Relative contribution of natural productivity and compound feed to tissue growth in blue shrimp (Litopenaeus stylirostris) reared in biofloc: Assessment by C and N stable isotope ratios and effect on key digestive enzymes

Emilie Cardona, Bénédicte Lorgeoux, Claire Geoffroy, Pierre Richard, Denis Saulnier, Yannick Gueguen, Gaël Guillou, Liet Chim

To cite this version:
Emilie Cardona, Bénédicte Lorgeoux, Claire Geoffroy, Pierre Richard, Denis Saulnier, et al.. Relative contribution of natural productivity and compound feed to tissue growth in blue shrimp (Litopenaeus stylirostris) reared in biofloc: Assessment by C and N stable isotope ratios and effect on key digestive enzymes. Aquaculture, Elsevier, 2015, 448, pp.288-297. 10.1016/j.aquaculture.2015.05.035. hal-01259901

HAL Id: hal-01259901
https://hal.archives-ouvertes.fr/hal-01259901
Submitted on 12 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Relative contribution of natural productivity and compound feed to tissue growth in blue shrimp (Litopenaeus stylirostris) reared in biofloc: Assessment by C and N stable isotope ratios and effect on key digestive enzymes

Emilie Cardona a,b,⁎, Bénédicte Lorgeoux a, Claire Geoffroy b, Pierre Richard c, Denis Saulnier a, Yannick Gueguen a,d, Gaël Guillou e, Liet Chim b

a Ifremer, Unité de recherche Ressources Marines, Centre Océanologique du Pacifique B.P. 7004, 98719 Taravao, French Polynesia
b Ifremer, Unité de recherche Lagons, Écosystèmes et aquaculture Durable en Nouvelle-Calédonie B.P. 2059, 98846 Nouméa, New Caledonia
c Ifremer, Unité de recherche Ressources Marines, Centre Océanologique du Pacifique B.P. 7004, 98719 Taravao, French Polynesia
d Ifremer, Unité de recherche Lagons, Écosystèmes et aquaculture Durable en Nouvelle-Calédonie B.P. 2059, 98846 Nouméa, New Caledonia
e Laboratoire littoral, Environnement et Sociétés, UMR 6250 du CNRS-Université de La Rochelle, 2 Rue Olympe de Gouges, 17000 La Rochelle, France

ARTICLE INFO

Article history:
Received 1 February 2015
Received in revised form 22 May 2015
Accepted 23 May 2015
Available online xxxx

Keywords:
Biofloc
Shrimps
Stable isotope
Digestive enzyme activities
Digestive enzyme mRNA level

ABSTRACT

The aim of this study was to assess the relative contribution of natural productivity and compound feed to the growth of the juvenile blue shrimp Litopenaeus stylirostris reared in a biofloc system. Two experiments were carried out based on the same protocol with three treatments: clear water with experimental diet (CW), biofloc with experimental diet (BF) and biofloc unfed (BU). Shrimp survival was significantly higher in biofloc rearing than in CW rearing. The contribution of the biofloc to shrimp diet was estimated through measurement of carbon and nitrogen stable isotope ratios in shrimp and food sources. Different isotopic compositions between feeds were obtained by feeding natural productivity with a mixture rich in fish meal and the shrimps with a pellet containing a high level of soy protein concentrate. Using a two source one-isotope mixing model, we found that the natural productivity of the biofloc system contributed to shrimp growth at a level of 39.8% and 36.9%, for C and N, respectively. The natural food consumed by the shrimps reared in the biofloc system resulted in higher gene expression (mRNA transcript abundance) and activities of two digestive enzymes in their digestive gland: α-amylase and trypsin. The growth of shrimp biomass reared in biofloc was, on average, 4.4 times that of those grown in clear water. Our results confirmed the best survival and promoted growth of shrimps using biofloc technology and highlighted the key role of the biofloc in the nutrition of rearing shrimps.

Statement of relevance

In this study, we have applied an original protocol to determine the respective contribution of natural productivity and artificial feeds on the alimentation of the juvenile blue shrimp L. stylirostris reared in biofloc system by using C and N natural stable isotope analysis. Moreover, we have compared, in shrimp digestive gland, the α-amylase and trypsin enzyme activities at biochemical and molecular levels for two different shrimp rearing systems, biofloc and clear water. In our knowledge, the use of molecular tool to study the influence of biofloc consumption on digest process of shrimp was never carried out. We think that our research is new and important to increase knowledge on biofloc topic.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Biofloc Technology (BFT) is a rearing system with zero or minimal water exchange which provides two critical services: recycling nutrients and maintaining the water quality and excretion, and providing supplementary food particles from biofloc (Avnimelech, 2009; Burford et al., 2004). It is assumed that shrimp can consume the biofloc particles that are considered an important and complementary natural food source, leading to an improvement of the shrimp growth rate (Burford et al., 2004; Epp et al., 2002; Moss and Pruder, 1995; Tacon et al., 2002), and to a better feed efficiency (Browdy et al., 2001; Hargreaves, 2006; Schneider et al., 2005; Wasielesky et al., 2006). Moreover, a few authors have reported that natural productivity stimulates the activity of digestive enzymes (Xu and Pan, 2012; Xu et al., 2013). However, despite evidence for the role of natural productivity in the nutrition of...
shrimps, very few studies have been carried out in order to quantify this role for shrimp reared in BFT (Ray, 2012).

In aquaculture, stable isotope analyses, considered a non-hazardous and non-invasive tool, can be used to estimate the relative contribution of different food sources (Gamboa-Delgado et al., 2008; Phillips and Gregg, 2001). This method has already been used to evaluate the contribution of natural productivity within extensively or semi-intensively reared shrimp in earthen ponds (Anderson et al., 1987; Cam et al., 1991; Parker et al., 1989) and also within net cages (Abreu et al., 2007). However, in a biofloc system, there is a limitation of the stable isotope method because the isotopic value of food sources should be precisely known and the difference between the isotopic signatures of different food sources must be sufficiently marked (Epp et al., 2002). To overcome this limitation, the use of specific diets, especially live feeds, enriched or labelled with very high levels of 13C or 15N, has been applied as an alternative to radiolabels (Avnimelech, 2007; Avnimelech and Kochba, 2009; Burford et al., 2004; Epp et al., 2002). Cam et al. (1991) used natural stable isotopes to investigate the relative contribution of different food sources in an earthen pond system, although this method has the advantage, compared to the enriched isotope method, of integrating measures of ingestion, assimilation and growth over longer time periods under normal feeding and environmental conditions (Le Vay and Gamboa-Delgado, 2011).

