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Abstract—Multi-core processors employ shared Last Level
Caches (LLC). This trend will continue in the future with
large multi-core processors (16 cores and beyond) as well. At
the same time, the associativity of LLC tends to remain in the
order of sixteen. Consequently, with large multicore processors,
the number of cores that share the LLC becomes larger than
the associativity of the cache itself. LLC management policies
have been extensively studied for small scale multi-cores (4 to
8 cores) and associativity degree in the 16 range. However,
the impact of LLC management on large multi-cores is essen-
tially unknown, in particular when the associativity degree is
smaller than the number of cores. In this study, we introduce
Adaptive Discrete and deprioritized Application PrioriTization
(ADAPT), an LLC management policy addressing the large
multi-cores where the LLC associativity degree is smaller than
the number of cores. ADAPT builds on the use of the Footprint-
number metric. We propose a monitoring mechanism that dy-
namically samples cache sets to estimate the Footprint-number
of applications and classifies them into discrete (distinct and
more than two) priority buckets. The cache replacement policy
leverages this classification and assigns priorities to cache
lines of applications during cache replacement operations. We
further find that de-prioritizing certain applications during
cache replacement is beneficial to the overall performance. We
evaluate our proposal on 16, 20 and 24-core multi-programmed
workloads and discuss other aspects in detail.

Keywords-Footprint-number; Discrete Priorities; More cores
than associativity;

I. INTRODUCTION

In multi-core processors, the Last Level Cache (LLC) is
usually shared by all the cores (threads)'. The effect of
inter-thread interference due to sharing has been extensively
studied in small scale multi-core contexts [1]-[9], [11], [12].
However, with advancement in process technology, proces-
sors are evolving towards packaging more cores on a chip.
Future multi-core processors are still expected to share the
last level cache among threads. Consequently, future multi-
cores pose two new challenges. Firstly, the shared cache as-
sociativity is not expected to increase beyond around sixteen
due to energy constraints, though there is an increase in the
number of cores sharing the cache in multi-core processors.
Hence, we are presented with the scenario of managing
shared caches where (#cores > #llc_ways). Secondly, in
large scale multi-core systems, the workload mix typically
consists of applications with very diverse memory demands.

'Without loss of generality, we assume one thread/application per core.

For efficient cache management, the replacement policy
must be aware of such diversity to enforce different priorities
across applications. Moreover, in commercial grid systems,
the computing resources (in particular, memory-hierarchy)
are shared across multiple applications which have different
fairness and performance goals. Either the operating system
or the hypervisor takes responsibility in accomplishing these
goals. Therefore, the hardware must provide scope for the
software to enforce different priorities for the applications?.

Prior studies [1]-[5], [12] have proposed novel approaches
to predict the reuse behavior of applications and, hence their
ability to utilize the cache. The typical approach is to observe
the hits/misses it experiences as a consequence of sharing
the cache and approximate its behavior. This approach fairly
reflects an application’s ability to utilize the cache when the
number of applications sharing the cache is small (2 or 4).
However, we observe that this approach may not necessarily
reflect an application’s ability to utilize the cache when it
is shared by a large number of applications with diverse
memory behaviors. Consequently, this approach leads to
incorrect decisions and cannot be used to enforce different
priorities across applications.

Therefore, a new mechanism that efficiently captures
the application behavior and its ability to utilize the
cache while simultaneously allowing the replacement al-
gorithm to enforce different priorities across applications
is required. Towards this goal, we introduce the metric
Footprint-number.Footprint-number is defined as the number
of unique accesses (cache block addresses) that an applica-
tion generates to a cache set in an interval of time. Since
Footprint-number explicitly approximates the working set
size, and quantifies the application behavior at run-time, it
naturally provides scope for discretely (distinct and more
than fwo priorities) prioritizing applications. We propose
an insertion-priority-prediction algorithm that uses appli-
cation’s Footprint-number to assign priority to the cache
lines of applications during cache replacement (insertion)
operations. Since Footprint-number is computed at run-time,
dynamic changes in the application behavior are also cap-
tured. We further find that probabilistically de-prioritizing
certain applications during cache insertions (that is, not
inserting the cache lines) provides a scalable solution for

2In this paper, we discuss only hardware based solution.



efficient cache management. Altogether, we propose Adap-
tive Discrete and De-prioritized Application PrioriTization
(ADAPT) replacement policy for efficient management of
large multi-core shared caches and make the following
contributions:

eWe consider cache replacement in shared caches in the
context of (#cores > #llc_ways): we find that observing
the hit/miss pattern of applications to approximate their
cache utility is not an efficient approach when the cache
is shared by a large number of applications, and a new
mechanism is required.

eWe propose a new metric Footprint-number to approx-
imate application behavior at run-time and propose an
insertion-priority- prediction algorithm that uses Footprint-
number to assign discrete (more than two) priorities
for applications. Our evaluation across 60 16-core multi-
programmed workloads shows that ADAPT provides 4.7%
improvement over TA-DRRIP algorithm on the weighted
speed-up metric. Further evaluations show that ADAPT is
scalable with respect to the number of applications sharing
the cache and also with larger shared cache sizes.

