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Abstract

We describe the diagonal reduction algebra D(gln) of the Lie algebra gln in the
R-matrix formalism. As a byproduct we present two families of central elements
and the braided bialgebra structure of D(gln).

1 Introduction

Reduction algebras were introduced in [M, AST2] for a study of representations of a Lie
algebra with the help of the restriction to the space of highest weight vectors with respect
to a reductive subalgebra g. In an abstract setting, for an associative algebra A which
contains U(g) as a subalgebra and satisfies certain finiteness conditions, the corresponding
reduction algebra is the double coset (2) equipped with a nontrivial multiplication (3).

This associative multiplication, defined with the help of the extremal projector of
Asherova-Smirnov-Tolstoy [AST], can be also described [K] by means of the so called
universal dynamical twist J . This twist gives rise to a solution of the universal dynamical
Yang–Baxter equation [ABRR].

The diagonal reduction algebra D(g) is a particular case, associated to the diagonal
embedding of U(g) into U(g) ⊗ U(g), of reduction algebras. The algebra D(g) acts in
the space of highest weight vectors of the tensor product of two representations of g,
considered as the representation of g. In [KO2, KO3] we presented a list of ordering
defining relations for natural generators of the diagonal reduction algebra D(gln) of the
Lie algebra gln.

The main goal, proposition 4.1 of this paper, is to relate the algebra D(gln) to the
R-matrix formalism. We exhibit a matrix L of certain generators of the algebra D(gln)
such that the defining relations can be collected into the operator equation usually called
the reflection equation.

To this end we study and use the reduction algebras Diffh(n,N) of algebras of dif-
ferential operators in nN variables, which we call the algebras of h-deformed differential
operators. These reductions were used in [KN] for the representation theory of Yangians.
The algebras Diffh(n,N) are closely related, by means of the generalized Harish-Chandra
isomorphism [KNV], to “relative Yangians” of A. Joseph [J] and “family algebras” of A.
A. Kirillov [Kr].

In Section 3 we introduce a distinguished set of Heisenberg type generators of the
algebras Diffh(n,N) and write down the defining relations for them. It turns out that
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the relations admit the R̂-matrix form, with the well-known solution R̂ of the dynamical
Yang–Baxter equation. Next we exhibit homomorphisms from the diagonal reduction
algebra D(gln) to Diffh(n,N) (h-analogues of the “oscillator representations”), which
lead to the presentation of D(gln) by means of the reflection equation.

The description of the algebra D(gln) as the reflection equation algebra has many
advantages. As an application we find two natural families of central elements of D(gln)
expressed as “quantum” traces of powers of L-operators, see Section 4.2. Also, the R-
matrix formalism reveals the braided bialgebra structure of D(g), see Section 4.3.

The modules over the algebra D(g) and the braided tensor structure on certain cate-
gories of D(g)-modules we study in a forthcoming publication.

2 Reduction algebras

In this section we recall the definition and some basic properties of reduction algebras.
We restrict ourselves to reduction algebras related to general linear Lie algebra gln which
we denote further by g. Let eij , i, j = 1, . . . , n, be the standard generators of the Lie
algebra g, with the commutation relations

[eij , ekl] = δjkeil − δilekj . (1)

We use the notation h and n± for the Cartan and two opposite nilpotent subalgebras
of g; hi denotes the element eii ∈ h, and εi the elements in h∗, so that εi(hj) := δi,j;
hij := hi−hj ∈ h and h̃i := hi− i, h̃ij = h̃i− h̃j are the elements of U(h). We define Ū(h)
to be the ring of fractions of the commutative ring U(h) with respect to the multiplicative
set of denominators, generated by the elements (hij + k)−1, k ∈ Z; and Ū(g) to be the
ring of fractions of the universal enveloping algebra U(g) with respect to the same set of
denominators.

1. Let A be an associative algebra which contains U(g) as a subalgebra, and the adjoint
action of g on A is locally finite. In particular A is a U(g)-bimodule with respect to the
multiplication by elements from U(g) on the left and on the right. Assume in addition
that A is free as the left U(h)-module and the adjoint action of U(h) is semisimple. Let
Ā be the localization Ā = A⊗U(h) Ū(h). The double coset space

Ã := n−Ā\Ā/Ān+ (2)

equipped with a natural associative multiplication ⋄ , see e.g. [KO1] for details, is usually
called the reduction (double coset) algebra. The multiplication ⋄ is described by the
prescription

x ⋄y = xP y , (3)

where P is the extremal projector [AST]. The projector P belongs to a certain extension
of Ū(g), satisfies the properties

xP = P y = 0 for x ∈ n+, y ∈ n−,

P = 1 mod n−Ū(g), P = 1 mod Ū(g)n+, P2 = P .

and can be given by the explicit multiplicative formula [AST]. Alternatively, one can find
representatives x̃ ∈ Ā and ỹ ∈ Ā of coset classes x and y, such that x̃ belongs to the
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normalizer of the left ideal Ān+ , or ỹ belongs to the normalizer of the right ideal n−Ā.
Then x ⋄y is the image in the coset space Ã of the product x̃ · ỹ.

In the sequel the algebra A is free as the left U(g)-module with respect to the multi-
plication by elements of U(g) on the left, and this U(g)-module is generated by a linear
space V , invariant with respect to the adjoint action (which is supposed to be locally fi-
nite) of the Lie algebra g. In this case the reduction algebra is the free left Ū(h)-module,
generated by V , see [Zh, KO1]. Note also that the construction of the double coset space
Ã does not use the multiplication in A but the U(g)-bimodule structure on A only. We
denote sometimes by : x : the image in Ã of the element x ∈ Ā. This notation is useful
to distinguish between the multiplication · in the algebra A and the multiplication ⋄ in
the reduction algebra Ã.

2. The Weyl group of the root system of g is the symmetric group Sn. Let σ1, . . . , σn−1

be the generators of Sn; σi corresponds to the permutation (i, i + 1). The group Sn acts
on vector spaces h∗ and h, so that σi(hj) = hσi(j) and σi(εj) = εσi(j). These actions are
related by λ(σ(h)) = σ−1(λ)(h), σ ∈ Sn, h ∈ h and λ ∈ h∗. The action of Sn on h extends
to the action of a cover S̃n of the group Sn by automorphisms of the Lie algebra g. We
denote by the same symbols σi the following automorphisms of the algebra U(g):

σi(x) := Adexp(ei,i+1)Adexp(−ei+1,i)Adexp(ei,i+1)(x) ,

so that

σi(ekl) = (−1)δik+δileσi(k)σi(l) .