The aim of our study, achieved through two complementary experiments, is to assess the relative shares of the natural food from BFT and the compound diet of the juvenile blue shrimp Litopenaeus stylirostris; this assessment was performed by crossing the isotope method by using C and N natural stable isotope analysis with a comparative method because the isotopic value of food sources should be precisely known and the difference between the isotopic signatures of different food sources must be sufficiently marked (Epp et al., 2002). To overcome this limitation, the use of specific diets, especially live feeds, enriched or labelled with very high levels of 13C or 15N, has been applied as an alternative to radiolabels (Avnimelech, 2007; Avnimelech and Kochba, 2009; Burford et al., 2004; Epp et al., 2002). Cam et al. (1991) used natural stable isotopes to investigate the relative contribution of different food sources in an earthen pond system, although this method has the advantage, compared to the enriched isotope method, of integrating measures of ingestion, assimilation and growth over longer time periods under normal feeding and environmental conditions (Le Vay and Gamboa-Delgado, 2011).

The aim of our study, achieved through two complementary experiments, is to assess the relative shares of the natural food from BFT and the compound diet of the juvenile blue shrimp Litopenaeus stylirostris; this assessment was performed by crossing the isotope method by using C and N natural stable isotope analysis with a comparative method because the isotopic value of food sources should be precisely known and the difference between the isotopic signatures of different food sources must be sufficiently marked (Epp et al., 2002). To overcome this limitation, the use of specific diets, especially live feeds, enriched or labelled with very high levels of 13C or 15N, has been applied as an alternative to radiolabels (Avnimelech, 2007; Avnimelech and Kochba, 2009; Burford et al., 2004; Epp et al., 2002). Cam et al. (1991) used natural stable isotopes to investigate the relative contribution of different food sources in an earthen pond system, although this method has the advantage, compared to the enriched isotope method, of integrating measures of ingestion, assimilation and growth over longer time periods under normal feeding and environmental conditions (Le Vay and Gamboa-Delgado, 2011).

The aim of our study, achieved through two complementary experiments, is to assess the relative shares of the natural food from BFT and the compound diet of the juvenile blue shrimp Litopenaeus stylirostris; this assessment was performed by crossing the isotope method by using C and N natural stable isotope analysis with a comparative method because the isotopic value of food sources should be precisely known and the difference between the isotopic signatures of different food sources must be sufficiently marked (Epp et al., 2002). To overcome this limitation, the use of specific diets, especially live feeds, enriched or labelled with very high levels of 13C or 15N, has been applied as an alternative to radiolabels (Avnimelech, 2007; Avnimelech and Kochba, 2009; Burford et al., 2004; Epp et al., 2002). Cam et al. (1991) used natural stable isotopes to investigate the relative contribution of different food sources in an earthen pond system, although this method has the advantage, compared to the enriched isotope method, of integrating measures of ingestion, assimilation and growth over longer time periods under normal feeding and environmental conditions (Le Vay and Gamboa-Delgado, 2011).

The aim of our study, achieved through two complementary experiments, is to assess the relative shares of the natural food from BFT and the compound diet of the juvenile blue shrimp Litopenaeus stylirostris; this assessment was performed by crossing the isotope method by using C and N natural stable isotope analysis with a comparative method because the isotopic value of food sources should be precisely known and the difference between the isotopic signatures of different food sources must be sufficiently marked (Epp et al., 2002). To overcome this limitation, the use of specific diets, especially live feeds, enriched or labelled with very high levels of 13C or 15N, has been applied as an alternative to radiolabels (Avnimelech, 2007; Avnimelech and Kochba, 2009; Burford et al., 2004; Epp et al., 2002). Cam et al. (1991) used natural stable isotopes to investigate the relative contribution of different food sources in an earthen pond system, although this method has the advantage, compared to the enriched isotope method, of integrating measures of ingestion, assimilation and growth over longer time periods under normal feeding and environmental conditions (Le Vay and Gamboa-Delgado, 2011).

2. Material and methods

2.1. Experiment 1: relative dietary share of the compound feed and natural productivity of juvenile shrimp L. stylirostris reared in biofloc rearing technology

2.1.1. Shrimps and acclimatisation tanks

The 30 day-old shrimp post-larvae (L. stylirostris) were obtained from the Ifremer hatchery (Saint-Vincent station, New Caledonia). Prior to experimentation, shrimps underwent an acclimatisation period of two weeks; for this purpose, they were stocked in 4000 L tanks (height: 0.9 m; diameter: 2.7 m) and reared in clear water (100% renewal water per day). The shrimp were fed with commercial feed (SICA© grower40) three times a day.

2.1.2. Biofloc preparation

The biofloc culture was established 30 days before the experiment with adult shrimps (mean weight: 20 g; biomass: 500 g·m$^{-2}$). Shrimp were fed twice a day with commercial shrimp feed (SICA© grower40), and were removed before the beginning of the experiment. Each outdoor tank was continuously aerated with blown air delivered through a stone diffuser and were covered with shade nets to control the sunlight (70% inhibition of light).

2.1.3. Experimental feed

The shrimps were fed an experimental diet formulated with a high level of soy concentrate protein (SCP) as the main source of protein. The diets were produced in the laboratory using the following procedure: the dry ingredients were ground in a grinder (Retsch®) with a 1 mm screen. The meal obtained was mixed with oil and water (30%) in a horizontal mixer (Mainca®) until the consistency was suitable for pelleting. The mixture was then extruded through a 3 mm diameter in a meat grinder to form spaghetti. The spaghetti obtained was then dried in oven (Venticell® 222) at 60 °C until the moisture content was reduced to 10%. After drying, the spaghetti was broken into 2 to 3 mm long pellets. The ingredient compositions of the experimental diet are shown in Table 1.

