Extreme nickel hyperaccumulation in the vascular tracts of the tree Phyllanthus balgooyi from Borneo
Jolanta Mesjasz Przybylowicz, Wojciech Przybylowicz, Alban Barnabas, Antony van der Ent

To cite this version:

HAL Id: hal-01260295
https://hal.archives-ouvertes.fr/hal-01260295
Submitted on 21 Mar 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Extreme nickel hyperaccumulation in the vascular tracts of the tree *Phyllanthus balgooyi* from Borneo

Jolanta Mesjasz-Przybyłowicz¹, Wojciech Przybyłowicz¹-², Alban Barnabas¹ and Antony van der Ent³,⁴

¹ThembalABS, National Research Foundation, PO Box 722, Somerset West 7129, South Africa; ²Faculty of Physics & Applied Computer Science, AGH University of Science and Technology, Al. A. Mickiewicza 30, Krakow 30-059, Poland; ³Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, Qld 4072, Australia; ⁴Université de Lorraine – INRA, Laboratoire Sols et Environnement, UMR 1120, Nancy, France

Summary

- *Phyllanthus balgooyi* (Phyllanthaceae), one of >20 nickel (Ni) hyperaccumulator plant species known in Sabah (Malaysia) on the island of Borneo, is remarkable because it contains >16 wt% Ni in its phloem sap, the second highest concentration of Ni in any living material in the world (after *Pycnandra acuminata* (Sapotaceae) from New Caledonia with 25 wt% Ni in latex).
- This study focused on the tissue-level distribution of Ni and other elements in the leaves, petioles and stem of *P. balgooyi* using nuclear microprobe imaging (micro-PIXE).
- The results show that in the stems and petioles of *P. balgooyi* Ni concentrations were very high in the phloem, while in the leaves there was significant enrichment of this element in the major vascular bundles. In the leaves, cobalt (Co) was codistributed with Ni, while the distribution of manganese (Mn) was different. The highest enrichment of calcium (Ca) in the stems was in the periderm, the epidermis and subepidermis of the petiole, and in the palisade mesophyll of the leaf.
- Preferential accumulation of Ni in the vascular tracts suggests that Ni is present in a metabolically active form. The elemental distribution of *P. balgooyi* differs from those of many other Ni hyperaccumulator plant species from around the world where Ni is preferentially accumulated in leaf epidermal cells.

Introduction

Hyperaccumulators are rare plants that accumulate trace elements to extraordinarily high concentrations (>1000 μg g⁻¹ nickel (Ni)) in their living biomass (Reeves, 2003; van der Ent et al., 2013b). Ni hyperaccumulator plants currently number c. 450 different species globally, with the greatest numbers recorded from Cuba, New Caledonia and the Mediterranean region (Baker & Brooks, 1988; Reeves, 2003). Ni hyperaccumulator plants can be categorized as either obligate or facultative species, the former restricted to ultramafic soils and displaying hyperaccumulation, the latter with populations on nonultramafic and ultramafic soils but only displaying hyperaccumulation when growing on ultramafic soils (Pollard et al., 2014). Some unusual facultative species have genotypes that hyperaccumulate or do not hyperaccumulate within the same populations on ultramafic soils (Mesjasz-Przybyłowicz et al., 2007). Ultramafic soils are naturally enriched in Ni, and characterized by nutrient deficiencies and cation imbalances (Proctor, 2003). Ni hyperaccumulator plants have the potential to be used in phytomining, an environmentally sustainable ‘green’ technology to produce Ni metal (Chaney, 1983; Chaney et al., 2007; van der Ent et al., 2013a). In a phytomining operation, hyperaccumulator plants are grown on ultramafic soils, followed by harvesting and incineration of their biomass to generate a commercial high-grade Ni bio-ore (Brooks et al., 1998, 1999; Chaney et al., 2007; Harris et al., 2009; van der Ent et al., 2013a).

Globally, the most enigmatic Ni hyperaccumulator species is *Pycnandra acuminata* (Pierre ex Baill.) Swenson & Munzing (formerly *Sebertia acuminata* Pierre ex Baill. Sapotaceae) (Swenson & Munzing, 2010) from New Caledonia, a tree up to 10 m tall with a green latex containing 11.2 wt% Ni on a FW basis or 25.7 wt% on a DW basis (Jaffré et al., 1976). Recently, it was discovered that the tree *Phyllanthus balgooyi* Petra Hoffm. & A.J.M.Baker (Phyllanthaceae) from Sabah (Malaysia) has 8.9 wt% Ni in phloem tissue (Baker et al., 1992; Hoffmann et al., 2003) and up to 16.9 wt% Ni in its phloem sap (van der Ent & Mulligan, 2015). This species was discovered to be an Ni hyperaccumulator in Palawan (Philippines) where it occurs on montane ridges as a scandent shrub (Baker et al., 1992). The herbarium material was first designated *Phyllanthus palawanensis* as it differed from the more common *Phyllanthus lamprophyllus*, which is distributed in Java, Borneo, Sulawesi, Philippines, Moluccas, New Guinea and Australia. Later it was described as a new species and named after the eminent botanist Max M. J. van Balgooy who first recognized this taxon...
(Hoffmann et al., 2003). It differs from P. lamprophyllus in its ecology (P. lamprophyllus is primarily a riparian species, whereas P. balgooyi grows on dry ridges), the prominent leaf venation of P. balgooyi and its ability to hyperaccumulate Ni (Hoffmann et al., 2003). Although in the Philippines P. balgooyi does not generally attain a height of > 1.5 m, in Sabah it grows up to 8 m tall (Hoffmann et al., 2003). The P. balgooyi complex is taxonomically not completely understood and there may be several

![Figure 1](image)

Fig. 1 (a) Mature specimen of *Phyllanthus balgooyi* c. 9 m tall, with a stem of 23 cm diameter. (b) Close-up of apical shoots with leaves. (c) Excised section of phloem tissue from the main stem. (d) Glass capillary vial tube with phloem sap of *P. balgooyi* containing up to 16.9 wt% nickel.