The remainder of the paper is organized as follows: In
Section 2, we motivate the need for a new cache man-
agement mechanism followed by detailing the proposed
replacement algorithm in Section 3. We describe our experi-
mental setup and evaluation in Sections 4 and 5, respectively.
Related work and the concluding remarks are presented in
Sections 6 and 7, respectively.

II. MOTIVATION

We motivate the need for a new approach to cache
management by (i) demonstrating the inefficient learning
of application behavior in large-scale multi-cores and (ii)
the complexity of other approaches that fairly isolate the
application behavior.

Cache Management in large-scale multi-cores: A typical
approach to approximate an application’s behavior is to
observe the hits and misses it encounters at the cache.
Several prior mechanisms [1]-[3], [5], [12] have used this
approach: the general goal being to assign cache space (not
explicitly but by reuse prediction) to applications that could
utilize the cache better. This approach works well when the
number of applications sharing the cache is small (2 or
4 cores). However, such an approach becomes suboptimal
when the cache is shared by a large number of applications.
We explain with set-dueling [4] as an example. Set-dueling:
a randomly chosen pool of sets (Pool A for convenience)
exclusively implements one particular insertion policy for
the cache lines that miss on these sets. While another pool
of sets (Pool B) exclusively implements a different insertion
policy. A saturating counter records the misses incurred by
either of the policies: misses on Pool A increment, while the
misses on Pool B decrement the saturating counter, which
is 10-bit in size. The switching threshold between the two
policies is 512. They observe that choosing as few as 32 sets
per policy is sufficient. Thread-Aware Dynamic ReRefer-
ence Interval Predictions, TA-DRRIP [1] uses set-dueling to

learn between SRRIP and BRRIP insertion policies. SRRIP
handles scan (long sequence of no reuse cache lines) and
mixed (recency-friendly pattern mixing with scan) type of
access patterns, BRRIP handles thrashing (larger working-
set) patterns.

TA-DRRIP learns SRRIP policy for all classes of ap-
plications, including the ones with working-set size larger
than the cache. However, applications with working-set size
larger than the cache cause thrashing when they share the
cache with other (cache-friendly) applications. Based on
this observation, by explicitly preventing thrashing appli-
cations from competing with the non-thrashing (or, cache
friendly) applications for cache space, performance can be
improvement. In other words, implementing BRRIP policy
for these thrashing applications will be beneficial to the
overall performance. Figure la confirms this premise. The
bar labeled TA-DRRIP(forced) is the implementation where
we force BRRIP policy on all the thrashing applications.
Performance is normalized to TA-DRRIP. From the figure,
we observe the latter achieves speed-up close to 2.8 over
the default implementation of TA-DRRIP, which records the
number of misses caused by the competing policies and
making inefficient decisions on application priorities. The
experiments are performed on a 16MB, 16-way associative
cache, which is shared by all sixteen applications. Table III
shows other simulation parameters. Results in Figure 1 are
averaged from all the 60 16-core workloads. Also, from bars
I and 2, we see that the observed behavior of TA-DRRIP
is not dependent on the number of sets dedicated for policy
learning.

Figures 1b and 1c show the MPKIs of individual ap-
plications when thrashing applications are forced to imple-
ment BRRIP insertion policy. For thrashing applications,
there is little change in their MPKIs, except cactusADM.
cactusADM suffers close to 40% increase in its MPKI and
8% reduction in its IPC while other thrashing applications
show a very marginal change in their [IPCs. However, non-
thrashing applications show much improvement in their
MPKIs and IPCs. For example, in Figure lc, art saves up to
72% of its misses (in MPKI) when thrashing applications are
forced to implement BRRIP insertion policy. Thus, thrashing
applications implementing BRRIP as their insertion policy is
beneficial to the overall performance. However, in practice,
TA-DRRIP does not implement BRRIP for thrashing ap-
plications and loses out on the opportunity for performance
improvement. Similarly, SHiP [5] which learns from the hits
and misses of cache lines at the shared cache, suffers from
the same problem. Thus, we infer that observing the hit/miss
results of cache lines to approximate application behavior is
not efficient in the context of large-scale multi-cores.

Complexity in other approaches: On the other hand,
reuse-distance based techniques [33], [35]-[37] explicitly
compute the reuse distance values of cache lines. How-
ever, they involve significant overhead due to storage and
related bookkeeping operations. Further, these techniques
are either dependent on the replacement policy [36], [37] or
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Figure 1: Impact of implementing BRRIP policy for thrashing applications

require modifying the cache tag arrays [33], [35]. Similarly,
cache partitioning techniques [10], [29]-[31] incur signifi-
cant overhead due to larger associative (up to 128/256-way)
tag structures, or require modification to the replacement
policies to adapt to their needs [31] [30]. From these
discussions, we see that a simple, efficient and scalable cache
monitoring mechanism is required. Further, recall that cache
replacement policy in large multi-core processors is required
to be application-aware, and enforce different priorities.
Therefore, an efficient cache management technique must
augment a cache monitoring mechanism that conforms to
the two goals.

III. ADAPTIVE DISCRETE AND DE-PRIORITIZED
APPLICATION PRIORITIZATION

Adaptive Discrete and de-prioritized Application PrioriTi-
zation, ADAPT, consists of two components: (i) the moni-
toring mechanism and (ii) the insertion-priority algorithm.
The first component monitors the cache accesses (block
addresses) of each application and computes its Footprint-
number, while the second component infers the insertion
priority for the cache lines of an application using its
Footprint-number Firstly, we describe the design, operation
and cost of the monitoring mechanism. Then, we describe
in detail the insertion-priority algorithm.