Table 1

<table>
<thead>
<tr>
<th>Diet ingredients (g·kg$^{-1}$ diet)</th>
<th>Commercial diet (SICA C40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soy protein concentrate</td>
<td>453</td>
</tr>
<tr>
<td>Crab meal</td>
<td>151</td>
</tr>
<tr>
<td>Wheat flour</td>
<td>337</td>
</tr>
<tr>
<td>Soy oil</td>
<td>20.5</td>
</tr>
<tr>
<td>Fish oil</td>
<td>10</td>
</tr>
<tr>
<td>Shrimp vitamin premix (1)</td>
<td>2.5</td>
</tr>
<tr>
<td>Vitamin C (2)</td>
<td>3</td>
</tr>
<tr>
<td>Shrimp trace mineral premix (3)</td>
<td>2.5</td>
</tr>
<tr>
<td>Phosphate</td>
<td>20.5</td>
</tr>
<tr>
<td>Protein</td>
<td>38.9</td>
</tr>
<tr>
<td>Lipids</td>
<td>5.5</td>
</tr>
<tr>
<td>Ash</td>
<td>12.2</td>
</tr>
</tbody>
</table>

2.1.4. Experimental design and sampling

Three treatments were tested for a period of 30 days: 1) clear water + experimental pellet diet (CW); 2) biofloc + experimental pellet diet (BF) and 3) biofloc-unfed (BU). Each of the 12 outdoor circular polyester tanks (capacity: 536 l; height: 0.7 m; diameter: 1.2 m) under a shade net (70% inhibition of light) were randomly assigned to a particular treatment (CW, BF or BU), such that each treatment contained 4 replicate tanks. In our study, the experimental unit is therefore represented by the tank.

Shrimp were caught in acclimatisation tanks (Section 2.1.1) using a cast net, and were then transferred and randomly distributed into the 12 experimental tanks. One hundred individuals (0.24 ± 0.04 g) were placed in each tank (200 shrimps·m$^{-2}$). Each tank was continuously aerated with blown air delivered through a stone diffuser. The water renewal rate was of 300% per day in the CW treatment and 0% in the BF and BU treatments.

In order to obtain different isotopic signatures of two potential dietary sources: biofloc vs. experimental diet, we enriched biofloc with finely ground feed rich in fish meal with a high isotopic signature and fed the shrimp with the pelleted diet with soybeans as the main source of protein with a low isotopic signature. The feed used to enrich the natural productivity of biofloc treatments (BF and BU) was commercial shrimp feed (SICA© grower40) which was finely ground, sifted (<50 μm) and aerated in sea water for 24 h previously to be distributed in the biofloc tanks, to prevent its direct consumption by the shrimps. The daily amount of food in solution (dry matter basis) to enrich biofloc represented 2% of the estimated shrimp biomass. In parallel, and with the exception of the unfed treatment (BU), shrimps were fed ad libitum with the experimental diet (Section 2.1.2). Experimental feed was supplied to shrimps three times a day (07:00 am, 01:00 pm and 05:00 pm) using feeding trays which were checked 2 h after feeding; any unconsumed feed was removed.

Sampling for isotopic analysis by mass spectrometry – shrimp muscle and biofloc were sampled on day 0 and then once a week for the entire duration of the trial (4 times). For each muscle sample, ten shrimps were randomly taken from each of the 12 experimental tanks: the shrimps from each tank were pooled for analysis. Sampled shrimp muscles are rinsed with filtered seawater before being frozen for analysis. Biofloc was filtered through a 100 μm mesh from each biofloc tank,
frozen in liquid nitrogen and kept at −80 °C until analysis (2 g of wet biofloc particles were sampled, approximately). Furthermore, three samples of experimental diet were collected for isotope analysis.

2.1.5. Water quality analysis

Temperature and dissolved oxygen were recorded twice per day (08:00 am and 03:00 pm) with OxyGard Handy Gamma. The pH and salinity were recorded once per day (08:00 am) with a pH metre (Hach Lange HQ 40D) and conductimeter (WTW cond 315i), respectively.

Total ammonia nitrogen (NH₄⁻N) and nitrite-nitrogen (NO₂⁻-N) were analysed twice per week by a fluorimetric method according to Holmes et al. (1999) and a spectrophotometric method according to Bendschneider and Robinson (1952).

Chlorophyll a (Chl a) was determined using a spectrophotometer (Triology Turner Design) at wavelengths of 664 and 750 nm, following the method of Holm-Hansen et al. (1965).

2.1.6. Stable isotope analysis and calculation

2.1.6.1. Analysis. All samples, centrifuged biofloc, shrimps and experimental diet were freeze-dried and ground to a fine homogenous powder using a ball mill (Retsch MM400; Haan, Germany). Samples (0.3 mg DW) packed in tin-capsules were analysed with a continuous flow isotope ratio mass spectrometer (Delta V Advantage IRMS; Thermo Scientific, Bremen, Germany), coupled with an elemental analyser (Flash EA 1112 Thermo Scientific, Milan, Italy). Stable isotope results are presented as differences from universal reference standards (Vienna Pee Dee Belemnite for carbon, and Air N2 for nitrogen) using the following equation:

\[\delta^{13}C_{\text{sample}} = \left(\frac{R_{\text{sample}} - R_{\text{standard}}}{R_{\text{standard}}} \right) \times 1000 \]

where R is the ratio of heavier to light isotope \((^{13}C/^{12}C\) or \(^{15}N/^{14}N\)) of the sample and standard, respectively. Analytical precision based on an internal standard (acetanilide) interspersed among samples is <0.1‰ for C and N. C and N contents of samples were also measured and presented as % by weight.

2.1.6.2. Calculation. When the consuming organism reaches isotopic equilibrium with its diet (at the end of experimentation in our study), a difference in isotope values between the consumer and its diet is usually observed. Indeed, when an animal consumes a food item, that animal typically retains a greater portion of heavy C and N isotopes ally observed. Indeed, when an animal consumes a food item, that animal typically retains a greater portion of heavy C and N isotopes.