Let ρ = −
∑n

k=1 kεk. Then the shifted action ◦ of the group Sn on the vector space h∗ is
defined by setting

σ ◦ λ := σ(λ+ ρ)− ρ . (4)

With the help of (4) we induce the action ◦ of Sn on the commutative algebra U(h) by
regarding the elements of this algebra as polynomial functions on h∗. We have

σ ◦ h̃k = h̃σ(k) , σ ◦ h̃ij = h̃σ(i)σ(j) .

We also use the following notation for shift automorphisms of the rings U(h) and
Ū(h). For any α ∈ h∗ and any element f ∈ Ū(h) denote by f [α] the image of f under
the shift automorphism Ū(h) → Ū(h), defined by the rule h → h + (α, h). In particular,
hi[εj] = hi + δij .

3. Assume now that the action of S̃n on U(g) extends to the action by automorphisms of
the algebra A. For any i = 1, ..., n− 1 define the map q̌i : A → Ã by

q̌i(x) =
∑

k≥0

(−1)k

k!
êki,i+1 (σi(x)) e

k
i+1,i

k
∏

j=1

(h̃i,i+1 − j)−1 (5)

Here êi,i+1(x) = [ei,i+1, x] is the adjoint action of ei,i+1 on x. The image of the sum
n−A+An+ of the ideals is a subspace of n−Ā+ Ān+, see [Zh], so the formula (5) defines
the map, denoted by the same symbol q̌i : n−A \ A/An+ → Ã. The map q̌i satisfies the
relations

q̌i(hx) = (σi ◦ h)q̌i(x), q̌i(xh) = q̌i(x)(σi ◦ h) (6)
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for any h ∈ U(h) and x ∈ A. The use of (6) extends the map q̌i : n−A \ A/An+ → Ã
to the map q̌i : Ã → Ã. The maps q̌i satisfy the braid group relations [Zh] and are
automorphisms of the reduction algebra Ã, see [KO1].

3 Algebra of h-deformed differential operators

3.1 Reduction of the algebras of differential operators

There is a homomorphism ψ : U(g) → Diff(n) of the algebra U(g) to the algebra of
polynomial differential operators in n variables x1, . . . , xn. The image of eij ∈ U(g) is

ψ(eij) = xi∂j . (7)

Denote by Diffh(n) the reduction algebra of Diff(n)⊗ U(g) with respect to the diagonal
embedding of U(g). We call Diffh(n) algebra of h-deformed differential operators (the
explicit definition, given below, makes it clear that this algebra admits a well-defined
limit h̃ij → ∞ for i < j and h̃1 > h̃2 > · · · > h̃n in which it becomes the usual algebra of
differential operators with polynomial coefficients).

The algebra Diffh(n) is generated over Ū(h) by the classes of xi and ∂j , which we
denote by the same symbols. These elements are subject in Diffh(n) to quadratic-linear
relations over Ū(h), which we now describe.

These relations can be computed directly. However, almost all the required information
can be found in the description of the reduction algebra of U(gln+1) with respect to U(gln)
(this description is a basic step in the derivation of the Gelfand–Tsetlin basis in [Zh]).
Indeed, the generators ei,n+1 and en+1,i, i = 1, . . . , n, of the corresponding double coset
algebra form the bases of the fundamental representation ω and its dual ω∗ with respect
to the adjoint representation of g = gln. The elements xi and ∂i form the same bases of
ω and ω∗, the only difference is that the commutators [ei,n+1, en+1,j] belong to the Cartan
subalgebra of gln+1 while [xi, ∂j] = δij. Thus, by [Zh, 4.5.3], we have

xi ⋄xj = αijx
j
⋄xi, ∂j ⋄∂i = αij∂i ⋄∂j , i < j,

xi ⋄∂j = ∂j ⋄x
i i 6= j,

xi ⋄∂i =
∑

j

βij∂j ⋄x
j + µi.

(8)

Here

αij =
h̃ij + 1

h̃ij
, βij =

1

1− h̃ij

ϕj[εj]

ϕi

with ϕj =
∏

k:k>j

h̃jk

h̃jk − 1
, (9)

and µi are the elements of Ū(h) which are to be determined by another argument.

Lemma 3.1 We have
µi = −ϕ−1

i .

Proof. Note first that µn = −1. Indeed, since ∂n is a highest weight vector with respect
to the adjoint action of U(g) on Diff(n),

xn ⋄∂n =: xn∂n :=: ∂nx
n : −1.
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On the other hand, the products ∂j ⋄x
j are equal to sums

∑

m am : ∂mx
m : with some

am ∈ Ū(h) and do not contain a constant term. Thus µn = −1 = −ϕ−1
n . For the

derivation of other µj we use the Zhelobenko automorphisms q̌i.
It is not difficult to check that

q̌i(x
i) = −xi+1 h̃i,i+1

h̃i,i+1 − 1
, q̌i(x

i+1) = xi, q̌i(x
j) = xj , j 6= i, i+ 1,

q̌i(∂i+1) = ∂i
h̃i,i+1

h̃i,i+1 − 1
, q̌i(∂i) = −∂i+1, q̌i(∂j) = ∂j , j 6= i, i+ 1.

(10)

Now we apply the automorphism q̌n−1 to the already known identity

xn ⋄∂n =
∑

j

βn,j∂j ⋄x
j − 1.

We get the relation

h̃n−1,n

h̃n−1,n − 1
xn−1

⋄∂n−1 =
∑

j

q̌n−1

(

βn,j∂j ⋄x
j
)

− 1.

Taking into account the last line in (8), we rewrite this relation in the form

xn−1
⋄∂n−1 =

∑

j

βn−1,j∂j ⋄x
j −

h̃n−1,n − 1

h̃n−1,n

,

which implies that

µn−1 = −
h̃n−1,n − 1

h̃n−1,n

= −ϕ−1
n−1.