A. Collecting Footprint-number

Definition: Footprint-number of an application is the
number of unique accesses (block addresses) that it generates
to a cache set. However, during execution, an application
may exhibit change in its behavior and hence, we define its
Sliding Footprint-number® as the number of unique accesses
it generates to a set in an interval of time. We define this
interval in terms of the number of misses at the shared last
level cache since only misses trigger new cache blocks to be
allocated. However, sizing of this interval is critical since the
combined misses of all the applications at the shared cache
could influence their individual (sliding) Footprint-number
values. A sufficiently large interval mitigates this effect on
Footprint-number values. To fix the interval size, we perform
experiments with 0.25M, 0.5M, 1M, 2M and 4M interval
sizes. Among, 0.25, 0.5 and 1M misses, 1M gives the best

3However, we just use the term Footprint-number throughout.

results. And, we do not observe any significant difference
in performance between 1M and 4M interval sizes. Further,
1 Million misses on average correspond to 64K misses per
application and are roughly four times the total number of
blocks in the cache, which is sufficiently large. Hence, we
fix the interval size as 1M last level cache misses.

Another point to note is that Footprint-number can only
be computed approximately because (i) cache accesses of an
application are not uniformly distributed across cache sets.
(i1) Tracking all cache sets is impractical. However, a prior
study [6] has shown that the cache behavior of an application
can be approximated by sampling a small number of cache
sets (as few as 32 sets is enough). We use the same idea of
sampling cache sets to approximate Footprint-number. From
experiments, we observe that sampling 40 sets are sufficient.

Design and Operation: Figure 2a shows the block dia-
gram of a cache implementing ADAPT replacement algo-
rithm. In the figure, the blocks shaded with gray are the
additional components required by ADAPT. The test logic
checks if the access (block address) belongs to a monitored
set and if it is a demand access?, and then it passes the access
to the application sampler. The application sampler samples
cache accesses (block addresses) directed to each monitored
set. There is a storage structure and a saturating counter
associated with each monitored set. The storage structure is
essentially an array which operates like a typical tag-array
of a cache set.

First, the cache block address is searched. If the access
does not hit, it means that the cache block is a unigue access.
It is added into the array and the counter, which indicates
the number of unique cache blocks accessed in that set, is
incremented. On a hit, only the recency bits are set to 0. Any
policy can be used to manage replacements. We use SRRIP
policy. All these operations lie outside the critical path and
are independent of the hit/miss activities on the main cache.
Finally, it does not require any change to the cache tag array
except changing the insertion priority.

Example: Figure 2b shows an example of computing
Footprint-number. For simplicity, let us assume we sample
4 cache sets and a single application. In the diagram, each
array belongs to a separate monitored set. An entry in the
array corresponds to the block address that accessed the set.

4Only demand accesses update the recency state
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Figure 2: (a) ADAPT Block Diagram and b) example for
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(b)Example: Footprint-number computation

We approximate Footprint-number by computing the average
from all the sampled sets. In this example, the sum of all
the entries from all the four arrays is 11. And, the average
is 2.75. This is the Footprint-number for the application.
In a multi-core system, there are as many instances of this
component as the number of applications in the system.

B. Footprint-number based Priority assignment

Like prior studies [1], [2], [5], [39], we use 2 bits per
cache line to represent re-reference prediction value (RRPV).
RRPV ’3’ indicates the line will be reused in the distant
future and hence, a cache line with RRPV of 3 is a candidate
for eviction. On hits, only the cache line that hits is promoted
to RRPV 0, indicating that it will be reused immediately.
On insertions, unlike prior studies, we explore the option
of assigning different priorities (up to 4) for applications
leveraging the Footprint-number metric.

We propose an insertion-priority-prediction algorithm that
statically assigns priorities based on the Footprint-number
values. The algorithm assumes that the LLC associativity is
16. However, it still works for larger associative caches as
we show later. Table I summarizes the insertion priorities for
each classification. Experiments are performed by varying
the high-priority range between [0,3] and [0,8] (6 different
ranges), keeping the low-priority range unaffected. Similarly,
by keeping the high-priority range [0,3] constant, we change
the low-priority range between (7,16) to (12,16) (6 different
ranges). In total, from 36 different experiments we fix
the priority-ranges. A dynamic approach that uses run-time
information to assign priorities is more desirable. We defer
this approach to future work. Priority assignments are as
follows:

High Priority: All applications in the Footprint-number
range [0,3] (both included) are assigned high-priority. When
the cache lines of these applications miss, they are inserted
with RRPV 0. Intuition: Applications in this category have
working sets that fits perfectly within the cache. Typically,
the cache lines of these applications have high number of
reuses. Also, when they share the cache, they do not pose
problems to the co-running applications. Hence, they are
given high-priority. Inserting with priority 0 allows the cache

Table I: Insertion Priority Summary
Priority Level | Insertion Value
High (HP) 0
Medium (MP) 1 but 1/16th insertion at LP
Low (LP) 2 but 1/16th at MP
Least (LstP) Bypass but insert 1/32nd at LP

lines of these applications to stay in the cache for longer
periods of time before being evicted.