Table 1 Elemental concentrations in bedrock and soil from the natural habitat of Bukit Hampuan, Sabah, Malaysia

<table>
<thead>
<tr>
<th>Bedrock digest</th>
<th>Na</th>
<th>Mg</th>
<th>Al</th>
<th>P</th>
<th>S</th>
<th>K</th>
<th>Ca</th>
<th>Cr</th>
<th>Mn</th>
<th>Fe</th>
<th>Co</th>
<th>Ni</th>
<th>Cu</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wt% (DW)</td>
<td>μg g⁻¹ (DW)</td>
<td></td>
</tr>
<tr>
<td>Bedrock below plant</td>
<td>0.2</td>
<td>46</td>
<td>4.5</td>
<td>0.007</td>
<td>0.1</td>
<td>0.01</td>
<td>2.4</td>
<td>2830</td>
<td>5770</td>
<td>103</td>
<td>200</td>
<td>1110</td>
<td>35</td>
<td>120</td>
</tr>
<tr>
<td>Soil total concentrations</td>
<td></td>
</tr>
<tr>
<td>Mineral soil (1)</td>
<td></td>
</tr>
<tr>
<td>Mineral soil (2)</td>
<td></td>
</tr>
<tr>
<td>Organic soil</td>
<td></td>
</tr>
<tr>
<td>Rhizosphere soil</td>
<td></td>
</tr>
<tr>
<td>Soil DTPA-extract</td>
<td>pH</td>
<td>EC</td>
<td>μg g⁻¹ (DW)</td>
<td></td>
</tr>
<tr>
<td>Mineral soil (1)</td>
<td>6.4</td>
<td>110</td>
<td>22</td>
<td>540</td>
<td>11</td>
<td>1.1</td>
<td>32</td>
<td>77</td>
<td>–</td>
<td>0.5</td>
<td>390</td>
<td>100</td>
<td>16</td>
<td>180</td>
</tr>
<tr>
<td>Mineral soil (2)</td>
<td>6.4</td>
<td>190</td>
<td>4.5</td>
<td>510</td>
<td>0.8</td>
<td>1</td>
<td>7.6</td>
<td>33</td>
<td>–</td>
<td><0.01</td>
<td>450</td>
<td>28</td>
<td>37</td>
<td>290</td>
</tr>
<tr>
<td>Organic soil</td>
<td>6.5</td>
<td>510</td>
<td>6.7</td>
<td>130</td>
<td>9.7</td>
<td>0.7</td>
<td>5.1</td>
<td>20</td>
<td>–</td>
<td>0.1</td>
<td>270</td>
<td>38</td>
<td>68</td>
<td>98</td>
</tr>
<tr>
<td>Rhizosphere soil</td>
<td>5.1</td>
<td>340</td>
<td>20</td>
<td>480</td>
<td>148</td>
<td>0.6</td>
<td>20</td>
<td>59</td>
<td>–</td>
<td>0.6</td>
<td>280</td>
<td>280</td>
<td>19</td>
<td>74</td>
</tr>
</tbody>
</table>

The digests and extracts were analysed with ICP-AES. EC, electrical conductivity; Na, sodium; Mg, magnesium; Al, aluminium; P, phosphorus; S, sulphur; K, potassium; Ca, calcium; Cr, chromium; Mn, manganese; Fe, iron; Co, cobalt; Ni, nickel; Cu, copper; Zn, zinc. Numbers in brackets denote separate samples analysed.
Table 2 Bulk elemental concentrations in plant tissues of *Phyllanthus balgooyi* from Sabah (Malaysia)

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Na (μg g⁻¹ (DW))</th>
<th>Mg (μg g⁻¹ (DW))</th>
<th>Al (μg g⁻¹ (DW))</th>
<th>P (μg g⁻¹ (DW))</th>
<th>K (μg g⁻¹ (DW))</th>
<th>Ca (μg g⁻¹ (DW))</th>
<th>Cr (μg g⁻¹ (DW))</th>
<th>Mn (μg g⁻¹ (DW))</th>
<th>Fe (μg g⁻¹ (DW))</th>
<th>Co (μg g⁻¹ (DW))</th>
<th>Ni (μg g⁻¹ (DW))</th>
<th>Cu (μg g⁻¹ (DW))</th>
<th>Zn (μg g⁻¹ (DW))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bark (1)</td>
<td>22</td>
<td>420</td>
<td>93</td>
<td>22</td>
<td>96</td>
<td>54</td>
<td>120</td>
<td>20</td>
<td>45</td>
<td>610</td>
<td>2.8</td>
<td>370</td>
<td>1</td>
</tr>
<tr>
<td>Bark (2)</td>
<td>18</td>
<td>330</td>
<td>49</td>
<td>25</td>
<td>110</td>
<td>49</td>
<td>100</td>
<td>11</td>
<td>45</td>
<td>290</td>
<td>5.2</td>
<td>360</td>
<td>0.8</td>
</tr>
<tr>
<td>Leaves (1)</td>
<td>441</td>
<td>3010</td>
<td>37</td>
<td>370</td>
<td>1070</td>
<td>1890</td>
<td>6810</td>
<td>8.1</td>
<td>450</td>
<td>52</td>
<td>20</td>
<td>4900</td>
<td>4.4</td>
</tr>
<tr>
<td>Leaves (2)</td>
<td>1140</td>
<td>2270</td>
<td>35</td>
<td>290</td>
<td>1010</td>
<td>2550</td>
<td>8680</td>
<td>19</td>
<td>480</td>
<td>39</td>
<td>46</td>
<td>7060</td>
<td>4.3</td>
</tr>
<tr>
<td>Phloem tissue</td>
<td>1090</td>
<td>600</td>
<td>14</td>
<td>140</td>
<td>1310</td>
<td>4770</td>
<td>3210</td>
<td>8.5</td>
<td>160</td>
<td>24</td>
<td>252</td>
<td>4501</td>
<td>10</td>
</tr>
<tr>
<td>Phloem sap (1)</td>
<td>530</td>
<td>820</td>
<td>30</td>
<td>140</td>
<td>810</td>
<td>650</td>
<td>1300</td>
<td>1.4</td>
<td>350</td>
<td>15</td>
<td>1869</td>
<td>145000</td>
<td>1</td>
</tr>
<tr>
<td>Phloem sap (2)</td>
<td>430</td>
<td>810</td>
<td>25</td>
<td>150</td>
<td>920</td>
<td>1210</td>
<td>1870</td>
<td>2.9</td>
<td>480</td>
<td>15</td>
<td>1449</td>
<td>168500</td>
<td>0.9</td>
</tr>
<tr>
<td>Phloem sap (3)</td>
<td>930</td>
<td>600</td>
<td>13</td>
<td>190</td>
<td>730</td>
<td>1530</td>
<td>1960</td>
<td>5.7</td>
<td>320</td>
<td>16</td>
<td>557</td>
<td>154900</td>
<td>0.2</td>
</tr>
<tr>
<td>Phloem sap (4)</td>
<td>510</td>
<td>490</td>
<td>5.9</td>
<td>23</td>
<td>470</td>
<td>520</td>
<td>660</td>
<td>0.1</td>
<td>430</td>
<td>20</td>
<td>2340</td>
<td>125900</td>
<td>7</td>
</tr>
<tr>
<td>Root</td>
<td>460</td>
<td>300</td>
<td>14</td>
<td>95</td>
<td>680</td>
<td>610</td>
<td>410</td>
<td>5.5</td>
<td>77</td>
<td>10</td>
<td>123</td>
<td>4780</td>
<td>9.7</td>
</tr>
<tr>
<td>Twigs (1)</td>
<td>690</td>
<td>420</td>
<td>27</td>
<td>190</td>
<td>550</td>
<td>2320</td>
<td>1830</td>
<td>6.2</td>
<td>64</td>
<td>11</td>
<td>22</td>
<td>4670</td>
<td>6.2</td>
</tr>
<tr>
<td>Twigs (2)</td>
<td>710</td>
<td>270</td>
<td>51</td>
<td>200</td>
<td>700</td>
<td>1190</td>
<td>3740</td>
<td>4.7</td>
<td>190</td>
<td>30</td>
<td>46</td>
<td>8610</td>
<td>6.8</td>
</tr>
<tr>
<td>Wood (1)</td>
<td>180</td>
<td>99</td>
<td>16</td>
<td>62</td>
<td>230</td>
<td>490</td>
<td>490</td>
<td>1</td>
<td>5</td>
<td>8.7</td>
<td>2.4</td>
<td>250</td>
<td>1.6</td>
</tr>
<tr>
<td>Wood (2)</td>
<td>260</td>
<td>250</td>
<td>14</td>
<td>62</td>
<td>280</td>
<td>390</td>
<td>430</td>
<td>3.3</td>
<td>47</td>
<td>8</td>
<td>11</td>
<td>880</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Results were obtained with ICP-AES: Na, sodium; Mg, magnesium; Al, aluminium; P, phosphorus; S, sulphur; K, potassium; Ca, calcium; Cr, chromium; Mn, manganese; Fe, iron; Co, cobalt; Ni, nickel; Cu, copper; Zn, zinc. Numbers in brackets denote separate samples analysed.