Next we apply q̌n−2 to the identity xn−1
⋄∂n−1 =

∑

j βn−1,j∂j ⋄x
j − ϕ−1

n−1 and find that

µn−2 = −ϕ−1
n−1 and then further µi = −ϕ−1

i for all i. �

The last line in (8) can be now rewritten as

xi ⋄∂i =
∑

j

1

1− h̃ij
∂jϕj ⋄x

jϕ−1
i − ϕ−1

i ,

which suggests the change of variables

∂̄j := ∂jϕj. (11)

In the new variables the relations (8) and (10) look as follows:

xi ⋄xj =
h̃ij + 1

h̃ij
xj ⋄xi, i < j, ∂̄i ⋄ ∂̄j =

h̃ij − 1

h̃ij
∂̄j ⋄ ∂̄i, i < j,

xi ⋄ ∂̄j = ∂̄j ⋄x
i, i < j; xi ⋄ ∂̄j =

h̃ij(h̃ij − 2)

(h̃ij − 1)2
∂̄j ⋄x

i, i > j,

xi ⋄ ∂̄i =
∑

j

1

1− h̃ij
∂̄j ⋄x

j − 1,

(12)
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q̌i(x
i) = −xi+1 h̃i,i+1

h̃i,i+1 − 1
, q̌i(x

i+1) = xi, q̌i(x
j) = xj , j 6= i, i+ 1,

q̌i(∂̄i) = −
h̃i,i+1 − 1

h̃i,i+1

∂̄i+1, q̌i(∂̄i+1) = ∂̄i, q̌i(∂̄j) = ∂̄j , j 6= i, i+ 1.

(13)

We have other sets of Heisenberg type generators in the algebra Diffh(n). Set

ϕ′
j =

∏

k:k<j

h̃jk

h̃jk − 1
, (14)

and put
¯̄∂j := ∂jϕ

′
j
−1
. (15)

Arguments parallel to that of Lemma 3.1 show that

xi ⋄xj =
h̃ij + 1

h̃ij
xj ⋄xi, i < j, ¯̄∂i ⋄

¯̄∂j =
h̃ij − 1

h̃ij

¯̄∂j ⋄
¯̄∂i, i < j,

¯̄∂j ⋄x
i = xi ⋄ ¯̄∂j , i > j, ¯̄∂j ⋄x

i =
h̃ij(h̃ij − 2)

(h̃ij − 1)2
xi ⋄ ¯̄∂j , i < j,

¯̄∂i ⋄x
i =

∑

j

1

1 + h̃ij
xj ⋄ ¯̄∂j + 1.

(16)

and the same as in (13) coefficients in the action of Zhelobenko automorphisms. Alter-
natively, we can leave the variables ∂j unchanged and rescale the variables xj . For the
variables x̄j := ϕjx

j and ∂j we get the relations of the form (12) with the reversed inequal-
ities between i and j in first two lines of the relations (12); for the variables ¯̄xj := ϕ′

j
−1xj

and ∂j we get the relations of the form (16) with the reversed inequalities between i and
j in first two lines of relations (16).

3.2 Polarized form of relations

1. The first line of (12) can be written in the following polarized form:

xi ⋄xj =
1

h̃ij
xi ⋄xj +

h̃2ij − 1

h̃2ij
xj ⋄xi, i < j,

xi ⋄xj =
1

h̃ij
xi ⋄xj + xj ⋄xi, i > j ,

(17)

∂̄i ⋄ ∂̄j = −
1

h̃ij
∂̄i ⋄ ∂̄j +

h̃2ij − 1

h̃2ij
∂̄j ⋄ ∂̄i, i < j,

∂̄i ⋄ ∂̄j = −
1

h̃ij
∂̄i ⋄ ∂̄j + ∂̄j ⋄ ∂̄i, i > j .

(18)

Rewrite (17), (18) and the last two lines in (12) in an operator form2

xi ⋄xj = R̂
ij

klx
k
⋄xl, ∂̄i ⋄ ∂̄j = R̂

lk

ji ∂̄k ⋄ ∂̄l, xi ⋄ ∂̄j = T̂
ik

jl ∂̄k ⋄xl − δij , (19)

2Unless the opposite is stated, we adopt the Einstein convention: if a tensor index appears in an
expression twice, once as an upper index and once as a lower index, the summation over this index is
assumed.
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where R̂
ij

kl and T̂
ik

jl are matrix coefficients of operators R̂, T̂ : Cn ⊗Cn → Ū(h)⊗Cn ⊗Cn.
Their nonzero values are

R̂
ij

ij =
1

h̃ij
, i 6= j, R̂

ij

ji =











h̃2ij − 1

h̃2ij
, i < j,

1, i ≥ j

(20)

T̂
ij

ij = −
1

h̃ij − 1
, i 6= j, T̂

ji

ij =







h̃ij(h̃ij + 2)

(h̃ij + 1)2
, i < j,

1, i ≥ j

(21)

Note the following identity:

T̂
kl

ij [−εl] = R̂
lk

ji. (22)

Similarly, the relations (16) can be presented in an operator form as

xi ⋄xj = R̂
ij

klx
k
⋄xl, ¯̄∂i ⋄

¯̄∂j = R̂
lk

ji
¯̄∂k ⋄

¯̄∂l,
¯̄∂j ⋄x

i = Ŝ
ik

jlx
l
⋄
¯̄∂k + δij , (23)

where the non-zero elements of Ŝ are

Ŝ
ij

ij =
1

h̃ij + 1
, Ŝ

ij

ji =











1 , i > j

h̃ij(h̃ij − 2)

(h̃ij − 1)2
, i < j

(24)

2. The relations in the last two lines of (16) can be obtained in another way, by inverting
the last relation in (19). Let Ψ̂ be the skew inverse to T (see e.g. [O], section 4.1.2 for
details of the R-matrix technique needed here), that is,

Ψ̂ik
jl T̂

lm

kn = δinδ
m
j . (25)

Multiplying the relation

xl ⋄ ∂̄k = T̂
lm

kn∂̄m ⋄xn − δlk

by Ψ̂ik
jl from the left and contracting repeated indices, we get the relation

∂̄j ⋄x
i = Ψ̂ik

jlx
l
⋄ ∂̄k + Ψ̂ik

jk. (26)

The relations (11), (15), and the last two lines of (16) imply that

∂̄i =
¯̄∂i(Q

−
i )

−1 = Q+
i
¯̄∂i, (27)

where

Q±
i =

∏

k:k 6=i

h̃ik ± 1

h̃ik
, Q−

j [εj] Q
+
j = 1 , (28)

and

Ψ̂ij
ij = Q+

i Q−
j

1

h̃ij + 1
, Ψ̂ij

ji =











1 , i < j

(h̃ij − 1)2

h̃ij(h̃ij − 2)
, i > j

(29)
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Comparing (26) and the last line in (16) we conclude that

Ψ̂ik
jk = Q+

i δ
i
j . (30)

Define operators Q± : Cn → Cn by

(Q±)ij = Q±
j δ

i
j .