Medium Priority: All applications in the Footprint-
number range (3,12] (3 excluded and 12 included) are
assigned medium priority. Cache lines of the applications
in this category are inserted with value 1 and rarely inserted
with value 2. Intuition: Applications under this range of
Footprint-number have working set larger than the high-
priority category however, fit within the cache. From anal-
ysis, we observe that the cache lines of these applications
generally have moderate reuse except few applications. To
balance mixed reuse behavior, one out of the sixteenth
insertion goes to low priority 2, while inserted with medium
priority 1, otherwise.

Low Priority: Applications in the Footprint-number
range (12,16) are assigned low priority. Cache lines of
these applications are generally inserted with RRPV 2 and
rarely with medium priority 1 (1 out of 16 cache lines).
Intuition: Applications in this category typically have mixed
access patterns : ({al,a2}*{s1, s2,s3..sn}?) with k and d
sufficiently small and & slightly greater than d, as observed
by TA-DRRIP [1]. Inserting the cache lines of these appli-
cations with low priority 2 ensures (i) cache lines exhibiting
low or no reuse at all get filtered out quickly and (ii)
cache lines of these applications have higher probability of
getting evicted than high and medium priority applications®.
Least Priority: Applications with Footprint-number range
(>= 16) are assigned least priority. Only one out of thirty-
two accesses are installed at the last level cache with least
priority 3. Otherwise, they are bypassed to the private Level
2. Intuition: Essentially, these are applications that either
exactly fit in the cache (occupying all sixteen ways) or
with working sets larger than the cache. These applications
are typically memory-intensive and when run along with
others cause thrashing in the cache. Hence, both these type
of applications are candidates for least priority assignment.
The intuition behind bypassing is that when the cache lines
inserted with least priority are intended to be evicted very
soon (potentially without reuse), bypassing these cache lines
will allow the incumbent cache lines to better utilize the
cache. Our experiments confirm this assumption. In fact,
bypassing is not just beneficial to ADAPT. It can be used
as a performance booster for other algorithms, as we show
in the evaluation section.

C. Hardware Overhead

The additional hardware required by our algorithm is the
application sampler and insertion priority prediction logic.

SIt means that transition from 2 to 3 happens quicker than 0 to 3 or 1
to 3 thereby allowing HP and MP applications to stay longer in the cache
than LP applications.



Table II: Cost on 16MB,16-way LLC

[ Policy | Storage cost | N=24 cores |
TA-DRRIP T6-bit/app 48 Bytes
EAF-RRIP 8-bit/address 256KB

SHiP SHCT table&PC 65.875KB
ADAPT 865 Bytes/app 24KB appx

The application sampler consists of an array and a counter.
The size of the array is same as the associativity. From
Section III-B, recall that we assign the same priority(least)
to applications that exactly fit in the cache as well as
the thrashing applications because, on a /6-way associative
cache, both classes of applications will occupy a minimum
of 16 ways. Hence, tracking 16 (tag) addresses per set is
sufficient. The search and insertion operations on the array
are very similar to that of a cache set. The difference is that
we store only the most significant 10 bits per cache block.
Explanation: the probability of two different cache lines
having all the 10 bits same is very low: (1/2%)/(219/2%),
where x is the number of tag bits. That is, 1/ 210 Even
so, there are separate arrays for each monitoring set. Plus,
applications do not share the arrays. Hence, 10 bits are
sufficient to store the tag address. 2 bits per entry are
used for bookkeeping. Additionally, 8 bits are required
for head and tail pointers (4 bits each) to manage search
and insertions. Finally, a 4-bit counter is used to represent
Footprint-number.

Storage overhead per set is 204 bits and we sample 40
sets. Totally, 204 bits x40 = 8160bits. To represent an
application’s Footprint-number and priority, two more bytes
(1 byte each) are needed. To support probabilistic insertions,
three more counters each of size one byte are required.
Therefore, storage requirement per application sampler is
[8160 bits + 40 bits] = 8200bits/application. In other
words, 1KB (approximately) per application.

Table II compares the hardware cost of ADAPT with
others. Though ADAPT requires more storage compared to
TA-DRRIP [1], it provides higher performance improvement
and is better compared to EAF [2] and SHiP [5] in both stor-
age and performance. It should be noted that ADAPT does
not require dedicating some cache sets for policy learning.
Regarding energy consumption, we empirically conjecture
that the monitoring system will consume approximately
1/25"™ of the power of the main cache tag array. (40 sets per
application and 16 applications results in 1/25" of accesses
directed to the monitoring cache).

D. Monitoring in a realistic system:

In the paper, we assume that one thread per core. There-
fore, we can use the core ID for the thread. On an SMT
machine, the thread number/ID would have to be transmitted
with the request from the core for our scheme to work
properly. If an application migrates (on a context-switch)
to another core, the replacement policy applied for that ap-
plication during the next interval will be incorrect. However,
the interval is not long (1Million LLC misses). The correct
Footprint-number and insertion policy will be re-established
in the following monitoring interval onward. In data-centers

or server systems, tasks or applications are not expected to
migrate often. A task migrates only in exceptional cases like
shutdown or, any power/performance related optimization. In
other words, applications execute(spend) sufficient time on a
core for the heuristics to be implemented. Finally, like prior
works [1]-[6], we target systems in which LLC is organized
as multiple banks with uniform access latency.

