The Euclidean algorithm in quintic and septic cyclic fields

Abstract : Conditionally on the Generalized Riemann Hypothesis (GRH), we prove the following results: (1) a cyclic number field of degree $5$ is norm-Euclidean if and only if $\Delta=11^4,31^4,41^4$; (2) a cyclic number field of degree $7$ is norm-Euclidean if and only if $\Delta=29^6,43^6$; (3) there are no norm-Euclidean cyclic number fields of degrees $19$, $31$, $37$, $43$, $47$, $59$, $67$, $71$, $73$, $79$, $97$. Our proofs contain a large computational component, including the calculation of the Euclidean minimum in some cases; the correctness of these calculations does not depend upon the GRH. Finally, we improve on what is known unconditionally in the cubic case by showing that any norm-Euclidean cyclic cubic field must have conductor $f\leq 157$ except possibly when $f\in(2\cdot 10^{14}, 10^{50})$.
Type de document :
Article dans une revue
Mathematics of Computation, American Mathematical Society, 2017, 86 (307), pp.2535--2549. 〈10.1090/mcom/3169〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01258906
Contributeur : Pierre Lezowski <>
Soumis le : jeudi 28 avril 2016 - 15:06:06
Dernière modification le : dimanche 11 mars 2018 - 20:28:01
Document(s) archivé(s) le : mardi 15 novembre 2016 - 16:39:28

Fichier

quintic_septic_160319.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Pierre Lezowski, Kevin Mcgown. The Euclidean algorithm in quintic and septic cyclic fields. Mathematics of Computation, American Mathematical Society, 2017, 86 (307), pp.2535--2549. 〈10.1090/mcom/3169〉. 〈hal-01258906v2〉

Partager

Métriques

Consultations de la notice

235

Téléchargements de fichiers

83