Then the relation (30) can be rewritten as

Tr2Ψ̂12 = Q+
1 .

Here the lower index specifies the number of the copy of the space Cn in which the
corresponding operator acts nontrivially. For example, Q+

1 stands for the operator Q+

acting in the first copy and Tr2 means the contraction of indices in the second copy.

3.3 Reflection equation and copies

To lighten the notation, in the formulation of statements, the matrix multiplication of
matrices with entries in a reduction algebra is written without the symbol ⋄ (which is
always assumed).

Set L̃
i

j := xi ⋄ ∂̄j ∈ Diffh(n).

Proposition 3.2 The matrix L̃ satisfies the reflection equation

R̂12L̃1
R̂12L̃1

− L̃
1
R̂12L̃1

R̂12 = R̂12L̃1
− L̃

1
R̂12. (31)

Proof. Consider the monomial xi1 ⋄xi2 ⋄ ∂̄j1 ⋄ ∂̄j2. Reorder it in two ways. The first way:

xi1 ⋄xi2 ⋄ ∂̄j1 ⋄ ∂̄j2 = R̂
i1i2

kl x
k
⋄xl ⋄ ∂̄j1 ⋄ ∂̄j2 = R̂

i1i2

kl x
k
⋄ T̂

ln

j1m
∂̄n ⋄xm ⋄ ∂̄j2 − R̂

i1i2

kl δ
l
j1
xk ⋄ ∂̄j2

=
∑

k,l,m,n

R̂
i1i2

kl x
k ◦ ∂̄n ⋄ T̂

ln

j1m
[−εn]x

m
⋄ ∂̄j2 − R̂

i1i2

kj1
xk ⋄ ∂̄j2 = R̂

i1i2

kl L̃
k

n ⋄ R̂
nl

j1m
L̃
m

j2
− R̂

i1i2

kj1
L̃
k

j2
.

The second way of reordering:

xi1 ⋄xi2 ⋄ ∂̄j1 ⋄ ∂̄j2 = xi1 ⋄xi2 ⋄ R̂
mn

j2j1
∂̄n ⋄ ∂̄m

=R̂
mn

j2j1
[−εi1 − εi2 ]x

i1
⋄ T̂

i2t

nk ∂̄t ⋄x
k
⋄ ∂̄m − R̂

mn

j2j1
[−εi1 − εi2 ]δ

i2
n x

i1
⋄ ∂̄m

=R̂
mn

j2j1
[−εi1 − εi2 ]T̂

i2t

nk [−εi1 ]x
i1

⋄ ∂̄t ⋄x
k
⋄ ∂̄m − R̂

mi2

j2j1
[−εi1 − εi2 ]x

i1
⋄ ∂̄m

=
∑

t,k,m,n

xi1 ⋄ ∂̄t ⋄ T̂
i2t

nk [−εt]x
k
⋄ ∂̄mR̂

mn

j2j1
[−εt − εi2 + εk − εm]−

∑

m

xi1 ⋄ ∂̄mR̂
mi2

j2j1
[−εm − εi2 ]

=
∑

t,k,m,n

L̃
i

tT̂
i2t

nk [−εt] ⋄ L̃
k

mR̂
mn

j2j1
[−εt − εi2 + εk − εm]−

∑

m

L̃
i1

mR̂
mi2

j2j1
[−εm − εi2] .

Matrix elements R̂
ij

kl and T̂
ij

kl are nonzero only if i = k and j = l, or i = l and j = k. We
can thus replace the shift by εt + εi2 in the last displayed line with the shift by εn + εk.
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Besides, the matrix coefficient R̂
mn

j2j1
depends only on the difference hn−hm and is invariant

with respect to the shift by εm + εn. Using the relation (22) we rewrite the result as

xi1 ⋄xi2 ⋄ ∂̄j1 ⋄ ∂̄j2 = L̃
i1

t R̂
i2t

kn ⋄ L̃
k

mR̂
mn

j2j1
− L̃

i1

mR̂
mi2

j2j1
(32)

Comparing these two ways, we obtain the equality

R̂
ij

klL̃
k

n ⋄ R̂
nl

msL̃
m

t − R̂
ij

ksL̃
k

t = L̃
i

tR̂
tj

kn ⋄ L̃
k

uR̂
un

ts − L̃
i

uR̂
un

ts ,

that is the relation (31). �

Let now Diff(n,N) be the algebra of differential operators in nN variables xiα, i =
1, . . . , n, α = 1, . . . , N . There is a homomorphism ψN : U(g) → Diff(n,N). The image of
eij ∈ U(g) is

ψ(eij) =
∑

α

xiα∂jα. (33)

Denote by Diffh(n,N) the reduction algebra of Diff(n,N)⊗ U(g) with respect to the
diagonal embedding of U(g). The algebra Diffh(n,N) is generated over Ū(h) by the
classes of all xiα and ∂jβ, which we denote by the same symbols. Denote

∂̄jβ = ∂jβϕj . (34)

The calculations from Sections 3.1 and 3.2 can be repeated for any N . The result is

Proposition 3.3 The elements xiα and ∂̄jβ satisfy the following relations

xiα ⋄xjβ = R̂
ij

klx
kβ

⋄xlα, ∂̄iα ⋄ ∂̄jβ = R̂
lk

ji ∂̄kβ ⋄ ∂̄lα,

xiα ⋄ ∂̄jβ = R̂
ki

lj [εl]∂̄kβ ⋄xlα − δαβ δ
i
j .

(35)

The same proof as that of proposition 3.2 shows that the combinations

L̃
i

j :=
∑

α

xiα ⋄ ∂̄jα (36)

satisfy the same reflection equation. We formulate this assertion in the separate proposi-
tion.

Proposition 3.4 The matrix L̃, defined in (36) satisfies the reflection equation

R̂12L̃1R̂12L̃1 − L̃1R̂12L̃1R̂12 = R̂12L̃1 − L̃1R̂12. (37)

Remark. Equally well one can define the grassmanian version of h-deformed differential
operators, the reduction of the algebra U(g) ⊗ C[ξiα, djβ] where ξ

iα are anti-commuting
variables and djβ grassmanian derivatives in them. The defining relations differ by the
following sign changes:

ξiα ⋄ξjβ = −R̂
ij

klξ
kβ

⋄ξlα, d̄iα ⋄ d̄jβ = −R̂
lk

jid̄kβ ⋄ d̄lα,

ξiα ⋄ d̄jβ = −R̂
ki

lj [εl]d̄kβ ⋄xilα − δαβ δ
i
j .