IV. EXPERIMENTAL STUDY
A. Methodology

For our study, we use BADCO [19] cycle-accurate
x86 CMP simulator. Table IIT shows our baseline system
configuration. We do not enforce inclusion in our cache-
hierarchy and all our caches are write-back caches. LLC is
16MB and organized into 4 banks. We model bank-conflicts,
but with fixed latency for all banks like prior studies [1],
[2], [5].A VPC [7] based arbiter schedules requests from
L2 to LLC. We use DRAM model similar to [2].

Table III: Baseline System Configuration
Processor Model 4-way 000, 128 entry ROB, 36 RS, 36-24
entries LD-ST queue
TAGE, 16-entry RAS
32KB; LRU; next-line
way;D$:8-way; 64 bytes line
256KB,16-way, 64 bytes line, DRRIP, 14-
cycles, 32-entry MSHR and 32-entry retire-
at-24 WB buffer
16MB, 16-way, 64 bytes line, TA-DRRIP,
24 cycles, 256-entry MSHR and 128-entry
retire-at-96 WB buffer
Row-Hit:180 cycles, Row-Conflict:340 cy-
cles, 8 banks,4KB row, XOR-mapped [28]

Branch pred.
IL1 & DL1

prefetch;1$:2-

L2 (unified)

LLC (unified)

Main-Memory
(DDR2)

B. Benchmarks
Table IV: Empirical Classification of Applications

FP-num | L2 MPKI | Memory Intensity
<1 VeryLow (VL)
<16 [1,5) Low (L)
> 5 Medium (M)
<5 Medium (M)
>=16 [5,25) High (H)
> 25 VeryHigh (VH)

We use benchmarks from SPEC 2000 and 2006 and
PARSEC benchmark suites, totaling 36 benchmarks (31
from SPEC and 4 from PARSEC and 1 Stream benchmark).
Table V shows the classification of all the benchmarks
and Table IV shows the empirical method used to classify
memory intensity of a benchmark based on its Footprint-
number and L2-MPKI when run alone on a 16MB, 16-
way set-associative cache. In Table V, the column Fpn(A)
represents Footprint-number value obtained by using all
sets while the column Fpn(S) denotes Footprint-number
computed by sampling. Only vpr shows > 1 difference in
Footprint-number values. Only to report the upper-bound
on the Footprint-numbers, we use 32-entry storage. In our
study, we use only 16-entry array. We use a selective portion
of 500M instructions from each benchmark. We warm-up
all hardware structures during the first 200M instructions



Table V: Benchmark Characteristics

Name | Fpn(A) Fpn(S) L2-MPKI Type || Name | Fpn(A) Fpn(S) L2-MPKI Type || Name | Fpn(A) Fpn(S) L2-MPKI Type
black 7 6.9 0.67 VL vort 8.4 8.6 1.45 L sopl 10.6 11 6.17 M
calc 1.33 1.44 0.05 VL vpr 13.7 14.7 1.53 L twolf 1.7 1.6 16.5 M
craf 2.2 2.4 0.61 VL fsim 10.2 9.6 1.5 L wup 242 24.5 1.34 M
deal 248 2.93 0.5 VL sclust 8.7 8.4 1.75 L apsi 32 32 10.58 H
fmine 6.18 6.12 0.34 VL art 3.39 2.31 26.67 M astar 32 32 4.44 H
h26 2.35 2.53 0.13 VL bzip 4.15 4.03 25.25 M gzip 32 32 8.18 H
nam 2.02 2.11 0.09 VL gap 23.12 23.35 1.28 M libq 29.7 29.6 15.11 H
sphnx 5.2 54 0.35 VL gob 16.8 16.2 1.28 M milc 31.42 30.98 22.31 H
tont 1.6 1.5 0.75 VL hmm 7.15 6.82 2.75 M wrf 32 32 6.6 H
gce 34 32 1.34 L lesl 6.7 6.3 20.92 M cact 32 32 42.11 VH
mesa 8.61 8.41 1.2 L mcf 11.9 12.4 249 M Ibm 32 32 48.46 VH
pben 11.2 10.8 2.34 L omn 4.8 4 6.46 M STRM 32 32 26.18 VH

and simulate the next 300M instructions. If an application
finishes execution, it is re-executed until all applications
finish.

C. Workload Design

Table VI summarizes our workloads. For 4 and 8-core
workloads, we study with 4MB and 8MB shared caches
while 16, 20 and 24-core workloads are studied with a
16MB cache since we target caches where #applications >
#llcassociativity.

