Persistent Homology analysis of Phase Transitions

Abstract : Persistent homology analysis, a recently developed computational method in algebraic topology, is applied to the study of the phase transitions undergone by the so-called XY-mean field model and by the phi^4 lattice model, respectively. For both models the relationship between phase transitions and the topological properties of certain submanifolds of configuration space are exactly known. It turns out that these a-priori known facts are clearly retrieved by persistent homology analysis of dynamically sampled submanifolds of configuration space.
Type de document :
Article dans une revue
Physical Review E , American Physical Society (APS), 2016, 93 (5), pp.052138 〈10.1103/PhysRevE.93.052138〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01259244
Contributeur : Marco Pettini <>
Soumis le : mercredi 20 janvier 2016 - 10:35:39
Dernière modification le : mercredi 27 juillet 2016 - 14:48:48

Identifiants

Collections

Citation

Irene Donato, Matteo Gori, Marco Pettini, Giovanni Petri, Sarah De Nigris, et al.. Persistent Homology analysis of Phase Transitions. Physical Review E , American Physical Society (APS), 2016, 93 (5), pp.052138 〈10.1103/PhysRevE.93.052138〉. 〈hal-01259244〉

Partager

Métriques

Consultations de la notice

112