To calculate this factor, the equation following was used: \(\Delta (\%) = \delta^{13}C_{\text{issue}} - \delta^{13}C_{\text{diet}} \)

Thus, the relative contribution of the two nutritional sources (biofloc vs. experimental diet) can be determined using a two-source, one-isotope mixing model from Phillips and Gregg (2001). One of the model assumptions is that the consuming organism is in isotopic equilibrium with its diets. After a constant isotope difference between the diet and shrimp was reached, isotope values were corrected for discrimination factors before introduction into the mixing model. This was done by introducing the isotopic profiles of both shrimps fed only natural productivity and formulated feed were significantly different: therefore, according to Fry (2006) and Gamboa-Delgado et al. (2008), in order to calculate the total amount of carbon and nitrogen contributed by each feeding source, the following equation was used:

\[f_{\text{total}} = \frac{f_1 \cdot W_2 (\delta^{13}C_{\text{shrimp}} - \delta^{13}C_{\text{source1}})}{W_1 + f_2 \cdot W_2} \]

where \(f_{\text{total}} \) is the total percent contribution of source 1 in a two source mixing model,

\[f_1 = \frac{\left(\delta^{13}C_{\text{shrimp}} - \delta^{13}C_{\text{source2}} \right)}{\left(\delta^{13}C_{\text{source1}} - \delta^{13}C_{\text{source2}} \right)} \]

\[f_2 = 1 - f_1 \]

\(W_1 \) and \(W_2 \) represent the percent carbon content in each of the two sources.

The calculation procedures for N were the same as those for C.

2.2. Experiment 2: comparing the activity of digestive enzymes of juvenile shrimps L. stylirostris grown in clear water and biofloc

The objective of this experiment was to compare shrimp grown in biofloc or in clear water systems for their α-amylase and trypsin activities and their corresponding transcript abundance.

2.2.1. Shrimps and acclimatisation

The 12 day-old shrimp post-larvae (L. stylirostris) were obtained from the hatchery of the Aquaculture Technical Centre of Tahiti (Vairao, French Polynesia). Prior to experimentation, shrimps underwent an acclimatisation period of two weeks; for this purpose, they were stocked in 25,000 L tanks (height: 1 m; diameter: 5.74 m) and reared in clear water (100% of renewal water rate a day). These shrimps were fed with commercial feed three times a day (SICA© grower40).

2.2.2. Experimental design and sampling

The experimental protocol was similar to that of the first experiment. The difference here was that the animals grown in clear water or in biofloc were fed with commercial feed (SICA© grower40), while biofloc received no specific enrichment. The protocol of the second experiment was as follows: three treatments were tested for a period of 30 days: 1) clear water + commercial pellet (CW); 2) biofloc + commercial pellet (BF) and 3) biofloc-unfed (BU).

The 12 outdoor circular polyester tanks (capacity: 250 L; height: 0.7 m; diameter: 0.8 m) was randomly assigned to a particular treatment (CW, BF or BU), such that each treatment contained 4 replicate tanks. In our study, the experimental unit is therefore represented by a tank.

Shrimps were caught in acclimatisation tanks (Section 2.2.1) using a cast net, transferred and randomly distributed into the 12 experimental tanks. One hundred individuals (0.06 ± 0.02 g) were placed in each outdoor tank (400 shrimps·m⁻²). Each tank was continuously aerated with blown air delivered through a stone diffuser. The water renewal rate was of 300% per day in CW treatment and 0% in BF and BU treatments. The biofloc culture was established in the same manner as in experiment 1 (see Section 2.1.2). Shrimps were fed ad libitum, with the exception of the unfed treatment (BU), with the commercial feed (SICA© grower40). Feed was supplied to shrimp three times a day (07:00 am, 01:00 pm and 05:00 pm).

Shrimp sampling was carried out on the last day (day 30) of the experiment. Digestive glands of shrimps were collected at different times of the day: before feeding (06:00 am), and one and 1 h after feeding (08:00 am and 10:00 am, respectively). During the sampling day, feeding was carried out using a feeding tray which was collected 30 min after the meal and the uncooked food was discarded. At each of the sampling times, three shrimps per tank were caught and directly put in iced sea water (0 °C) to stop the enzyme activity. Only shrimps in intermoult were used. Moulting stages were determined by microscopic examination of antennal scales according to the method of Drach and
Tcheremisovtzeff (1967). Then, the digestive glands (DGs) were removed and each one was separated into two longitudinal parts which were pooled for the 3 shrimps. For molecular analysis, DGs were immediately pooled in RNA later (Sigma Aldrich), refrigerated at 4 °C for 12 h and kept at −80 °C until analysis. For biochemical analysis, DGs were immediately pooled and frozen in liquid nitrogen. A sample of biofloc was obtained by filtering through a 100 μm mesh from each biofloc tank; concentrated biofloc was frozen in liquid nitrogen and kept at −80 °C until analysis.

2.2.3. Water quality analysis
Water quality analysis was carried out in the same manner as experiment 1 (see Section 2.1.5).

2.2.4. Molecular analysis
Total RNA of digestive glands sampled during the second experiment was extracted using Trizol method (Invitrogen, USA) according to the manufacturer’s recommendations. The quantity and quality of each RNA sample were assessed by measuring their absorbance at 260 and 280 nm using a Nanodrop 1000 Spectrophotometer (Thermo Scientific) associated with the ND-1000V3 7.0 software. A DNase treatment to remove residual DNA was carried out using the Ambion DNA free kit, following the manufacturer’s instructions. First-strand cDNA was synthesised with 500 ng total RNA in each reaction system using the Roche transcriptor reverse transcriptase according to the manufacturer’s instructions. Primer ability was been validated when amplification efficiency varied between 90 and 110%.

Primer sets for the amylase (Amy) and trypsin (Try) genes of L. stylirostris were designed by alignment of highly conserved regions from sequences registered for other shrimp species in GenBank (Table 2).

Primers for the amylase (Amy) and trypsin (Try) genes of L. stylirostris were designed by alignment of highly conserved regions from sequences registered for other shrimp species in GenBank (Table 2). Real-time qRT-PCR was carried out on a Stratagene Mx3000P machine (Agilent Technologies) using Brilliant® II SYBR® Green QPCR Master Mix (CAT# 600828 — Agilent Technologies) following the manufacturer’s recommendations. The reaction mixtures were in a volume of 25 μL containing, 12.5 μL SYBR Premix, 10 μL cDNA (diluted 1/100), and 1.25 μL each of the 4 μM forward and reverse primers. After initial denaturation at 95 °C for 10 min, 40 cycles of amplification were carried out starting at 95 °C for 30 s, followed by 45 s at 57 °C, and 45 s at 72 °C, with a final extension at 95 °C for 1 min, 30 s at 55 °C and 95 °C for 30 s.