Table VI: Workload Design

Study #Workloads Composition #Instructions
4-core 120 Min 1 thrashing 1.2B
8-core 80 Min 1 from each class 2.4B
16-core 60 Min 2 from each class 4.8B
20-core 40 Min 3 from each class 6B
24-core 40 Min 3 from each class 7.2B

V. RESULTS AND ANALYSIS
A. Performance on 16-core workloads

Figure 3 shows performance on the weighted-speedup
metric over the baseline TA-DRRIP and three other state-
of-the-art cache replacement algorithms. We evaluate two
versions of ADAPT: one which inserts all cache lines of
least priority applications (referred as ADAPT_ins) and the
version which mostly bypasses the cache lines of least
priority applications (referred as ADAPT bp32). Our best
performing version is the one that bypasses the cache lines of
thrashing applications. Throughout our discussion, we refer
to ADAPT as the policy that implements bypassing. From
Figure 3, we observe that ADAPT consistently outperforms
other cache replacement policies. It achieves up to 7%
improvement with 4.7% on average.
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Figure 3: Performance of 16-core workloads

As mentioned in Sectionll, with set-dueling, applications
with working-set larger than the cache, implement SRRIP
policy, which causes higher contention and thrashing in
the cache. Similarly, SHiP learns the reuse behavior of
region of cache lines (grouped by their PCs) depending
on the hit/miss behavior. A counter records the hits (in-
dicating near-immediate) and misses (indicating distant)
reuse behavior for the region of cache lines. Since SHiP
implements SRRIP, it observes similar hit/miss pattern as
TA-DRRIP for thrashing applications. Consequently, like
TA-DRRIP, it implements SRRIP for all applications. Only
3% of the misses are predicted to have distant reuse behav-
ior. The marginal drop in performance (1.1%appx) is due
to inaccurate distant predictions on certain cache-friendly
applications. Overall, ADAPT uses Footprint-number metric
to efficiently distinguish across applications.

LRU inserts the cache lines of all applications at MRU
position. However, cache-friendly applications only partially
exploit such longer most-to-least transition time because
the MRU insertions of thrashing applications pollute the
cache. On the other hand, ADAPT efficiently distinguishes
applications. It assigns least priority to thrashing applications
and effectively filter out their cache lines, while inserting
recency-friendly applications with higher priorities, thus
achieving higher performance.

The EAF algorithm filters recently evicted cache ad-
dresses. On a cache miss, if the missing cache line is
present in the filter, the cache line is inserted with near-
immediate reuse (RRPV 2). Otherwise, it is inserted with
distant reuse (RRPV 3). In EAF, the size of the filter
is such that it is able to track as many misses as the
number of blocks in the cache (that is, working-set twice the
cache). Hence, any cache line that is inadvertently evicted
from the cache falls in this filter and gets near-immediate
reuse prediction. Thus, EAF achieves higher performance
compared to TA-DRRIP, LRU and SHiP. Interestingly, EAF
achieves performance comparable to ADAPT_ins. On cer-
tain workloads, it achieves higher performance while on
certain workloads it achieves lesser performance. This is
because, with ADAPT (in general), applications with smaller
Footprint-number are inserted with RRPV 0 or 1. But, when
such applications have poor reuse, EAF (which inserts with
RRPV 2 for such applications) filters out those cache lines.
On the contrary, applications with smaller Footprint-number
but moderate or more number of reuses, gain from ADAPT’s
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Figure 4: MPKI(top) and IPC(below) of thrashing applica-
tions

discrete insertions. Nevertheless, ADAPT (with bypassing)
consistently outperforms EAF algorithm. We observe that
the presence of thrashing applications causes the filter to
get full frequently. As a result EAF is only able to partially
track the application’s (cache lines). On the one hand, some
cache lines of non thrashing (recency-friendly) that spill out
of the filter get assigned a distant (RRPV 3). On the other
hand, cache lines of the thrashing applications that occupy
filter positions get near-immediate (RRPV 2) assignment.

B. Impact on Individual Application Performance

We discuss the impact of ADAPT on individual appli-
cation’s performance. The results are averaged from all
the sixty 16-core workloads. Only applications with change
(>= 3%) in MPKI or IPC are reported. From Figures 4
& 5, we observe that bypassing does not cause slow-down
(except cactusADM) on least priority applications and pro-
vides substantial improvement on high and medium priority
applications. Therefore, our assumption that bypassing most
of the cache lines of the least-priority applications to be
beneficial to the overall performance is confirmed. As we
bypass the cache lines (31/32 times) of the least-priority
applications (instead of inserting), the cache state is not
disturbed most of the times: cache lines which could benefit
from staying in the cache remain longer in the cache without
being removed by cache lines of the thrashing applications.
For most of the applications bypassing provides substantial
improvement in MPKI and IPC, as shown in Figure 5.
Bypassing affects only cactusADM. This is because some of
their cache lines are reused immediately after insertion. For
gzip and lbm, though MPKI increases, they do not suffer
slow-down in IPC. Because, an already memory-intensive
application with high memory-related stall time, which when
further delayed, does not experience much slow-down [20].
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Figure 6: Impact of Bypassing on replacement policies

C. Impact of Bypassing on cache replacement policies

In this section, we show the impact of bypassing distant
priority cache lines instead of inserting them on all re-
placement policies. Since LRU policy inserts all cache lines
with MRU (high) priority, there is no opportunity to imple-
ment bypassing. From Figure 6, we observe that bypassing
achieves higher performance for replacement policies except
SHiP. As mentioned earlier, SHiP predicts distant reuse only
for 3% of the cache lines. Of them, 69% (on average) are
miss-predictions. Hence, there is minor drop in performance.
On the contrary, TA-DRRIP, which implements bi-
modal(BRRIP) on certain cache sets, bypasses the distant
priority insertions directly to the private L2 cache, which is
beneficial. Consequently, it learns BRRIP for the thrashing
applications. Similarly, EAF with bypassing achieves higher
performance. EAF, on average, inserts 93% of its cache lines
with distant reuse prediction providing more opportunities
to bypass. However, we observe that 33% (appx) of distant
reuse predictions are incorrect®. Overall, from Figure 6, we
can make two conclusions: first, our intuition of bypassing
distant reuse cache lines can be applied to other replace-
ment policies. Second, Footprint-number is a reliable metric

