Caffe
framework [14] with the cuDNN v2 library2. The tests were
conducted on a machine equipped with an Intel Core i7-
4930K, 64GB RAM, and an NVIDIA Titan X.

B. Training Scheme

Using the training and validation images, we created train-
ing and validation datasets for each of the patch sizes tested.
Each sample consists of the RGB patch and its referent
class. To create the samples, we scan the image skipping
4 pixels in each axis (stride of 4) and extracted the patch
centered around each 4×4 region. We included only samples
whose 4×4 regions are of a single class, ignoring ambiguous
samples. All images are padded (using reflection) so the
4×4 regions cover the full original image. The probability
of including a sample in our dataset is proportional to

1http://www.opencv.org/
2https://developer.nvidia.com/cudnn



(a) Above the average sample results.

(b) Average sample results.

(c) Below the average sample results.

Fig. 3: Sample classification results using the test set of the KITTI road detection dataset.

TABLE I: Patch Size Evaluation (in %)

Patch Size F-measure Accuracy Precision Recall Inf. Time

10x10 84.8 88.7 89.3 80.8 8 ms
18x18 88.3 91.1 91.1 85.8 9 ms
34x34 90.9 93.1 93.4 88.5 14 ms
50x50 91.7 93.6 92.6 90.9 21 ms
66x66 92.2 93.9 92.8 91.6 25 ms

the region it would occupy in the BEV space, hence the
loss of our network approximates the benchmark evaluation
more closely. In total, only 25% of all possible samples
were included, using more samples yielded no performance
benefit. All samples are standardized channel-wise.

We conducted the training using mini-batch gradient de-
scent with a batch size of 100, initial learning rate of 0.01,
momentum of 0.9 and an L2 weight decay rate of 0.0005.
The learning rate is reduced after each full training epoch
according to l := l × 0.96, where l is the learning rate.
We also employed a dropout rate of 50% in the two fully
connected layers. The training ends after 10 full epochs
without any improvement in the validation dataset. After each
training session, we evaluated the model’s F-measure using
the validation images. We repeat this procedure five times
and use the model with the best F-measure. This has been
done for two reasons: (I) the weight initialization is random,
generating a different model each time and (II) the employed
loss function is not directly related to the F-measure in the
BEV space.

C. Qualitative Results

Fig. 3 shows a sample of the obtained results using
the images of the test set. Each column represents a road
category, starting with UM, followed by UMM and finally
the UU category. The rows or sub-figures represent the
subjective “quality” of the results, ranging from above the
average to below the average. The first row reveals that our

TABLE II: Network-in-Network Evaluation (in %)

Model F-measure Accuracy Precision Recall Inf. Time

With NiN 92.2 93.9 92.8 91.6 25 ms
Without 92.1 93.9 93.4 90.8 41 ms

Diff. -0.1 0.0 +0.6 -0.8 +16 ms

approach performs reasonably well in shadowed areas and,
as the output from the FCN model is linearly interpolated,
the artifacts of classifying “blocks” (due to the use of polling
layers and half of the original resolution) is barely visible.
The second row shows a limitation of our method, where it
behaves erratically and may misclassify small regions. The
final row displays our worst sample results in each road
category and reveals two further limitations: its inability to
deal with extreme lighting conditions and with different road
surfaces types. More qualitative results can be seen as a video
at http://youtu.be/3FER84XD17w.

D. Patch Size Evaluation

We initially tested the effect of the patch size on the
accuracy and the inference time of the model. The specific
chosen sizes are related to the constraints imposed by the
use of an FCN for inference. The quantitative results are
shown in table I, where the inference time refers only to
the model time. As expected, the F-measure increases with
the patch size due to the larger context. The inference time
scaled approximately linearly after the size 18×18. A visual
sample of the results can be seen in Fig. 4. The number of
false positives negatives decreases significantly with larger
patch sizes and the false negatives are virtually all removed.

E. Network-in-Network Evaluation

We also evaluated the role of the additional 1×1 convo-
lutional layer, which is a key component of the proposed
architecture. We trained a network with a patch size of
66×66 but removing the two 1×1 convolutional layers of



TABLE III: Urban Road KITIT Benchmark Results (in %)

Method MaxF Pre. Rec. FPR FNR Runtime

DNN [6] 93.43 95.09 91.82 2.61 8.18 2s
Our method 90.79 90.87 90.72 5.02 9.28 0.03s

HIM [7] 90.64 91.62 89.68 4.52 10.32 7s
NNP 89.68 89.67 89.68 5.69 10.32 5s

StixelNet [15] 89.12 85.80 92.71 8.45 7.29 1s
CB [16] 88.97 89.50 88.44 5.71 11.56 2s

FusedCRF [17] 88.25 83.62 93.44 10.08 6.56 2s
ProbBoost [18] 87.78 86.59 89.01 7.60 10.99 150s

SPRAY [5] 87.09 87.10 87.08 7.10 12.92 0.04s

the model. The results are shown in Table II. While the
performance is virtually the same, the inference time is
higher. This result validates our assumption that by adding
a 1×1 convolutional layer we could maintain (or improve)
performance while reducing the inference time.