To determine the RT-PCR efficiencies of each primer pair used, standard curves were generated using five serial dilutions of a pool of one hundred cDNA samples from hepatopancreas. Primer ability was been validated when amplification efficiency varied between 90 and 110%. All analyses were run in duplicate. Relative gene expression levels were normalised to two specific house-keeping genes: Elongation factor 1α and glyceraldehyde-3-phosphate dehydrogenase (GADPH) (Table 2); each value was calculated with reference to CW shrimps before the first meal (relative expression = 1) according to the $2^{-\Delta\Delta C_{T}}$ method (Livak and Schmittgen, 2001).

2.2.5. Biochemical analysis
All of the parameters were determined by biochemical assays with the microplate reader (Biotek®). Prior to analysis, tissue and biofloc particles sampled during the second experiment were homogenised in Tris buffer 10 mM, 1 mM DTPA, pH 7.4. The homogenates were centrifuged at 4000 rpm for 10 min at 4 °C and the supernatants kept at −80 °C until they were analysed.

Proteins were estimated according to Bradford (1976), with bovine serum albumin as the standard. Trypsin was assayed by amidase activity using benzoyl-arginine-p-nitroanilide (BAPNA) as a substrate following the methods of Erlanger et al. (1961) and García-Carreño et al. (1994). Assays were initiated by the addition of sample supernatant, and the release of p-nitroanilide was measured at 410 nm over 15 min. A positive control of 3 mg·mL−1 trypsin (Sigma) was used. One activity unit was expressed as 1 μmol of p-nitroanilide released min−1. The α-amylase activity was assayed by Bernfeld’s (1955) method, using 1% soluble starch (Sigma) as a substrate in phosphate buffer 20 mM, pH 7, and reacting with 3.5-dinitrosalicylic acid. One unit of enzymatic activity was defined as 1 mg of maltose liberated in 15 min at 37 °C. Units of specific enzyme activities were expressed in U·mg of protein−1.

2.3. Statistical analysis
Statistical analysis of the data was carried out using XLSTAT software 2012. Percent data (survival rate) were normalised using an arcsine transformation before analysis. Normality of data distribution and homogeneity of variance were tested for zootechnical, isotopic, gene expression and activity data using the Shapiro–Wilk test and F-test. Zootechnical, gene expression and activity data were normally distributed and variances were homogenous. Hence, the effects of rearing treatments were tested using a one-way analysis of variance. Pairwise comparisons within the three rearing treatments were carried out using Tukey tests. Differences were considered significant at the level $p < 0.05$. Isotopic data were not normally distributed; the effects of rearing treatments were tested using the Kruskal Wallis test. Pairwise comparisons within the three rearing treatments were carried out using Dunn tests. Differences were considered significant at the level $p < 0.05$. Correlations between gene expression and activities data were tested using the critical value table for Spearman’s rank correlation coefficient rho at the 5% alpha level.

3. Results

3.1. Zootechnical results (Table 3)

3.1.1. Experiment 1
Survival rates were significantly different between the 3 treatments with the lowest rate for CW treatment and the highest rates for the biofloc treatments. Compared to CW treatment, the survival rates were 30% and 45% higher in BU and BF treatments, respectively; the BU treatment exhibits an intermediate survival rate. Growth rate, final weight and weight gain follow the same trend as the treatments: we

Table 2

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Sequence 5’-3’</th>
<th>Size</th>
<th>Primer size</th>
<th>Tm</th>
<th>Genbank accession</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trypsin-F</td>
<td>GTGTCGCCGATCGTCTATGCC</td>
<td>95 pb</td>
<td>19</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Trypsin-R</td>
<td>CAGACTCACCTGGCAAGC</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amylase-F</td>
<td>TGGAAATGTCGCTGGACATG</td>
<td>70</td>
<td>19</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Amylase-R</td>
<td>CTCAAGCCTGGCGCAAT</td>
<td>17</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elongation factor 1α-R</td>
<td>GCTTCCGGGTATCAGTCTTTGAT</td>
<td>382 pb</td>
<td>35</td>
<td>60</td>
<td>AY117542</td>
</tr>
<tr>
<td>Elongation factor 1β-F</td>
<td>GCTTCTGCGAAGTGTGAGGC</td>
<td>31</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyceraldehyde-3-phosphate-dehydrogenase-F</td>
<td>CGTTCGCCGCTGATGAT</td>
<td>146 pb</td>
<td>18</td>
<td>59</td>
<td>AY770197</td>
</tr>
<tr>
<td>Glyceraldehyde-3-phosphate-dehydrogenase-R</td>
<td>CGTTCGCCGCGTCAATGAGA</td>
<td>20</td>
<td>55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
observed an increase from CW to BF treatment, with BU treatment being in an intermediate position.

3.1.2. Experiment 2

As for the first experiment, survival rates were significantly different between the 3 treatments with the lowest rate for CW treatment and the highest rates for the biofloc treatments. Compared to CW treatment, the survival rates were 100% and 136% higher in BU and BF treatments, respectively. Growth rate, final weight and weight gain followed the same trend as that observed in the previous experiment with an increase from CW to BF treatment; BU treatment was in an intermediate position. However, the difference between the CW and BF treatments was much more pronounced in experiment 2.

3.2. Water quality analysis

Descriptive statistics of water parameters are given in Table 4. For the two experiments, no difference was observed for pH values, salinity, temperatures or dissolved oxygen concentrations between the treatments. Furthermore, all of the parameters measured were within acceptable ranges for the L. stylirostris shrimp (Della Patrona and Brun, 2008). The concentrations of TAN and NO$_2$-N were maintained at a low level in the BFT system during the rearing period. The biofloc productivity in terms of TSS level was near of 0.3 g·L$^{-1}$ over the course of the experiment for the two experiments. In the BFT tanks, Chlorophyll a values were relatively high, indicating significant primary production.

3.3. δ^{13}C and δ^{15}N values and estimated biofloc contribution in the diet of shrimps

The results presented here are from Experiment 1, in which juvenile shrimps increased their body weight, according to the treatment, by between 250% and 492% (Table 5).