(38)

Here d̄jβ := djβϕj. Then the operator L̃ with entries

L̃
i

j :=
∑

α

ξiα ⋄ d̄jα

satisfies the same reflection equation (37).
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3.4 R-matrix and its skew inverse

Using the first relation in (35) we can reorder a monomial xiα ⋄xjβ ⋄xkγ, α 6= β 6= γ 6= α,
as a combination of monomials of the form x•γ ⋄x•β ⋄x•α in two ways, as (xiα ⋄xjβ) ⋄xkγ

or as xiα ⋄ (xjβ ⋄xkγ). The ordered products form a basis in the reduction algebra (see
[KO2], section 2) so the two ways of reordering lead to the same result. This implies
certain compatibility conditions for the operator R̂ which are formulated in the following
Proposition.

Proposition 3.5 The operator R̂ is a solution of the dynamical Yang–Baxter equation

∑

a,b,u

R̂
ij

abR̂
bk

ur[−εa]R̂
au

mn =
∑

a,b,u

R̂
jk

ab[−εi]R̂
ia

muR̂
ub

nr[−εm] . (39)

This solution has already appeared several times in different contexts (see e.g. [I, ES] and
references therein).

In addition, the operator R̂ satisfies the relations

R̂
2
= IdCn⊗Cn , (40)

R̂21 = R̂
T
|h̃7→−h̃, (41)

where (R̂21)
ik
jl := R̂

ki

lj and (R̂
T
)ikjl := R̂

jl

ik and

Q+
i [−ǫi] Q

+
k [−ǫi − ǫk] R̂

ik

jl = R̂
ik

jl Q
+
j [−ǫj ] Q

+
l [−ǫj − ǫl] ,

which is an immediate consequence of

Q−
j Q−

i [−ǫj ] = Q−
i Q−

j [−ǫi] .

The operators Ψ̂, Ŝ and R̂ are related by

Ψ̂ik
jl = Q+

i [ǫk − ǫl] Ŝ
ik

jl (Q
+
l )

−1[−ǫl] , (42)

Ŝ
ij

kl = R̂
ij

kl[ǫk] . (43)

By (41), Ψ̂21 = Ψ̂T |h̃7→−h̃ so

Ψ̂am
an = (Ψ̂21)

ma
na = (Ψ̂T |h̃7→−h̃)

ma
na = (Ψ̂|h̃7→−h̃)

na
ma = Q+

n |h̃7→−h̃δ
n
m = Q−

n δ
m
n , (44)

or
Tr1Ψ̂12 = Q−

2 .

It follows from (25) together with (30) and (44) that

∑

a

Q−
a [−ǫm]R̂

ma

na = δmn , (45)

∑

a

Q+
a [ǫm]R̂

am

an = δmn .
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Remark. The reordering of the monomial

(∂̄iα ⋄ ∂̄jβ) ⋄ ∂̄kγ = ∂̄iα ⋄ (∂̄jβ ⋄ ∂̄kγ)

leads to a compatibility condition for the operator R̂ which is equivalent to the same
dynamical Yang–Baxter equation for R̂.

The reordering of any of the monomials

(xiα ⋄xjβ) ⋄ ∂̄kγ = xiα ⋄ (xjβ ⋄ ∂̄kγ),

(xiα ⋄ ∂̄jβ) ⋄ ∂̄kγ = xiα ⋄ (∂̄jβ ⋄ ∂̄kγ),

α 6= β 6= γ 6= α, similarly leads to a compatibility condition for the operator R̂ which (in
each case) now is equivalent to the dynamical Yang–Baxter equation for R̂ together with
the equality (40). The verification of this statement uses the fact that the matrix element
Rij

kl can be nonzero only if i = k and j = l, or i = l and j = k.

4 Diagonal reduction algebra

4.1 R-matrix presentation

The diagonal reduction algebra D(g) is by definition the reduction algebra of A = U(g)⊗

U(g) with respect to the diagonal embedding of U(g). Let e
(1)
ij and e

(2)
ij be the standard

generators eij of the Lie algebra g in the first and the second tensor components. Denote
by sij the generators of the diagonal reduction algebra defined as the images in D(g) of

e
(1)
ij . In other words,

sij = P e
(1)
ij P .

We will also need another set of generators

s′
i
j = P e

(2)
ij P .

The elements sij and s
′i
j are related by

sij + s′
i
j = hiδ

i
j . (46)

In addition to the elements ϕj, defined in (9), we need, for any j = 1, . . . , n, and m > j,
the following elements of Ū(h):

ϕjm =
∏

k:j<k<m

h̃jk

h̃jk − 1
.

The description of the algebraD(g) in terms of generators sij−s
′i
j was given in [KO2, KO3].

Here we suggest another presentation. Let Li
j, i, j = 1, . . . , n, be the following elements

of D(g):

Li
j :=







sijϕj, i 6= j
(

sij −
∑

m:m>i

smm
1

h̃imϕim

)

ϕj, i = j
(47)

The elements Li
j are linear combinations of skl with the triangular transition matrix. Thus

Li
j generate D(g) as the algebra over Ū(h).
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Proposition 4.1 Elements Li
j ∈ D(g) satisfy quadratic-linear relations collected in re-

flection equation
R̂12L1R̂12L1 − L1R̂12L1R̂12 = R̂12L1 − L1R̂12. (48)

The relations (48) form a complete list of defining relations over the field of fractions of
Ū(h).

It is plausible that the relations (48) form a complete list of defining relations over the
ring Ū(h) itself.

Proof of proposition 4.1 is based on the properties of homomorphisms of the diagonal
reduction algebra D(g) to Diffh(n,N) and the proposition 3.4.

Using the map ψ, see (33), we define a homomorphism

ψ1 := ψ ⊗ 1 : U(g)⊗ U(g) → Diff(n,N)⊗ U(g). (49)

The map ψ1 sends the diagonal g to the diagonal g and thus defines the homomorphism

ψ̃1 : D(g) → Diffh(n,N).

Lemma 4.2 The map ψ̃1 sends the generator L
i
j ∈ D(g) to the element L̃

i

j ∈ Diffh(n,N),
(see(36))

ψ̃1(L
i
j) = L̃

i

j .