Fig. 2 Light microscopy images of *Phyllanthus balgooyi* anatomical structures. (a) Stem of a young branch, (b) periderm (bark) and underlying tissues of a mature stem, (c) close-up of a young stem showing early periderm formation, (d) anatomical structure of the petiole, (e) mid region of a mature leaf, and (f) close-up of a portion of a mature leaf. C, cortex; E, epidermis; le, lower epidermis; P, pith; PD, periderm; pm, palisade mesophyll; sf, sclerenchyma fibres; sm, spongy mesophyll; ue, upper epidermis; 1P, primary phloem; 1X primary xylem; 2MR, secondary medullary/vascular rays; 2P, secondary phloem; 2X, secondary xylem. Asterisks in (c, f) mark calcium oxalate crystals. Arrows in (c) indicate osmiophilic (black) deposits.
variants that warrant subspecies status, based on their morphologies and the distinct ecological niches they occupy (van der Ent et al., 2015a). In Sabah, populations of *P. balgooyi* from closed forest, montane ridges and riparian habitats all hyperaccumulate Ni, and display an array of growth forms, from shrub to medium-height tree.

Studies on the spatial elemental distribution in tissues and cells have been performed for <10% of the 450 Ni hyperaccumulator plant species known globally, mainly for small, herbaceous plants. Most investigations were performed on plant species from the families Brassicaceae and Asteraceae (e.g. *Alyssum*, *Thlaspi*, *Berkheya* and *Senecio*) and the leaves were typically the analysed organs, while stems and roots were less often studied (Mesjasz-Przybyłowicz et al., 1994, 1996a,b, 1997a,b,c, 2001b; Küpper et al., 2001; Broadhurst et al., 2004, 2009; McNear et al., 2005; Mesjasz-Przybyłowicz et al., 2007; Tappero et al., 2007; Tylko et al., 2007). The only woody shrub analysed to date was *Hybanthus floribundus* (Violaceae) (Bidwell et al., 2003; Kachenko et al., 2008).

In the majority of investigated Ni hyperaccumulator plant species, Ni is preferentially accumulated in the epidermal cells of the shoots, in particular in the foliar epidermal cells (Mesjasz-Przybyłowicz et al., 1994, 1996a,b, 1997a,c, 2001b; Küpper et al., 2001; Bidwell et al., 2003; Bhatia et al., 2004; Broadhurst et al., 2004; Tylko et al., 2007; Kachenko et al., 2008).

A distinctly different Ni accumulation pattern has been found in *Berkheya coddii* (Asteraceae) from South Africa (Mesjasz-Przybyłowicz et al., 2001a; Mesjasz-Przybyłowicz & Przybyłowicz, 2003, 2011; Budka et al., 2005). In this species, Ni is strongly enriched in the leaf veins and mesophyll, while the concentrations in the epidermis are lower than the average value for the whole leaf (Mesjasz-Przybyłowicz & Przybyłowicz, 2011). A combination of Ni ligand complexation with carboxylic acids at tissue level, and cellular compartmentalization, is involved in detoxification and tolerance mechanisms in most Ni-hyperaccumulating plants (Schaumlöffel et al., 2003; Callahan et al., 2006, 2012; Montargès-Pelletier et al., 2008; McNear et al., 2010). The case of *P. balgooyi* presents one of the most extreme examples of trace element hyperaccumulation. The aim of this study was to elucidate patterns of elemental distribution in the tissues of *P. balgooyi* from Sabah by means of the nuclear microprobe (micro-PIXE) technique.

This is the first study on the elemental distribution in an Ni hyperaccumulator tree species thereby presenting quantitative elemental data for the leaves, petioles and stem. This information may shed light on Ni compartmentalization in this species and the possible chemical forms of Ni in *P. balgooyi* by examining elemental codistribution.