The carbon (C) and nitrogen (N) concentrations and both the δ^{13}C and δ^{15}N values of the two dietary sources, biofloc and experimental diet, are shown in Table 5. The mean C and N concentration and values of δ^{13}C and δ^{15}N obtained for biofloc were similar between the two treatments, BU and BF, but a significant difference was observed between biofloc and experimental diet ($p < 0.0001$).

The evolution of both δ^{13}C and δ^{15}N values in muscle during the experiment are shown in Fig. 1. The lineairisation of the curves for the both isotopic ratios studied δ^{13}C and δ^{15}N is obtained from the 21st day of the experiment. Indeed, no significant differences were found for δ^{13}C and δ^{15}N values between the day 21 and day 28 for the three treatments ($p > 0.05$ for C and N according to the three treatments). This result suggests that the isotopic equilibrium was reached from that point.

The isotopic discrimination factor ($\Delta = \mu$-muscle $− \mu$-diet) calculated for both food sources, experimental diet and biofloc, shows that the dietary source affected the Δ^{13}C with values of 3.69 ± 0.12 and 2.48 ± 0.43 ($p = 0.009$) and Δ^{15}N with values of 5.59 ± 0.19 and 2.77 ± 0.08 ($p = 0.05$), for experimental diet and natural productivity, respectively.

The isotopic mixing model estimates the relative contribution of C and N from natural productivity and formulated feed to tissue growth (see Section 2.1.6). According to the model, 39.8% of the carbon and 36.9% of the nitrogen may have originated from the biofloc. Conversely, carbon and nitrogen from the experimental feed contributed to muscle growth by 60.2% and 63.1%, respectively.

3.4. Comparison of digestive enzyme activities and their gene expression in digestive gland of shrimps from treatments BFT and CW

The results presented here are from Experiment 2. Relative gene expression level and specific enzymatic activity means of three individual values of samplings (before meal, 1 h and 3 h after meal) are shown in Table 6. The relative expression in the digestive gland of shrimps from BF treatment exhibited a significantly higher level for α-amylase ($p < 0.0001$) and for trypsin ($p = 0.03$) compared to both of the other treatments, BU and CW. The same trend was observed for enzymatic activities, where α-amylase and trypsin activities in the digestive gland of shrimps from both biofloc treatments were two-fold higher than for shrimps from CW treatment ($p < 0.0001$ for the both enzymes).

The evolution of digestive activities’ enzyme levels and their relative expression over the course of the feeding trial is shown in Figs. 2 and 3, respectively. Both trypsin (Fig. 2A) and α-amylase (Fig. 2B) activities presented the same trend; they did not change over time for BU and BF treatments ($p > 0.05$), while they increased significantly for CW treatment ($p = 0.006$ for α-amylase; $p = 0.015$ for trypsin) 1 h after feeding, and then returned to the base level 3 h after the meal. Furthermore, a treatment effect was observed: trypsin gene expression level

Table 3

<table>
<thead>
<tr>
<th>Zootechnical parameters</th>
<th>Experiment 1 — treatments</th>
<th>S</th>
<th>Experiment 2 — treatments</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survival rate (%)</td>
<td>CW</td>
<td>BU</td>
<td>BF</td>
<td>**</td>
</tr>
<tr>
<td>64.20 ± 13.10</td>
<td>83.10 ± 15.00</td>
<td>93.50 ± 13.00</td>
<td>*</td>
<td>42.17 ± 15.35</td>
</tr>
<tr>
<td>Growth rate (g·wk$^{-1}$)</td>
<td>0.06 ± 0.01</td>
<td>0.16 ± 0.09</td>
<td>0.22 ± 0.06</td>
<td>**</td>
</tr>
<tr>
<td>Final weight (g)</td>
<td>0.60 ± 0.06</td>
<td>0.93 ± 0.29</td>
<td>1.18 ± 0.34</td>
<td>**</td>
</tr>
<tr>
<td>Weight gain (%)</td>
<td>2.50</td>
<td>3.88</td>
<td>4.02</td>
<td>**</td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Experiment 1</th>
<th></th>
<th>Experiment 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>CW</td>
<td>BU</td>
<td>BF</td>
<td>CW</td>
</tr>
<tr>
<td>Temperature ± SD ($°C$)</td>
<td>25.99 ± 1.19</td>
<td>25.10 ± 1.56</td>
<td>25.16 ± 1.56</td>
<td>24.79 ± 2.32</td>
</tr>
<tr>
<td>DO ± SD (mg·L$^{-1}$)</td>
<td>6.28 ± 0.47</td>
<td>6.57 ± 0.60</td>
<td>6.53 ± 0.43</td>
<td>7.06 ± 0.40</td>
</tr>
<tr>
<td>pH ± SD</td>
<td>8.19 ± 0.04</td>
<td>7.99 ± 0.08</td>
<td>7.90 ± 0.10</td>
<td>8.01 ± 0.17</td>
</tr>
<tr>
<td>Salinity ± SD (%)</td>
<td>34.58 ± 0.18</td>
<td>34.22 ± 0.88</td>
<td>34.36 ± 0.98</td>
<td>34.60 ± 0.20</td>
</tr>
<tr>
<td>TAN ± SD (mg·L$^{-1}$)</td>
<td>0.00 ± 0.00</td>
<td>0.04 ± 0.10</td>
<td>0.13 ± 0.27</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>NO$_2$-N ± SD (mg·L$^{-1}$)</td>
<td>0.00 ± 0.00</td>
<td>0.04 ± 0.14</td>
<td>0.09 ± 0.27</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>TSS ± SD (g·L$^{-1}$)</td>
<td>0.02 ± 0.00</td>
<td>0.30 ± 0.04</td>
<td>0.36 ± 0.04</td>
<td>0.02 ± 0.05</td>
</tr>
<tr>
<td>Chla ± SD (μg·L$^{-1}$)</td>
<td>1.03 ± 1.51</td>
<td>133.35 ± 17.98</td>
<td>160.94 ± 52.95</td>
<td>0.98 ± 0.25</td>
</tr>
</tbody>
</table>
different letters in the same column indicate significance. Values are means ± s.d. (n = 4). Stars indicate “significant” differences between treatments (* p < 0.05; ** p < 0.01; *** p < 0.001), n.s. non-significant.