Proof of proposition 4.1. The statement of proposition 4.1 follows from proposition 3.4,
lemma 4.2 and the injectivity of the map ψ for N ≥ n (consider the map ψ as the
tangent map for the group action GLn ×Matn×N → Matn×N ; for N = n we obtain the
classical isomorphism of U(g) with the ring of right invariant differential operators on
GLn ⊂ Matn×n).

In particular, for N ≥ n the map ψ̃1 is injective on the subspace of D(g), generated
by polynomials in Li

j of degree not bigger than two. This proves that the relations
(48) are satisfied. In [KO2], we presented a complete list of relations for the generators
sij − s′ij of the algebra D(g). These are ordering relations of degree at most two in these
generators. This means, in particular, that the number of linearly independent over
Ū(h) quadratic monomials in these generators equals the number of ordered quadratic
monomials in n2 generators. Since the transition to the generators Li

j has a triangular

form, the relations are of degree at most two on generators Li
j and the number of linearly

independent quadratic monomials in Li
j is as before. Therefore it is left to prove the

completeness of relations (48) in degree at most two. To show this we write the relations
(48) in the form

ZAcµA(h̃) = linear in Li
j terms,

where {ZA} is the set of quadratic monomials in Li
j.

In the asymptotic regime h̃1 > h̃2 > · · · > h̃n and h̃ij → ∞ for i < j these relations
are well defined and become

ZAcµA(∞) = linear in Li
j terms.
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Indeed, in this limit the matrix R̂12 turns into the permutation matrix P12 so the relations
(48) turn into the standard defining relations for the Lie algebra g,

Λ2Λ1 − Λ1Λ2 = P12 (Λ1 − Λ2) .

By general deformation arguments, rk cµA(h̃) ≥ rk cµA(∞). Hence the number of linearly
independent quadratic monomials for generic h̃ is not bigger than that in the limit. But
in both cases, for generic h̃ and asymptotically, this number equals the number of ordered
(for any linear order) quadratic monomials in Li

j . �

Proof of lemma 4.2. Denote by : xiα∂jα : the image of the element xiα∂jα⊗1 ∈ Diff(n,N)⊗

U(g) in the reduction algebra Diffh(n,N). Due to the definitions of elements Li
j , L̃

i

j and
of the map ψ1 it is sufficient to establish the equalities

xiα ⋄ ∂̄jβ =







: xiα∂jβ : ϕj, i 6= j
(

: xiα∂jβ : −
∑

m:m>i

: xmα∂mβ :
1

h̃imϕim

)

ϕj, i = j
(50)

for fixed α and β and then sum them up over α = β = 1, . . . , N . First we note that

xnα ⋄∂iβ =: xnα∂iβ : and xiα ⋄ ∂nβ =: xiα∂nβ : (51)

for any i = 1, . . . , n. This is because xnα and ∂nβ are respectively lowest and highest
weight vectors with respect to the adjoint action of the diagonal U(g):

[xnα, eji] = 0 , [eij , ∂nβ] = 0 for any i < j,

so that xnα P ∂iβ =: xnα∂iβ : and xiα P ∂nβ =: xiα∂nβ : in the double coset space Diffh(n,N).
Next we apply Zhelobenko operator q̌n−1 to both sides of equality

xnα ⋄∂jβ =: xnα∂jβ : , j 6= n− 1, n.

We have, using (10) and homomorphism property of Zhelobenko operators,

q̌n−1(x
nα

⋄∂jβ) = q̌n−1(x
nα)) ⋄ q̌n−1(∂jβ) = xn−1,α

⋄∂jβ, j 6= n− 1, n.

On the other hand, we can apply q̌n−2 to : xn−1,α∂nβ : as to elements of the adjoint
representation of g, see [KO2, eq. (4.5)]

q̌n−1(: x
nα∂jβ) =: xn−1,α∂j,β : .

This implies, due to (51), the equality

xn−1,α
⋄∂jβ =: xn−1,α∂jβ : for j 6= n− 1.

Proceeding further with application of other Zhelobenko automorphisms q̌i we obtain
similarly

xiα ⋄∂jβ =: xiα∂jβ : for i 6= j . (52)

Due to (34) this is equivalent to the first line of (50). For the derivation of the rest
of the relations (50) we employ the action of the Zhelobenko operators on the elements
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: xiα∂iβ : (no sum in i). Note that the sum xiα∂iβ+x
i+1,α∂i+1,β is invariant with respect to

the adjoint action of the sl2-subalgebra generated by eii+1 and ei+1i, while the difference
xi,α∂iβ − xi+1,α∂i+1,β spans the zero weight subspace of the three-dimensional represen-
tation of this sl2-subalgebra, with the highest weight vector xiα∂i+1,β . This implies the
relations

q̌i
(

: xiα∂iβ :
)

= − : xiα∂iβ :
1

h̃i,i+1 − 1
+ : xi+1,α∂i+1,β :

h̃i,i+1

h̃i,i+1 − 1
,

q̌i
(

: xi+1,α∂i+1,β :
)

=: xiα∂iβ :
h̃i,i+1

h̃i,i+1 − 1
− : xi+1,α∂i+1,β :

1

h̃i,i+1 − 1
.

(53)

Besides,
q̌i
(

: xjα∂jβ :
)

=: xjα∂jβ : for j 6= i, i+ 1. (54)

On the other hand, by (10) we have

q̌i
(

xiα ⋄∂iβ
)

= q̌i
(

xiα
)

⋄ q̌i (∂iβ) = xi+1,α h̃i,i+1

h̃i,i+1 − 1
⋄∂i+1,β = xi+1,α

⋄∂i+1,β
h̃i,i+1 + 1

h̃i,i+1

,

q̌i
(

xi+1,α
⋄∂i+1,β

)

= q̌i
(

xi+1,α
)

⋄ q̌i (∂i+1,β) = xi ⋄∂i
h̃i,i+1

h̃i,i+1 − 1
.

(55)

We apply q̌n−1 to both sides of the equality xn ⋄∂n =: xn∂n :. Using (53) and (55) we get

xn−1,α
⋄∂n−1,β

h̃n−1,n

h̃n−1,n − 1
=: xn−1,α∂n−1,β :

h̃n−1,n

h̃n−1,n − 1
− : xnα∂nβ :

1

h̃n−1,n − 1
,

which implies the equality

xn−1,α
⋄∂n−1,β =: xn−1,α∂n−1,β : − : xnα∂nβ :

1

h̃n−1,n

. (56)

Applying q̌n−2 to (56) we get

xn−2,α
⋄∂n−2,β

h̃n−2,n−1

h̃n−2,n−1 − 1
=: xn−2,α∂n−2,β :

h̃n−2,n−1

h̃n−2,n−1 − 1

− : xn−1,α∂n−1,β :
1

h̃n−2,n−1 − 1
− : xnα∂nβ :

1

h̃n−2,n

,

which gives

xn−2,α
⋄∂n−2,β =: xn−2,α∂n−2,β − xn−1,α∂n−1,β

1

h̃n−2,n−1

− xnα∂nβ
h̃n−2,n−1 − 1

h̃n−2,n−1h̃n−2,n

: .

