On the Calderón problem in periodic cylindrical domain with partial Dirichlet and Neumann data

Abstract : We consider the Calderòn problem in an infinite cylindrical domain, whose cross section is a bounded domain of the plane. We prove log-log stability in the determination of the isotropic periodic conductivity coefficient from partial Dirichlet data and partial Neumann boundary observations of the solution.
Document type :
Journal articles
Liste complète des métadonnées

Cited literature [35 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01259754
Contributor : Yavar Kian <>
Submitted on : Wednesday, January 20, 2016 - 8:27:01 PM
Last modification on : Wednesday, September 12, 2018 - 1:21:02 PM
Document(s) archivé(s) le : Thursday, April 21, 2016 - 11:14:45 AM

File

ell-per-2.3-3.pdf
Files produced by the author(s)

Identifiers

Citation

Mourad Choulli, Yavar Kian, Eric Soccorsi. On the Calderón problem in periodic cylindrical domain with partial Dirichlet and Neumann data. Mathematical Methods in the Applied Sciences, Wiley, 2017, 40 (16), pp.5959-5974. ⟨10.1002/mma.4446⟩. ⟨hal-01259754⟩

Share

Metrics

Record views

427

Files downloads

58