Table 5

<table>
<thead>
<tr>
<th>Treatments</th>
<th>δ¹³C (%ε)</th>
<th>δ¹⁵N (%ε)</th>
<th>C (%)</th>
<th>N (%)</th>
<th>C/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biofloc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BU</td>
<td>a−19.53 ± 0.33</td>
<td>a10.02 ± 1.35</td>
<td>20.44 ± 2.42</td>
<td>3.04 ± 0.60</td>
<td>6.72 ± 0.82</td>
</tr>
<tr>
<td>BF</td>
<td>a−19.74 ± 0.30</td>
<td>a10.21 ± 0.58</td>
<td>20.60 ± 2.21</td>
<td>3.25 ± 0.56</td>
<td>6.34 ± 0.48</td>
</tr>
<tr>
<td>Compound diet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF and CW</td>
<td>b−24.50 ± 0.04</td>
<td>b1.41 ± 0.05</td>
<td>41.08 ± 6.04</td>
<td>6.04 ± 0.08</td>
<td>6.80 ± 0.06</td>
</tr>
<tr>
<td>S</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Different letters in the same column indicate significant differences.

(Fig. 3A) was higher 1 h (p = 0.002) and 3 h (p = 0.04) after the meal for BF treatment compared to BU and CW treatments.

The α-amylase expression level (Fig. 3B) was higher before the meal (p = 0.03) and 3 h after the meal (p = 0.03) for BF treatment compared to the other two treatments. However, no correlation was found between mRNA transcript abundance and digestive enzyme activities (for α-amylase p = 0.525; for trypsin p = 0.101). Finally, in the biofloc fraction we measured significant trypsin and α-amylase activities of 0.06 ± 0.02 U·mg⁻¹ (dry matter basis) and 0.54 ± 0.28 U·mg⁻¹ (dry matter basis), respectively.

4. Discussion

The present study with Litopenaeus stylirostris confirmed the beneficial role of BFT in promoting the growth and survival of reared shrimp, as has been shown by several authors for Litopenaeus vannamei and Penaeus monodon (Burford et al., 2004; Epp et al., 2002; Moss and Prudor, 1995; Tacon et al., 2002). Although the underlying mechanisms of BFT in promoting shrimp growth are largely unknown, it is expected that the beneficial effect of BFT has several interrelated causes.

In this frame, we studied the role of biofloc in the nutrition of shrimp by using natural C and N stable isotope analysis to quantify the biofloc (natural productivity) contribution to the carbon and nitrogen pool used for the growth of juvenile L. stylirostris. The role of biofloc in shrimp nutrition was also assessed by comparing the α-amylase and trypsin enzymes activities at the biochemical and molecular levels, in the digestive gland of shrimp reared in clear water and in biofloc.

The trophic fractionation of isotopes is assumed to be relatively constant: about 3.4‰ per trophic level for nitrogen and 1‰ for carbon (De Niro and Epstein, 1978; Fry and Sherr, 1984; Schroeder, 1983). However, this discrimination factor depends on animal species, development stage, tissues considered, and diet composition (Lochman and Phillips, 1996). Gamboa-Delgado and Le Vay (2008) showed that discriminating factors for N range from 0.8 to 6.6, and for C range from 2.3 to 4.1, according to the inclusion rate of fish meal and soy protein concentrate in the diet for the shrimp. In our study, distinct discriminating factor was found between formulated feed and biofloc. The different dietary assimilation, excretion rate and protein quality of the two dietary sources could explain this difference (Olive et al., 2003; Gamboa-Delgado et al., 2008; Roth and Hobson, 2000; Waddington and MacArthur, 2008). In terms of experimentation, the existing isotopic fractionation between the animal and its food makes difficult the distinction between food sources in closed culture conditions where animals have simultaneous access to different sources of food that may have different discrimination factors. To circumvent this problem, in our study, we separated the treatments with one side using shrimps consuming only biofloc (BU) and the other with shrimps consuming only experimental diet (CW). Moreover, in order to clearly discriminate the isotopic signatures between the two food sources, we based our experimental protocol on the fact that different ingredients in shrimp feeds not only had diverse δ¹³C or δ¹⁵N values but also resulted in different apparent fractionation values (Anderson et al., 1987; Gamboa-Delgado and Le Vay, 2009). Thus, in our protocol, we used fish meal and soy protein concentrate as the main ingredients to feed biofloc and shrimp, respectively; in doing so, we clearly distinguished between the two sources of food for shrimp, allowing us to estimate the discrimination factors for each food source. In these conditions, and based on estimates from a simple two source mixing model, the biofloc or natural productivity, enhanced with finely ground dry feed in solution in water, contributed to shrimp growth at levels of 39.8% and 36.9% for the C and N, respectively.

Few studies in shrimp culture, and only those concerning extensive or semi-intensive farming, have used natural abundance carbon and nitrogen isotopes to estimate C and N contribution from natural productivity to growth of reared animals. Anderson et al. (1987) and Cam et al. (1991) applied the method in shrimp cultured in earthen ponds and showed that pond biota contributed between 53 and 77% and between 13% and 86% to the growth of L. vannamei and Penaeus japonicus, respectively. Nunes et al. (1997) carried out investigations focusing on the analysis of stomach contents and stable carbon isotope ratios and attributed 75% of Penaeus subtilis shrimp growth to naturally occurring food under semi-intensive culture. The studies on the subject conducted in shrimp farmed in biofloc used labelled isotope tracers. Thus, Epp et al.
31% of N and 50% of C assimilated for the growth of *L. vannamei* (average weight of 3.5 g) came from the biofloc productivity. Meanwhile, using the same method, by adding 15N-ammonium to the culture medium, Burford et al. (2004) estimated that N derived from the biofloc was retained at a level of up to 18–29% for 1–9 g of shrimp on total N ingested. Interestingly, Epp et al. (2002) and Burford et al. (2004) produced similar results to ours through a different methodology; differences between results are very likely due to the variability of the nutritional quality of biofloc obtained in different studies. Our results and those of the literature show that the share of natural productivity in the diet of shrimp is higher in extensive/semi-intensive earthen ponds than in biofloc intensive culture. This may be

![Fig. 2. Evolution of trypsin (A) and α-amylase (B) activities over the course of the feeding trial.](image-url)