Proceeding further we obtain for any i ≤ n the relation

xiα ⋄∂iβ =: xiα∂iβ : −
∑

m>i

1

h̃imϕim

: xmα∂mβ : (57)

This is precisely the second line of (50). �

Note. Due to the realization Li
j 7→ xiα ⋄ ∂̄jα, the action of the automorphisms q̌i on the

generators Li
j can be directly read off the formulas (13). In particular, the action on the

diagonal generators is standard, q̌i(L
j
j) = L

σi(j)
σi(j)

.
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4.2 Central elements

1. Let Λ be a n × n matrix with noncommutative entries belonging to some Ū(h)-
bimodule, such that the weight of Λi

j equals εi − εj, that is, h̃kΛ
i
j = Λi

j(h̃k + δik − δjk).
Assume that Λ verifies the reflection equation

R̂12Λ1R̂12Λ1 − Λ1R̂12Λ1R̂12 = R̂12Λ1 − Λ1R̂12 .

Proposition 4.3 For any nonnegative integer N the elements tr (ΛN Q−) commute with
Λi

j for all i and j.

This immediately implies

Corollary 4.4 For any nonnegative integer N the elements tr (LN Q−) are central in the
algebra D(g).

Proof of proposition 4.3. The defining relation

(R̂12Λ1R̂12 − R̂12)Λ1 = Λ1(R̂12Λ1R̂12 − R̂12)

implies that
(R̂12Λ1R̂12 − R̂12)Λ

N
1 = ΛN

1 (R̂12Λ1R̂12 − R̂12)

for any non-negative integer N , or, using (40),

Λ1R̂12Λ
N
1 R̂12 − ΛN

1 R̂12 = R̂12Λ
N
1 R̂12Λ1 − R̂12Λ

N
1 . (58)

Let Tr(h)2 be the linear map from the space of tensors Ξi1i2
j1j2

to the space of tensors Υi1
j1

such that
(

Tr(h)2(Ξ)
)i1

j1
= (Q−)uv [−ǫi1 ]Ξ

i1v
j1u

. This is the h-analogue of the R-matrix trace

in the second space. We calculate Tr(h)2 of each term of (58).

• The image of the expression Λ1R̂12Λ
N
1 R̂12 under the map Tr(h)2 is

∑

u,a,b,c,d

Q−
u [−ǫi1 ] Λ

i1
c (ΛN)ab R̂

cu

ad[ǫa − ǫb] R̂
bd

j1u

=
∑

u,a,b,c,d

Λi1
c (ΛN)ab R̂

cu

ad[ǫa − ǫb] R̂
bd

j1u
Q−

u [ǫa − ǫb − ǫc]

which we rewrite, using (25) and (42), as

=
∑

a,b,c

Λi1
c (ΛN)ab Q−

a [ǫa − ǫb] δ
b
a δ

c
j1
= Λi1

j1
Tr (ΛN Q−) .

• The image of R̂12Λ
N
1 R̂12Λ1 is

∑

u,a,b,d,f

(ΛN)ab Q−
u [−ǫi1 + ǫa − ǫb] R̂

i1u

ad [ǫa − ǫb] R̂
bd

fu Λ
f
j1
,

which, using again (25) and (42), equals

=
∑

a,b,f

(ΛN)ab Q
−
a δ

b
a δ

i1
f Λf

j1
= Tr (ΛN Q−) Λi1

j1
.
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• The image of R̂12Λ
N
1 is

∑

u,a

Q−
u [−ǫi1 ]R̂

i1u

au (Λ
N)aj1 .

Thus, by (45), Tr(h)2(R̂12Λ
N
1 ) = ΛN

1 .

• The image of ΛN
1 R̂12 is

∑

u,a

Q−
u [−ǫi1 ] (Λ

N)i1a R̂
au

j1u
= (ΛN)i1a Q−

u [−ǫa] R̂
au

j1u

and we again obtain ΛN
1 .

Combining these calculations we find that the application of the map Tr(h)2 to the relation
(58) gives ΛTr (ΛN Q−) = Tr (ΛN Q−)Λ as stated. �

Notes. 1. Tr (LN Q−) = Tr (Q− LN) since the diagonal elements of LN have weight 0.

2. The reflection equation (48) admits shifts Li
j → Li

j +const · δij.

3. Tr Q+ = Tr Q− = n. Indeed, with the explicit form (29) of the tensor Ψ̂, the
relation (30) is

∑

j

1

1 + h̃ij
Q−

j = 1 for any i .

Write this relation for gln+1, with indices in the range {0, 1, . . . , n}, for i = 0:

n
∏

l=1

h̃0l − 1

h̃0l
+

n
∑

j=1

1

h̃0l
Q−

j = 1

(here Q−
j corresponds to gln). Decomposing into a power series in h̃−1

0 and comparing
coefficients at 1

h̃0

we find Tr Q− = n. Since Q−
a |h̃7→−h̃ = Q+

a , we have Tr Q+ = n as well.

2. The images, in the reduction algebra, of e
(2)
ij satisfy the same relations as the images

of e
(1)
ij . We have therefore another set of generators of D(g)

L′i
j =







s′ijϕj , i 6= j
(

s′ij −
∑

m:m>i

s′mm
1

h̃imϕim

)

ϕj , i = j
(59)

which satisfy the same algebra

R̂12L
′
1R̂12L

′
1 − L′

1R̂12L
′
1R̂12 = R̂12L

′
1 − L′

1R̂12 .

Using (46), one can check that the matrices L and L′ are related by

L′ +L = H .

Here H is the operator Cn → Ū(h)⊗ C
n with matrix coefficients

Hi
j := (h̃j + n)δij .

16



By proposition 4.3, for any nonnegative integer N the elements Tr (L′N Q−) are central in
the algebra D(g).