F. Benchmark Submission

To compare our method with others, we submitted our
results to the KITTI road detection benchmark3. Table III
presents the first nine results in the Urban Road category
which is an aggregate of all three road categories (UU,
UM, and UMM). Our method achieved the second best
score out of 33 participants while being the fastest method
(excluding the baseline submission). These results include
the participants taking advantage of LIDAR (FusedCRF) or
stereo vision (NNP and ProbBoost) data.

The first method of the benchmark (DNN) uses a combi-
nation of convolutional and deconvolutional layers to include
a global context and also uses position-specific classifiers to
take advantage of a positional prior (i.e. the bottom-center
region is more likely to be road). Both the global context
and the positional prior may explain their higher score,
however, as they use many larger models, their inference
time is two orders of magnitude slower than ours. The HIM
method also uses a global context and while their scores
are similar to ours, their inference time is far from being
practical. Further methods employ a range of techniques to
achieve their results, from post-processing their results with
stereo information (NNP), to using “rays features” to include
contextual information (SPRAY). One topic that is present
in most of these works (DNN, HIM, CB, FusedCRF, and
SPRAY) is the use of contextual information, this includes
our previous work (CB) where we made use of “contex-
tual blocks” to efficiently include contextual information,
however our implementation did not reach real-time and,
as we used a standard MLP, we had to use a selection of
hand-crafted features which may not have been the most
appropriated for the task.

G. Processing Time

Given a dataset image in the main memory of our test
machine, Table IV presents the processing time for each of
the steps involved in producing the inference results. The first
resize operation is performed to reduce the image to half of

3http://www.cvlibs.net/datasets/kitti/index.php

TABLE IV: Processing Time

Task Processing Time (ms)

Resize 1.4
Pad 1.8

Scale 2.5
Copy to GPU 0.4

Model Forward 25.4
Pad 0.2

Resize 0.4
Crop 0.0

Resize 0.6

Total 32.7

its original resolution while the last one is its counterpart.
The padding and resize operations after the model are used
to compensate the effects of the convolutional and polling
layers respectively. As expected, most of the time is spend
in the model itself which is responsible for more than 75%
of the total time.

IV. DISCUSSION

The proposed methodology successfully yields results
comparable with other state of the art methods while main-
taining a fast inference time, which is especially important
for road detection. Our method differentiates itself from other
similar works in three main points: (I) the network was
carefully designed to allow the conversion and fast inference
using an FCN; (II) the use of the NiN type architecture which
contributed to both the performance and the inference speed
and (III) the use of a large contextual window which, as
the experiments show, contributed to the performance of the
method.

Despite dealing reasonable well with shadowed areas, our
method may misclassify regions subject to extreme lighting
conditions. This limitation, however, is not a peculiarity
of our method and affect most, if not all, vision-based
methods (including stereo vision ones). Another relevant
limitation is the inability to deal with different types of
road surfaces. This limitation may be remedied with the
inclusion of a global context but, as we do not have access to
other methods’ (which use a global context) results in those
specific images, this possibility remains unanswered. The
training data does not contain this type of road, which brings
another question: How would the method react if trained
on different road surfaces? This also reveals what could be
considered a limitation of the benchmark itself as it contains
only the standard asphalt road in its training set. Our method
also presents some instability, misclassifying small regions
sometimes and, while most of it could be filtered using a
temporal filter, it is probable that some regions would still
be misclassified.

One practical consideration is that, although our method
has a fast inference time, it is contingent on the use of a high-
end GPU. GPUs are already available in commercial cars but
only in their low consumption versions with limited perfor-
mance. Our method, however, could scale for such devices
by changing the patch size. Finally, given the existence of a



device already capable of running our method in real-time
and the rapid pace with which GPU technology advances, a
low consumption counterpart of the used GPU should emerge
in a small amount of time.

V. CONCLUSIONS AND FUTURE WORKS

We have presented a machine learning approach for road
detection which is able to take advantage of large amounts
of contextual information while maintaining a relatively fast
inference time. Experimental tests revealed the importance
of the use of large contextual windows and its effects on the
inference time of the proposed model. The experiments also
reveal that the specific chosen model architecture was a key
enabler of such results, significantly reducing the inference
time. Unfortunately, the proposed approach presents some
limitations, as its inability to correctly classify different
types of road surfaces or regions subject to extreme lighting
conditions. Nevertheless, our approach is unique in terms
of its inference time at this level of accuracy. For future
works, we are investigating the use of sparse convolutional
neural networks for the efficient inclusion of a global context
without the need for padding.
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