Table 6

Mean values of α-amylase and trypsin relative expression levels and specific enzymatic activities for the three treatments (experiment 2). $S =$ significance. Values are means ± s.d. (n = 4). Stars indicate “significant” differences between treatment (*$p < 0.05$, **$p < 0.01$, ***$p < 0.001$). n.s. non-significant.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>CW</th>
<th>BU</th>
<th>BF</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative expression level</td>
<td>α-Amylase</td>
<td>α-Amylase</td>
<td>α-Amylase</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$^{a}1.59\pm0.60$</td>
<td>$^{a}1.71\pm0.63$</td>
<td>$^{b}2.64\pm0.77$</td>
<td>***</td>
</tr>
<tr>
<td>Trypsin</td>
<td>$^{a}0.85\pm0.45$</td>
<td>$^{a}0.90\pm0.73$</td>
<td>$^{b}1.46\pm0.84$</td>
<td>*</td>
</tr>
<tr>
<td>Specific enzymatic activities (U·mg of protein$^{-1}$)</td>
<td>α-Amylase</td>
<td>α-Amylase</td>
<td>α-Amylase</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$^{a}10.09\pm4.92$</td>
<td>$^{b}19.27\pm9.38$</td>
<td>$^{b}19.32\pm4.08$</td>
<td>***</td>
</tr>
<tr>
<td>Trypsin</td>
<td>$^{a}2.78\pm1.55$</td>
<td>$^{a}7.99\pm2.85$</td>
<td>$^{b}7.32\pm1.65$</td>
<td>***</td>
</tr>
</tbody>
</table>

Different letters in the same line indicate significant differences.
explained by the higher stocking densities used in BFT which were 50 to 120 shrimps·m$^{-2}$ in the studies of Epp et al. (2002) and Burford et al. (2004) and 200 shrimps·m$^{-2}$ in our study, and between 10 and 20 shrimps·m$^{-2}$ in extensive/semi-intensive earthen pond (Anderson et al., 1987; Cam et al., 1991; Nunes et al., 1997). Furthermore, natural productivity could also be enhanced in earthen ponds where the bottom consists of loose sediment that promotes benthic development (Burford et al., 2004). With limited areas without earthen floors and high densities, the shrimp are forced to rely upon formulated feeds (Epp et al., 2002).

Biochemical studies on digestive enzymes’ activities have mainly focused on the influence of the size of the shrimp (Lovett and Felder, 1990; Van Wormhoudt and Sellos, 1980), its moulting stage (Van Wormhoudt and Favrel, 1988) or the composition of diet (Le Moullac et al., 1997). The few studies focused on the direct influence of feeding on enzyme secretion in crustacean have shown that food intake in crustaceans induced digestive enzyme excretion (Al-Mohanna et al., 1985; Barker and Gibson, 1977; Simon, 2009). Our present study follows that of Xu et al. (2013), who investigated the effects of biofloc on digestive enzyme activities of the white shrimp *L. vannamei*. In our case, we compared the specific digestive enzyme activities and corresponding transcript abundance between shrimps from both biofloc treatments (BU and BF) and clear water (CW). As for Xu et al. (2013), we observed higher amylase (carbohydrase) and trypsin (endoprotease) activities in both biofloc treatments compared to CW treatment. In their study, Moss et al. (2001) showed higher specific activity of most digestive enzymes in *L. vannamei* shrimps reared in a eutrophic pond compared to those reared in well water and hypothesised that this increased activity was due to natural productivity that served as a source of organic substrates. All of these studies converge and show that the natural productivity, regardless of the rearing method (semi-intensive in earthen pond or intensive in biofloc), represents a source of food that is constantly available and

![Fig. 3. Evolution of trypsin (A) and α-amylase (B) relative expression levels over the course of the feeding trial.](image-url)
its consumption by shrimps at any time stimulates the enzyme activities associated with digestion. Conversely, artificial feed is only available at mealtimes and we have actually shown a significant post-prandial increase in enzyme activities in shrimp from the CW treatment (Fig. 3A and B). Another hypothesis involving a contribution of exogenous enzymes from the biofloc consumed by shrimp may also explain the higher enzyme activities observed in animals reared in biofloc. Indeed, we showed that the biofloc particles exhibited significant trypsin and *α*-amylase activities, which may help the digestive function of the shrimp. Our results confirm several previous investigations which have shown relevant extracellular enzymes produced by the microorganisms (bacteria, phytoplankton or zooplankton) from the biofloc, leading to the hypothesis that these exogenous enzymes may provide the shrimp with additional digestible abilities (Harris, 1993; Moss et al., 2001; Xu and Pan, 2012). In addition, exogenous bacteria in shrimp gut might either stimulate endogenous enzymes produced by the host in some way, as has been shown with specific probiotic strains (Castex, 2009; Wang, 2007).

At the level of gene expression of enzymes that were studied here, it appears that shrimp with access to two food sources in the BF treatment presented a higher level of mRNA compared to animals fed with a single dietary source (BU and CW). This result can be explained by the assumption that shrimp from the BF treatment, with access to two dietary sources, ingested more protein and more carbohydrate than shrimps from other treatments. Indeed, several authors have shown that the amount and the nature of dietary protein modulated the transcription and translation of trypsin mRNA (Péres et al., 1998; Wang et al., 2006). For their part, Huvet et al. (2003) showed in *Crassoteras gigas* higher amylase expression in oyster with “high food condition” compared to animals with “low food condition”. In order to explain our results, we therefore hypothesise that a higher amount of nutritive substrate available for the shrimp in treatment BF could modulate the gene expression of *α*-amylase and trypsin enzymes.

5. Conclusion

Our study shows that juvenile shrimp *L. stylirostris* reared in biofloc get 37–40% of their food from the natural productivity, which in turn stimulates digestive enzyme activities; this increased activity may contribute to promote the growth of shrimps reared in biofloc. Concomitantly, we showed that survival rates of the shrimps reared in biofloc were greatly improved; however, the relationship which may exist between the effects of biofloc on nutrition and on survival rate is still unclear and needs further investigation.

Acknowledgements

This study was sponsored by the Government and Southern, Northern and Island Provinces of New-Caledonia and the Management of Marine Resources and Mining of Tahiti. We would like to thank the Technical Centre for Aquaculture of Tahiti for their help during the running of the experiment. Jacques Patross and Marie Madeleine Le Gall for help during the sampling and biochemical analysis, respectively.

References