Substituting into the reflection equation the expression for L′ in terms of L we find

R̂12H1 R̂12H1−H1 R̂12H1 R̂12 = R̂12H1−H1 R̂12 , (60)

R̂12 L1 R̂12 H1+R̂12H1 R̂12 L1−L1 R̂12H1 R̂12 − H1 R̂12 L1 R̂12 = 2R̂12 L1−2 L1 R̂12 .

Note that the latter equality (one can check it directly) holds for any matrix L whose
matrix element Li

j has the weight εi − εj.

Presumably the center is generated by the elements Tr (LN Q−) and Tr (L′N Q−).

Notes. 1. The center of the algebra of h-deformed differential operators is non-trivial. It
is described in [HO].

2. The relation (60) shows that the assignment L → H is a realization of the
reflection equation algebra (48).

4.3 Braided bialgebra structure

Consider the Ū(h)-bimodule D(g)⊗Ū(h) D(g). The elements Mi
j generate the first copy

of D(g) and M̃
i

j generate the second copy. These elements satisfy the relations

R̂12 M1 R̂12M1 −M1 R̂12M1 R̂12 = R̂12M1−M1R12,

R̂12M̃1R̂12M̃1 − M̃1R̂12M̃1R̂12 = R̂12M̃1 − M̃1 R12 .
(61)

We impose the commutation relation

R̂12M1 R̂12M̃1 = M̃1R̂12M1 R̂12 . (62)

By virtue of the dynamical Yang–Baxter equation, with this setting, the Ū(h)-bimodule
D(g)⊗Ū(h) D(g) becomes the associative algebra, which we denote by D(g)⊚D(g).

In other words, D(g)⊚D(g) is the associative algebra over Ū(h), generated by elements

Mi
j and M̃

i

j of weight εi − εj subject to the defining relations (61)–(62). It is isomorphic
to D(g)⊗Ū(h) D(g) as a Ū(h)-bimodule.

Lemma 4.5 The matrix M+M̃ satisfies the reflection equation (48).

Proof. Straightforward. �

Corollary 4.6 The map
L 7→ M+M̃ (63)

is a homomorphism D(g) → D(g)⊚D(g) of algebras.

In a similar fashion we define the product ⊚ of three and more copies of D(g). For

instance, D(g)⊚D(g)⊚D(g) is generated by Mi
j , M̃

i

j and
˜̃Mi

j , with the defining relations
(61)–(62) and, in addition,

R̂12
˜̃M1 R̂12

˜̃M1−
˜̃M1 R̂12

˜̃M1 R̂12 = R̂12
˜̃M1−

˜̃M1R12,

R̂12 M1 R̂12
˜̃M1 =

˜̃M1 R̂12M1 R̂12 , R̂12M̃1R̂12
˜̃M1 =

˜̃M1 R̂12M̃1R̂12.
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The coproduct (63) is clearly coassociative. We have therefore defined the braided bial-
gebra structure on D(g).

The coproduct (63) has a natural interpretation in terms of differential operators.
Divide the interval {1, 2, . . . , N} into two subintervals, {1, 2, . . . , ν} and {ν+1, 2, . . . , N}
for an arbitrary ν, 1 ≤ ν < N . Then M i

j 7→
∑ν

α=1 x
iα

⋄ ∂̄jα and M̃ i
j 7→

∑N
α=ν+1 x

iα
⋄ ∂̄jα is

a realization of the algebra D(g)⊚D(g) while Li
j 7→

∑N
α=1 x

iα
⋄ ∂̄jα is a realization of the

algebra D(g).

Appendix. Basic relations for n = 2

Denote h̃ = h̃12 = h1−h2+1. The defining relations between different copies of generators
in the algebra Diffh(2, 2), see (35), look as follows:

x1 ⋄x′
2
=

1

h̃
x′

1
⋄x2 +

h̃2 − 1

h̃2
x′

2
⋄x1, ∂̄1 ⋄ ∂̄′2 = −

1

h̃
∂̄′1 ⋄ ∂̄2 +

h̃2 − 1

h̃2
∂̄′2 ⋄ ∂̄1,

x2 ⋄x′
1
= x′

1
⋄x2 −

1

h̃
x′

2
⋄x1, ∂̄2 ⋄ ∂̄′1 = ∂̄′1 ⋄ ∂̄2 +

1

h̃
∂̄′2 ⋄ ∂̄1,

xi ⋄x′
i
= x′

i
⋄xi, ∂̄i ⋄ ∂̄

′
i = ∂̄′i ⋄ ∂̄i, i = 1, 2,

x1 ⋄ ∂̄′2 = ∂̄′2 ⋄x1, x2 ⋄ ∂̄′1 =
h̃(h̃ + 2)

(h̃ + 1)2
∂̄′1 ⋄x2,

x1 ⋄ ∂̄′1 = ∂̄′1 ⋄x1 +
1

1− h̃
∂̄′2 ⋄x2 − 1, x2 ⋄ ∂̄′2 =

1

1 + h̃
∂̄′1 ⋄x1 + ∂̄′2 ⋄x2 − 1.

Here the elements {x1, x2, ∂̄1, ∂̄2} belong to the first copy and the elements {x′1, x′2, ∂̄′1, ∂̄
′
2}

belong to the second copy.
The ordering form of the relations (48) is

L1
1 L

1
2 =

h̃− 3

h̃− 2
L1
2 L

1
1+

1

h̃− 2
L1
2 L

2
2+L1

2 ,

L2
2 L

1
2 =

h̃− 3

(h̃− 2)(h̃+ 1)
L1
2 L

1
1+

(h̃− 1)2

(h̃− 2)(h̃+ 1)
L1
2 L

2
2−

h̃− 1

h̃+ 1
L1
2 ,

L1
1 L

2
1 =

(h̃ + 1)2

(h̃− 1)(h̃+ 2)
L2
1 L

1
1−

h̃+ 3

(h̃− 1)(h̃+ 2)
L2
1 L

2
2−

h̃ + 1

h̃− 1
L2
1 ,

L2
2 L

2
1 = −

1

h̃ + 2
L2
1 L

1
1+

h̃+ 3

h̃+ 2
L2
1 L

2
2+L2

1 ,

L1
1 L

2
2 = L2

2 L
1
1 ,

L1
2 L

2
1 = L2

1 L
1
2−

1

h̃
(L1

1−L2
2)

2 + L1
1−L

2
2 .

The central elements of Corollary 4.4 have the form

h̃− 1

h̃
(LN)11 +

h̃+ 1

h̃
(LN)22 .
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