©Miss-predictions are accounted by tracking distant priority (RRPV 3)
insertions which are not reused while staying in the cache, but referenced
(within a window of 256 misses per set) after eviction. Here, we do not
account distant priority insertions that are reused while staying in the cache
because such miss-predictions do not cause penalty.



to approximate an application’s behavior: using Footprint-
number, ADAPT distinguishes thrashing applications and
bypasses their cache lines.

D. Scalability with respect to number of applications

In this section, we study how well ADAPT scales with
respect to the number of cores sharing the cache. Figure 8
shows the s-curves of weighted speed-up for 4,8,20 and 24-
core workloads. ADAPT outperforms prior cache replace-
ment policies. For 4-core workloads, ADAPT yields average
performance improvement of 4.8%, and 3.5% for 8-core
workloads. 20 and 24-core workloads achieve 5.8% and
5.9% improvement, on average, respectively. Here, 20 and
24-core workloads are studied on 16MB,16-way associative
cache. Recall our proposition : (#cores > associativity).

E. Sensitivity to Cache Configurations
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Figure 7: Performance on Larger Caches

In this section, we study the impact of ADAPT replace-
ment policy on systems with larger last level caches. In
particular, the goal is to study if Footprint-number based
priority assignment designed for 16-way associative caches
applies to larger associative (> 16) caches as well. For
24MB and 32MB caches, we increase only the associativity
of the cache set from 16 to 24 and 16 to 32, respectively.
Certain applications still exhibit thrashing behaviors even
with larger cache sizes which ADAPT is able to manage
and achieve higher performance on the weighted Speed-up
metric(Figure 7).

F. Other Multi-core Metrics

Table VII shows the performance of ADAPT on the Har-
monic Mean of the Normalized IPCs [41] and the Harmonic,
Geometric and Arithmetic Means of IPCs [27]. ADAPT
shows consistent improvement under other metrics as well.

Table VII: Performance of ADAPT over TA-DRRIP

Metric 4-core 8-core 16-core | 20-core | 24-core
Wt.Speed-up | 5.48% 3.65% | 4.67 % 5.86% 5.79%
Norm. HM 5.34% 431% 6.66% 8.06% 8.35%
GM of IPCs 5.43% 3.98% 5.34% 6.8% 6.95%
HM of IPCs 5.17% 3.94% 5.43% 7.29% 7.77%
AM of TPCs 5.27% 327% | 4.82% 5.85% 5.63%

VI. RELATED WORK

Numerous studies have proposed novel ideas to manage
multi-core shared caches. Here, we summarize some of them
in the context of large-scale multi-core caches.

A. Insertion priority prediction

DIP [4] is one of the foremost proposals to alter the
insertion priority of cache lines. In particular, they observe
applications with working-set size larger than the cache to
thrash under LRU and propose Bimodal policy for such
workloads. DRRIP [1] predicts the reuse behavior of cache
lines into re-reference interval buckets. RRIP consists of
SRRIP and BRRIP policies. SRRIP handles mixed (recency-
friendly pattern mixing with scan) and scan type of access
patterns. BRRIP handles thrashing patterns. SHiP [5] and
EAF [2] add further intelligence to the insertion predic-
tions. SHiP uses Program-counter, Instruction sequence and
Memory region signatures (separate mechanisms) to predict
different priorities (SRRIP or BRRIP) for regions of accesses
corresponding to the signature. EAF further enhances the
prediction granularity to individual cache lines. A filter
decides the SRRIP/BRRIP priority of cache lines based on
its presence/absence in the filter.

All these approaches use only two (SRRIP or BRRIP)
insertion policies. Moreover, as discussed in the motivation
section, they cannot be adapted to enable discrete prioritiza-
tion. On the contrary, ADAPT is able to classify applications
into discrete priority buckets and achieve higher perfor-
mance. SHiP and EAF predict priorities at the granularity
of (regions of) cache lines. However, in commercial designs
[38] [40], which use SW-HW co-designed approach to re-
source management, the system software decides fairness or
performance goals only at an application granularity. Hence,
it is desirable that the cache management also performs
application level performance optimizations.

B. Reuse distance prediction

Some studies [34]-[37] compute the reuse distance values
of cache lines at run-time to perform cache replacements.
Since the reuse distances of cache lines can take wider
range of values, measuring reuse distance at run-time is
typically complex, requires significant storage and modify-
ing the cache tag arrays to store reuse distance values of
cache lines. Schuff et al. [37] proposes a sampling and a
parallel approach to measure the reuse distance of multi-
threaded applications. NUCache [32] propose a novel cache
organization that builds on the idea of delinquent PCs. Cache
is logically partitioned as main-ways and deli-ways.The idea
is to store the cache lines (of delinquent PCs) evicted from
the main-ways into deli-ways and retain the cache lines for
duration beyond their eviction. The drawbacks with their ap-
proach is that caches need to have larger associativity, which
adds significant energy overhead. Secondly, when there are
large number of applications sharing the cache, finding the
optimal set of delinquent PCs across all applications and
assign deli-ways among them becomes complex.