Fig. 3 Quantitative elemental maps and anatomical structure of a stem cross-section of *Phyllanthus balgooyi*. The concentration scale is in wt% DW for nickel (Ni), potassium (K) and calcium (Ca) and μg g⁻¹ DW for cobalt (Co), manganese (Mn), sulphur (S), phosphorus (P) and iron (Fe). X, xylem; C, cortex; Ph, phloem; Pd, periderm. Bars, 1000 μm.
Materials and Methods

Collection and analysis of plant tissues

Plant tissue samples of *Phyllanthus balgooyi* Petra Hoffm. & A. J. M. Baker were collected in the natural habitat in the Bukit Hampuan Forest Reserve in Sabah (Malaysia) on the island of Borneo. The following parts were collected from the same individuals: roots, wood, leaves and phloem tissue and phloem sap. The plant tissue samples were cut out with a surgical stainless steel knife directly from the living plants. The samples intended for micro-PXElE analysis were (in the field) immediately flash-frozen using a cold mirror technique in which the samples were pressed between a large block of copper cooled by liquid nitrogen (−196°C) and a second block of copper attached to a Teflon holder. This ensured extremely fast freezing of the plant tissue samples to prevent cellular damage by ice crystal formation. The samples were then wrapped in aluminium foil, and transported in a cryogenic container to iThemba LABS, Somerset West, South Africa for analysis. Phloem sap was collected with glass capillary tubes (0.2 mm diameter and 50 mm long) and freeze-dried after collection at −50°C for 8 h.

Plant tissue subsamples were dried at 70°C for 5 d in a dehydrating oven for bulk elemental analysis. These samples were subsequently packed for transport to Australia and gamma-irradiated at Steritech Pty Ltd (Brisbane) following quarantine regulations at Steritech Pty Ltd (Brisbane) following quarantine regulations and a powdered subsample of each tissue were examined for 'pseudo-total' elemental concentrations. A bedrock sample was digested with 4 ml of 70% nitric acid, 3 ml of 37% hydrochloric acid and 2 ml of 32% hydrofluoric acid in a digestion microwave for a 2-h programme and diluted to 30 ml with deionized water. The samples were then analysed by inductively coupled plasma atomic emission spectroscopy (ICP-AES) (Varian Vista Pro II, Agilent Technologies Inc. Palo Alto, USA) for Ni, cobalt (Co), chromium (Cr), copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), manganese (Mg), calcium (Ca), sodium (Na), potassium (K), sulphur (S) and phosphorus (P).

Collection and analysis of bedrock and soil

Soil samples were collected in the rooting zone ('rhizosphere') and under the canopy of *P. balgooyi*, both in the organic horizon and in the mineral soil, in the natural habitat on Bukit Hampuan. Fractions (200 mg) were digested using freshly prepared 'reverse' aqua regia (9 ml of 70% nitric acid and 3 ml of 37% hydrochloric acid per sample) in a digestion microwave for a 2-h programme and diluted with deionized water to 45 ml before analysis to give 'pseudo-total' elemental concentrations. A bedrock sample was also collected at the same location, and a powdered subsample (100 mg) digested with 4 ml of 70% nitric acid, 3 ml of 37% hydrochloric acid and 2 ml of 32% hydrofluoric acid in a microwave for a 2-h programme and diluted to 45 ml before analysis. Soil pH and electrical conductivity (EC) were measured in a 1:2.5, soil:water mixture. Phytoavailable metals were extracted with diethylene triamine pentaacetic acid (DTPA) according to

| Table 3 Elemental concentrations (micro-PXElE; µg g⁻¹ DW) in the representative specimens of the stem of *Phyllanthus balgooyi* from Sabah (Malaysia) |
|---|---|---|---|---|---|---|---|
| Tissue | P | S | Cl | K | Ca | Mn | Fe |
| Whole area | 110 | 260 | 196 | 960 | 260 | 196 | 960 |
| Outer periderm (phellem) | 110 | 260 | 196 | 960 | 260 | 196 | 960 |
| Cortex | 110 | 260 | 196 | 960 | 260 | 196 | 960 |
| Phloem (1) | 110 | 260 | 196 | 960 | 260 | 196 | 960 |
| Phloem (2) | 110 | 260 | 196 | 960 | 260 | 196 | 960 |
| Xylem | 110 | 260 | 196 | 960 | 260 | 196 | 960 |
| Pith | 110 | 260 | 196 | 960 | 260 | 196 | 960 |

Elemental images of this species are shown in Fig. S3. The results were obtained from PIXE spectra extracted from regions representing different morphological structures, and analysed using Co-PXElE software. Numbers in brackets denote individual areas analysed. Measured values are shown with error. P, phosphorus; S, sulphur; Cl, chlorine; K, potassium; Ca, calcium; Mn, manganese; Fe, iron; Co, cobalt; Ni, nickel; Cu, copper; Zn, zinc.
Lindsay & Norvell (1978), but with modifications from Becquer et al. (1995) (excluding triethanolamine; pH adjusted to pH 5.3). The digests and extracts were analysed with ICP-AES (Varian Vista Pro II) for Ni, Co, Cu, Zn, Mn, Fe, Mg, Ca, Na, K, S and P.

Micro-PIXE experiments

Specimens were removed from the LN2 storage container and freeze-dried in a Leica EM CFD Cryosorption Freeze Dryer (Leica Microsystems AG, Vienna, Austria). The freeze-drying process followed a long, 208-h programmed cycle to prevent shrinkage of the tissues. Freeze-dried plant tissues were then hand-cut with a steel razor blade and mounted on specimen holders covered with 0.5% Formvar film (Sigma-Aldrich Chemie GmbH, Schnelldorf, Germany) and lightly coated with carbon to prevent charging. Three individual samples of leaves, petioles and stems were analysed by PIXE. Microanalyses were performed using the nuclear microprobe at the Materials Research Department, iThemba LABS, South Africa. The facility and methodology for measurements of biological materials have been reported elsewhere in detail (Prozesky et al., 1995; Przybyłowicz et al., 1999, 2005). To summarize: a proton beam of 3-MeV energy, provided by a 6-MV single-ended Van de Graaff accelerator, was focused to a $3 \times 3 \mu\text{m}^2$ spot and raster scanned over the areas of interest, using square or rectangular scan patterns with a variable number of pixels (up to 128 \times 128). The proton current was restricted to 100–150 pA to minimize specimen beam damage. Particle-induced X-ray emission (PIXE) and proton backscattering spectrometry (BS) were used simultaneously. PIXE spectra were registered with a Si(Li) detector manufactured by PGT (Princeton, NJ, USA) (30-mm2 active area and 8.5-μm Be window) with an additional 125-μm Be layer as an external absorber. The effective energy resolution of the PIXE system (for the Mn K\text{\textalpha} line) was 160 eV, measured for individual spectra. The detector was positioned at a takeoff angle of 135° and a working distance of 24 mm. The X-ray energy range was set between 1 and 40 keV. BS spectra were recorded with an annular Si surface barrier detector (100-μm thick) positioned at an average angle of 176°. Data were acquired in the event-by-event mode. The normalization of results was performed using the integrated beam charge, collected simultaneously from a Faraday cup located behind the specimen and from the insulated specimen holder. The total accumulated charge per scan varied from 0.51 to 3.82 μC.

The experimental conditions made it possible to quantitatively analyse the concentration and distribution of the following elements in the freeze-dried plant tissues of *P. balgooyi*: silicon (Si), P, S, chlorine (Cl), K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, bromine (Br), rubidium (Rb) and strontium (Sr). These quantitative results were obtained by a standardless method using the GEOPIXE II software package (Ryan et al., 1990a, b; Ryan, 2000). The error estimates were extracted from the error matrix generated in the fit, and the minimum detection limits (MDLs) were calculated using the Currie equation (Currie, 1968). The detailed calibration of detector efficiency, the thicknesses of selectable X-ray attenuating filters and results of studies on the accuracy and precision have been reported elsewhere (van Achterbergh et al., 1995). The procedure reported by van Achterbergh et al. (1995) was used for the PGT Si(Li) detector in the present study. The calibration of the analytical system was tested by measurements of standards – pure elements and synthetic glasses with known quantities of selected minor elements (internal standards), the X-ray peaks of which cover practically the whole measurable energy range. Quantitative elemental mapping was performed using

![Quantitative elemental maps and anatomical structure of a petiole cross-section of *Phyllanthus balgooyi*. The concentration scale is in wt% DW for nickel (Ni), potassium (K) and calcium (Ca) and $\mu\text{g} \cdot \text{g}^{-1} \text{DW}$ for cobalt (Co), manganese (Mn), sulphur (S), phosphorus (P) and iron (Fe). E + SE, epidermis and subepidermis; Sc, sclerenchyma; Ph, phloem; X, xylem. Bars, 100 μm.](image-url)
Anatomical studies

Plant tissue samples were taken from stems of young branches, the outermost portions of older/mature stems, petioles, and mature leaf blades. These were fixed in 3% glutaraldehyde, post-fixed in 2% osmium tetroxide (OsO₄), dehydrated in a graded ethanol series and embedded in Spurr’s (1969) resin. Sections of 0.5–2 µm thickness were cut with a diamond knife, stained with azur II and methylene blue, and examined and photographed with a compound microscope.

Results

Habitat of P. balgooyi at the study locality

The plant tissues analysed in this study originated from Bukit Hampuan Forest Reserve in Sabah, Malaysia. At this location, a large population of P. balgooyi occurs on a narrow forested ridge on the top of a hill at 1270 m above sea level, with individuals reaching heights of up to 9 m, with stem diameters up to 20 cm (Fig. 1). The forest is semiclosed with a broken canopy dominated by Dacrydium pectinatum (Podocarpaceae) and is extremely species-rich (van der Ent et al., 2015b). The vegetation is undisturbed old-growth forest in local climax. As far as is known, no other Ni hyperaccumulator species occur in the same habitat. Phyllanthus balgooyi occurs as scattered individuals with numerous small saplings, but flowering has not been observed and is presumed to occur rarely.

The soil at the P. balgooyi habitat is shallow (<40 cm), stony and derived from strongly serpentinized ultramafic (peridotite) bedrock with a major composition of: 4.5 wt% aluminium (Al), 2.4 wt% Ca, 103 wt% Fe, 46 wt% Mg (Table 1) and 19.7 wt% Si (data not shown). Concentrations of trace elements in the bedrock are: 20 µg g⁻¹ Co and 1112 µg g⁻¹ Ni, but these elements are strongly enriched during soil formation (compare with soil values in Table 2). The mineral soil is near neutral at pH 6.4 with pseudo-total elemental concentrations of 173–561 µg g⁻¹ Co and 1623–1860 µg g⁻¹ Ni, whereas the organic soil has 339 µg g⁻¹ Co and 887 µg g⁻¹ Ni. The rhizosphere soil is more acidic (pH 5.1) and Co and Ni are depleted (71 and 583 µg g⁻¹, respectively), which may point to a diffusion
gradient towards the roots, especially because Al and Fe concentrations are high (148 and 278 µg g⁻¹, respectively), suggestive of exudate-induced mineral weathering. Phytoavailability (DTPA-extractable) of Ni is moderately high at 177–291 µg g⁻¹ in the mineral soil and 98 µg g⁻¹ in the organic soil.

Bulk elemental concentrations in plant tissues of P. balgooyi

The results of the bulk elemental concentrations are shown in Table 2. Compared with many other Ni hyperaccumulator plant species, the leaves of *P. balgooyi* did not contain exceptionally high Ni concentrations (4900–7060 µg g⁻¹ Ni) and Co was low at 20–46 µg g⁻¹. However, Ca was very high in the leaves at 6800–8680 µg g⁻¹. Ni concentrations in green twigs were high at 4700–8600 µg g⁻¹, which may be explained by the presence of phloem tissue. The bark contained little Ni (360–370 µg g⁻¹) and was also low in Ca (95–116 µg g⁻¹), whereas wood had 250–880 µg g⁻¹ Ni. The root Ni concentration was 4800 µg g⁻¹ and phloem tissue contained 45 000 µg g⁻¹ Ni and 250 µg g⁻¹ Co. The phloem sap from *P. balgooyi* is one of the most remarkable biological liquids in the world. It is exudated as a clear dark-green viscous sap when the phloem tissue is damaged (under a very thin scaling bark). The phloem sap contained 12.6–16.9 wt% Ni and was also strongly enriched in Co (560–2340 µg g⁻¹). Although concentrations of most other transition elements were low (Fe: 15–20 µg g⁻¹; Cr: 0.1–5.7 µg g⁻¹; Cu: 0.2–7 µg g⁻¹; Mn: 320–480 µg g⁻¹), concentrations of Zn were very high (1900–3700 µg g⁻¹). The level of specificity for Ni over other transition elements, except Co and Zn, suggests the activity of highly selective transporters.