C. Eviction priority prediction

Victim selection techniques try to predict cache lines that
are either dead or very unlikely to be re-used soon [21]-[25].
A recent proposal, application-aware cache replacement
[24] predicts cache lines with very long re-use distance
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Figure 8: Performance of ADAPT with respect to number of applications

using hit-gap counters. Hit-gap is defined as the number of
accesses to a set between two hits to the same cache line.
Precisely, the hit-gap gives the maximum duration for which
the cache line should stay in the cache. On replacements, a
cache line residing around the hit-gap value is evicted. In
large multi-cores, under this approach, certain cache-friendly
applications could get hidden behind the memory-intensive
ones, and suffer more misses. However, ADAPT would be
able to classify such applications and retain their cache lines
for longer time. Further, this policy requires expensive look-
up operations and significant modifications to the cache tag
array.

D. Cache Bypassing

Many studies have proposed bypassing of cache lines
[12]-[14], [17], [18]. All these techniques either completely
bypass or insert all requests. For thrashing applications,
retaining a fraction of the working set is beneficial to the
application [4]. However, in larger multi-cores, such an
approach is not completely beneficial. Inserting cache lines
of thrashing applications with least-priority still pollutes
the cache. Instead, bypassing most of their cache lines is
beneficial both to the thrashing application as well as the
overall performance. As we show in Section V-C, bypassing
least-priority cache lines is beneficial to other replacement
policies as well. Segmented-LRU [12] learns the benefit of
bypassing on randomly selected cache lines by observing the
relative timing of the victim/non-bypassed or retained/by-
passed cache lines. However, observing the hits/misses on
the shared cache is not an efficient way to decide on policies
as they may lead to inefficient decisions. Gaur et al. [16]
propose bypass algorithm for exclusive LLCs. While they
study bypassing of cache blocks based on its L2 use and
L2-LLC trip counts, our bypass decisions are based on
the working-set size of applications. [15] uses data locality
to manage placement of cache lines between Private L1
and Shared L2. Only high locality lines are inserted at L1
while cache lines with low locality are not allocated. The
principal difference from our approach is that they manage
private caches by forcing exclusivity on select data while
we manage shared caches by forcing exclusivity on select
application cache lines.

E. Cache partitioning techniques

Cache partitioning techniques [6]-[8], [10] focus on al-
locating fixed-number of ways per set to competing ap-

plications. Typically, a shadow tag structure (that exploits
stack property of LRU [26]) [6] monitors the application’s
cache utility by using counters to record the number of hits
each recency-position in the LRU stack receives. Essentially,
the counter value indicates the number of misses saved
if that cache way were allocated to that application. The
allocation policy assigns cache ways to applications based
on their relative margin of benefit. While these studies
suffer from scalability with number of cores, some studies
have proposed novel approaches to fine-grained cache par-
titioning [29]-[31] that break the partitioning-associativity
barrier. These mechanism achieve fine-grained (at cache
block level) through adjusting the eviction priorities. Jigsaw
[30] leverages Vantage [31] for the cache hardware, but uses
a novel software cache allocation policy based on the insight
that miss-curves are typically non-convex and this property
provides scope for efficient and a faster allocation algorithm.
PriSM [29] proposes a pool of allocation policies which are
based on the miss-rates and cache occupancies of individual
applications. Essentially, these mechanisms require quite
larger associative caches. For tracking per-application utility,
256-way LRU managed shadow tags are required [30] [31].
Further, these techniques require significant modification
to the existing cache replacement to adapt to their needs.
Contrastingly, ADAPT does not require modifying the cache
states. Only the insertion policies are altered.

VII. SUMMARY AND FUTURE WORK

Future multi-core processors will continue to employ
shared last level caches. However, their associativity is ex-
pected to remain in the order of sixteen consequently posing
two new challenges: (i) the ability to manage more cores
(applications) than associativity and (ii) the replacement
policy must be application aware and allow to discretely
(> 2) prioritize applications. Towards this end we make the
following contributions:
eWe identify that existing approach of observing hit/miss
pattern to approximate applications’ behavior is not efficient.
eWe introduce the Footprint-number metric to dynamically
capture the working-set size of applications. We propose
Adaptive Discrete and de-prioritized Application Priori-
Tization (ADAPT), a new cache replacement algorithm,
which consists of a monitoring mechanism and an insertion-
priority-prediction algorithm. The monitoring mechanism
dynamically captures the Footprint-number of applications



on an interval basis. The prediction algorithm computes in-
sertion priorities for applications from the Footprint-numbers
under the assumption that smaller the Footprint-number, bet-
ter the cache utilization. From experiments we show ADAPT
is efficient and scalable ((#cores > #associativity)).
Commercial processors typically employ mid-level (L2)
cache prefetching. Our present study does not include L2
prefetching. We intend to study large multi-core shared
caches with L2 prefetchers in the future.
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