Anatomical features of P. balgooyi stems and leaves

Typical of woody plants, transporting tissues, in particular secondary xylem and phloem, make up a large proportion of the stem of *P. balgooyi* (Fig. 2a,c). As a consequence of secondary growth, the epidermis is replaced by a periderm (bark), which forms the outermost tissue (Fig. 2a–c). Petioles have a similar anatomical structure as that of young stems but do not usually form a periderm (Fig. 2d). Leaves (Fig. 2e,f) are dorsiventral with a narrow palisade mesophyll layer (two to four cells wide) located on the upper side adjacent to the upper epidermis. Spongy mesophyll occupies a large proportion of the leaf blade, extending from the palisade tissues to the lower epidermis. The latter is unusual in that it is composed of very small cells, three to six times smaller than those of the upper epidermis.

Calcium oxalate crystals (mainly in the form of druses and prismatic crystals) occur in the stem and leaf tissues. In the stems they are found in cells of the cortex and phloem (Fig. 2b,f, asterisks), while in leaves they are located within palisade and spongy mesophyll cells (Fig. 2f, asterisks) as well as in the phloem cells of major veins. Osmiophilic (black) deposits (Fig. 2b, arrows) occur in cells of tissues where calcium oxalate crystals form.

Fig. 5 Quantitative elemental maps and anatomical structure of a leaf cross-section of *Phyllanthus balgooyi*. The concentration scale is in wt% DW for nickel (Ni), calcium (Ca), sulphur (S) and phosphorus (P) and µg g⁻¹ DW for cobalt (Co), manganese (Mn), potassium (K) and iron (Fe). Bars, 100 µm.
Elemental distribution in plant tissues of *P. balgooyi*

Phyllanthus balgooyi has very well-developed phloem tissue which has a dark-green colour from the presence of Ni ions. Analysis of stem sections of *P. balgooyi* (Fig. 3; Table 3) showed that the Ni concentration was very high in the phloem, reaching up to 9.4 wt%. The Fe, Co, Cu and Zn distributions mirrored that of Ni, with significant enrichment in the phloem (Cu and Zn maps not shown), but their concentrations were much lower, up to 67 μg g⁻¹ for Fe, 360 μg g⁻¹ for Co and 460 μg g⁻¹ for Zn. Fe was also somewhat enriched in the outer part of the periderm (phellem, 24 μg g⁻¹). Ca had two enrichment areas, the outer periderm (phellem) and phloem. The concentrations in the outer periderm were higher than in the phloem, at 0.34 and 0.28 wt%, respectively. Mn also showed enrichment in the outer periderm and phloem, but at much lower concentrations of 274 μg g⁻¹ and up to 280 μg g⁻¹, respectively. K reached the highest values in the relatively thin inner periderm (phellogen and phelloderm), up to 2.3 wt% (Table 3). Phloem was another tissue where K showed enrichment, although with somewhat lower concentrations, of the order of 0.6–0.8 wt%. S and P had the highest values in the pith, at 0.3 wt% and 350 μg g⁻¹, respectively.

Analysis of the petiole (Fig. 4; Table 4) showed that Ni attained the highest concentrations again in the phloem, reaching up to 10.3 wt%. Some enrichment could be also observed in the epidermis and subepidermis, but the concentrations there did not exceed 0.34 wt%. Mn, Co, Zn (Zn map not shown) and to some extent Fe followed the same distribution pattern as...
Ni and in the phloem attained concentrations of up to 1600 µg g\(^{-1}\) for Mn, 460 µg g\(^{-1}\) for Co, and 620 µg g\(^{-1}\) for Zn. The enrichment of these elements in the epidermis and subepidermis was much lower: 214 µg g\(^{-1}\) for Mn, 24 mg kg\(^{-1}\) for Fe, 12 µg g\(^{-1}\) for Co and 99 mg kg\(^{-1}\) for Zn. Ca showed a very clear enrichment pattern in the epidermis and subepidermis (0.9 wt%). It also showed some enrichment in the phloem, but this did not exceed 0.45 wt%. K, S and Cl were distributed more homogeneously than any of the other elements, but were clearly depleted in the xylem. P showed an enrichment pattern in the primary xylem and parenchyma, with a concentration exceeding 0.7 wt%.

In the leaves, Ni showed a very significant enrichment in the vascular bundles (Figs 5, 6; Table 5), up to 8.9 wt%. Another area of Ni enrichment in the leaves was the upper epidermis, but the concentration there did not exceed 1.3 wt%. Ni concentrations in the lower epidermis and palisade mesophyll were 0.25 wt% and 500 µg g\(^{-1}\), respectively. The lowest Ni concentrations were found in the spongy mesophyll, not exceeding 130 µg g\(^{-1}\). Co was the only element that mirrored the distribution of Ni. It showed enrichment in the vascular bundles but only up to 390 µg g\(^{-1}\), while its concentration in the upper and lower epidermis was 81 and 14 µg g\(^{-1}\), respectively. In the palisade and spongy mesophyll, Co concentrations were below the detection limits. The distribution of Mn was in striking contrast with that of Ni and Co. Although the highest concentrations of this element were in the vascular bundle, exceeding 0.4 wt%, it was also significantly enriched in the spongy mesophyll near to the lower epidermis. K showed a much more homogeneous distribution in the spongy mesophyll than any other element. It attained the highest concentrations in the vascular bundles (>0.7 wt%). Both epidermal regions were K-depleted. P and to a lesser extent S mirrored the distribution of K. Ca showed enrichment in the upper epidermis (5.4 wt%) and palisade mesophyll (3.9 wt%). The lower epidermis was another tissue type with substantial Ca enrichment, where concentrations reached 1.8 wt%.

Discussion

The results of this study show that in *P. balgooyi* Ni has a highly distinctive spatial distribution with extreme levels of accumulation in the vascular tracts (leaves) and phloem bundles (stem and petiole). The phloem tissue of the main stem of *P. balgooyi* is literally green from Ni ions and appears to act as a ‘sink’, with Ni concentrations reaching up to 9.4 wt% (Fig. 3; Table 3), whereas sap exuding from this tissue reached up to 16.9 wt% Ni (Fig. 1; Table 2). This type of Ni distribution is very different from those of all other known Ni hyperaccumulator plants, except for the tree *Pycnandra acuminata* from New Caledonia, which also has an Ni-rich phloem and latex exudate.

In *P. balgooyi*, concentrations attained much higher values (up to 10.3 wt%) in the phloem of the petiole, contrasting strikingly with the adjoining sclerenchyma, where Ni values were an order of magnitude lower (Fig. 4; Table 4). The findings of previous investigations reporting on the elemental distribution in the stems and petioles of Ni hyperaccumulator plants

Table 5 Elemental concentrations (micro-PIXE; µg g\(^{-1}\) DW) in the representative specimens of leaf cross-sections of *Phyllanthus balgooyi* from Sabah (Malaysia)

<table>
<thead>
<tr>
<th>Tissue</th>
<th>P</th>
<th>S</th>
<th>Cl</th>
<th>Ca</th>
<th>Mn</th>
<th>Fe</th>
<th>Co</th>
<th>Ni</th>
<th>Cu</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole area</td>
<td></td>
</tr>
<tr>
<td>Vascular Bundle</td>
<td></td>
</tr>
<tr>
<td>Upper epidermis</td>
<td>1160 ± 40</td>
<td>2080 ± 120</td>
<td>2030 ± 460</td>
<td>2780 ± 410</td>
<td>2214 ± 270</td>
<td>1064 ± 20</td>
<td>4310 ± 80</td>
<td>3950 ± 56</td>
<td>8900 ± 1900</td>
<td>10 ± 4</td>
</tr>
<tr>
<td>Lower epidermis</td>
<td>1160 ± 40</td>
<td>2080 ± 120</td>
<td>2030 ± 460</td>
<td>2780 ± 410</td>
<td>2214 ± 270</td>
<td>1064 ± 20</td>
<td>4310 ± 80</td>
<td>3950 ± 56</td>
<td>8900 ± 1900</td>
<td>10 ± 4</td>
</tr>
<tr>
<td>Lower mesophyll</td>
<td>690 ± 50</td>
<td>1140 ± 70</td>
<td>1150 ± 170</td>
<td>1740 ± 40</td>
<td>17580 ± 210</td>
<td>6691 ± 25</td>
<td>1000 ± 25</td>
<td>112 ± 6</td>
<td>560 ± 89</td>
<td>320 ± 54</td>
</tr>
<tr>
<td>Spongy mesophyll (1)</td>
<td>690 ± 50</td>
<td>1140 ± 70</td>
<td>1150 ± 170</td>
<td>1740 ± 40</td>
<td>17580 ± 210</td>
<td>6691 ± 25</td>
<td>1000 ± 25</td>
<td>112 ± 6</td>
<td>560 ± 89</td>
<td>320 ± 54</td>
</tr>
<tr>
<td>Palisade mesophyll (2)</td>
<td>690 ± 50</td>
<td>1140 ± 70</td>
<td>1150 ± 170</td>
<td>1740 ± 40</td>
<td>17580 ± 210</td>
<td>6691 ± 25</td>
<td>1000 ± 25</td>
<td>112 ± 6</td>
<td>560 ± 89</td>
<td>320 ± 54</td>
</tr>
<tr>
<td>Lower epidermis</td>
<td>1400 ± 40</td>
<td>2400 ± 80</td>
<td>2450 ± 120</td>
<td>3450 ± 140</td>
<td>4450 ± 220</td>
<td>1400 ± 40</td>
<td>5400 ± 160</td>
<td>5400 ± 160</td>
<td>5400 ± 160</td>
<td>5400 ± 160</td>
</tr>
<tr>
<td>Spongy mesophyll (1)</td>
<td>1400 ± 40</td>
<td>2400 ± 80</td>
<td>2450 ± 120</td>
<td>3450 ± 140</td>
<td>4450 ± 220</td>
<td>1400 ± 40</td>
<td>5400 ± 160</td>
<td>5400 ± 160</td>
<td>5400 ± 160</td>
<td>5400 ± 160</td>
</tr>
<tr>
<td>Palisade mesophyll (2)</td>
<td>1400 ± 40</td>
<td>2400 ± 80</td>
<td>2450 ± 120</td>
<td>3450 ± 140</td>
<td>4450 ± 220</td>
<td>1400 ± 40</td>
<td>5400 ± 160</td>
<td>5400 ± 160</td>
<td>5400 ± 160</td>
<td>5400 ± 160</td>
</tr>
</tbody>
</table>

The results were obtained from PIXE spectra extracted from regions representing different morphological structures, and analysed using GeoPIXE software. Numbers in brackets denote individual areas analyzed. Measured values are shown with errors. P, phosphorus; S, sulphur; Cl, chlorine; K, potassium; Ca, calcium; Mn, manganese; Fe, iron; Co, cobalt; Ni, nickel; Cu, copper; Zn, zinc.
(Mesjasz-Przybyłowicz et al., 1994, 1997b,c; Küpper et al., 2001; Bhatia et al., 2004; McNear et al., 2005; Kachenko et al., 2008) are not consistent. Significant Ni enrichment in the phloem has so far only been reported from the stem of *Senecio coronatus* (Mesjasz-Przybyłowicz et al., 1997b).

Ni enrichment in the epidermal parts of leaves (Figs 5, 6; Table 5) and the epidermis and subepidermis of petioles (Fig. 4; Table 4) is a typical distribution pattern encountered in the majority of studied Ni hyperaccumulator plants to date. For example, in *Alyssum bertolonii*, *Alyssum lesbiacum*, *Thlaspi goesingense* (Küpper et al., 2001), *Alyssum murale* (Broadhurst et al., 2004, 2009; Tapper et al., 2007; McNear et al., 2010), *Stackhousia tryoni* (Bhatia et al., 2004), *Stackhousia coronatus*, *Stackhousia anomalochrous* and *Berkheya zeyheri* var. *rogersiana*, Ni was located mainly in the epidermal parts of the leaves (Mesjasz-Przybyłowicz et al., 1994, 1996a,b, 1997a,c, 2001b; Przybyłowicz et al., 1995; Tylko et al., 2007).

In the leaves of *Hybanthus floribundus*, the only woody Ni hyperaccumulator investigated with micro-PIXE to date, Ni was preferentially localized in the upper epidermis (Kachenko et al., 2008). Studies at the cellular level revealed that Ni accumulated in the vacuoles of the epidermal cells (Bidwell et al., 2003). The different Ni spatial distribution reported for *Berkheya coddii*, where significant enrichment of Ni was found in vascular bundles and mesophyll, with the lowest concentration in the epidermis, was noted in the Introduction (Mesjasz-Przybyłowicz & Przybyłowicz, 2003, 2011).

Based on these studies, Ni accumulation in the foliar epidermal cells of Ni accumulator plants appears to be a general worldwide characteristic, with the exception of *B. coddii*. The hypothesis of preferential accumulation of Ni in the epidermis to aid herbivory protection (Boyd & Martens, 1992) would only make sense if symmetrical accumulation takes place in both the upper and lower epidermis, as insect herbivores feed on both sides. Robinson et al. (2003) suggested that preferential accumulation of Ni in the upper epidermis might act as protection for the underlying chlorophyll against ultraviolet radiation. In *P. balgooyi*, the preferential accumulation of Ni in the upper epidermis extending into the spongy mesophyll means that herbivory protection is unlikely, but that it may act as a UV filter.

The very high concentrations in the vascular bundles of *P. balgooyi* leaves are another anomaly among hyperaccumulators. Although similar patterns were reported for *S. tryonii* (Bhatia et al., 2004), *A. murale* (McNear et al., 2005) and *B. coddii* (Mesjasz-Przybyłowicz & Przybyłowicz, 2011), the contrast between concentrations found in the vascular bundles and the adjoining mesophyll has never been reported as extreme as in *P. balgooyi* (Fig. 7).

Although the resolution of micro-PIXE (3 × 3 μm) is not sufficient to resolve true subcellular elemental patterns, the shape of

Fig. 7 Transverse section through a stem with concentrations of potassium (K), calcium (Ca), manganese (Mn), cobalt (Co) and nickel (Ni) (left), and transverse through a leaf section with concentrations of K, Ca, Mn, Co and Ni (right). The approximate anatomical features are noted in the sequence over the transverse.
the Ni distribution combined with the rather sparsely spaced cells in the upper epidermis (Fig. 6) suggests that Ni is present mainly in the vacuoles. This is consistent with the findings of earlier studies, which also hypothesized vacuolar sequestration as the key mechanism in hyperaccumulator plants (Krämer et al., 2000; Küpper et al., 2001; Bidwell et al., 2003). The fact that Ni is water-soluble, as evidenced by the rapid dissolution of the freeze-dried phloem sap of *P. balgooyi* in water, also supports a vacuolar storage mechanism. In many other Ni hyperaccumulator plants, Ni complexes were water-soluble (Robinson et al., 2003; Montargès-Pelletier et al., 2008). Küpper et al. (2001) found a positive correlation between S and Ni in the cells of the hyperaccumulators *A. bertolonii*, *A. lebiamcum* and *T. goeingense* and suggested that complexation with sulphate might be important. A positive correlation between Ni and S was also found in *A. murale* (Broadhurst et al., 2004). However, in *P. balgooyi* the prevailing concentrations of S and P are orders of magnitude lower than Ni and hence neither sulphate nor phosphate is likely to play a significant role in Ni complexation. Moreover, regions of P and S enrichment do not correlate with those of Ni enrichment in the plant tissues of *P. balgooyi*.

In *P. balgooyi*, the distribution of Co mirrored that of Ni, but the distribution of Mn in the leaves differed from that of Ni. By contrast, Broadhurst et al. (2009) showed that in *A. murale* and *A. corsicum* Ni and Mn distributions were strongly spatially correlated and the authors suggested that Ni hyperaccumulation in *Alaysia* species might have evolved from an Mn-handling system. In *P. balgooyi*, there was no gradient of Ni concentrations evident across the leaf axis, as was observed in *B. coddii* (Mesjasz-Przybylowicz et al., 2001b) and *Hybanthus floribundus* subsp. *floribundus* (Kachenko et al., 2008) where Ni concentrations were the highest in the leaf margins and the vascular bundles. Kachenko et al. (2008) suggested that such patterns (Ni preferential accumulation away from the chlorophyll-rich mesophyll cells in the midrib area) could be a mechanism to minimize interference with photosynthesis. In *P. balgooyi*, the structures where Ni is mainly accumulated are directly above the photosynthetically active palisade mesophyll layer of the leaf. Hence, Ni is still spatially separated from metabolically important processes.

The extreme concentration of Ni in the phloem vessels from leaves to stems probably has a significant effect on the osmotic pressure of the sieve elements. According to the ‘pressure flow hypothesis’, phloem loading and unloading of sugars (such as sucrose) creates a diffusion gradient through osmosis. The osmotic potential of 16 wt% Ni-citrate solution in the phloem sap could fulfill the role of osmoticum. Ni hyperaccumulation has previously been hypothesized to act as an osmoticum in plant cells to increase drought tolerance by lowering the water potential (Severne, 1974). Bidwell et al. (2003) found that the accumulation of Ni in the epidermal vacuoles of *Hybanthus floribundus* subsp. *floribundus* was associated with a decrease in the concentrations of K and Na and with an overall decline in cell water potential. *Phyllanthus balgooyi* grows in a tropical wet climate with abundant year-round rainfall, so this seems unlikely in this case, but the link with nutrient acquisition is intriguing and warrants detailed experimental follow-up studies.

Acknowledgements

We wish to thank David Mulligan, Peter Erskine (UQ), Mark Tibbett (University of Reading, UK) and Alan Baker (University of Melbourne, Australia) for their advice and encouragement. We also wish to thank Rimi Repin, Rositti Karim, Sukainib Sumail (Sabah Parks, Malaysia) and Postar Miun (Sabah Forestry Department, Malaysia) for their help and expertise in the field. The assistance of Ms Ewa Przybylowicz with the preparation of the figures is gratefully acknowledged. This research was undertaken at the nuclear microprobe facility of iThemba Laboratory for Accelerator Based Sciences in South Africa.

Author contributions

References

Swenson U, Munzinger J. 2010. Revision of *Pycandra* subgenus *Sebertia* (Sapotaceae) and a generic key to the family in New Caledonia. *Adansonia*, sér. 332: 239–249.

About New Phytologist

- *New Phytologist* is an electronic (online-only) journal owned by the New Phytologist Trust, a not-for-profit organization dedicated to the promotion of plant science, facilitating projects from symposia to free access for our Tansley reviews.

- Regular papers, Letters, Research reviews, Rapid reports and both Modelling/Theory and Methods papers are encouraged. We are committed to rapid processing, from online submission through to publication ‘as ready’ via Early View – our average time to decision is <27 days. There are no page or colour charges and a PDF version will be provided for each article.

- The journal is available online at Wiley Online Library. Visit www.newphytologist.com to search the articles and register for table of contents email alerts.

- If you have any questions, do get in touch with Central Office (np-centraloffice@lancaster.ac.uk) or, if it is more convenient, our USA Office (np-usaoffice@lancaster.ac.uk)

- For submission instructions, subscription and all the latest information visit www.newphytologist.com