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Abstract – The paper is related to the analysis and the modeling of structural interface behaviors 

when unilateral contact, friction and adhesion interact. Among the contact models in literature, 

the model developed by Raous, Cangémi, Cocou and Monerie (RCCM model) is retained. It 

consists to include strict unilateral contact to avoid interpenetration, initial adhesion 

progressively decreases when the load increases, and Coulomb’s friction which is progressively 

activated when adhesion decreases. Because of its implicit character, the Coulomb friction law 

with adhesion is non-associated, and the notion of superpotential with normality rule cannot be 

used anymore. In the present work, to overcome this non-associated character, a specific potential 

adapted to coupling unilateral contact, friction and adhesion  is build and named bipotential. A 

numerical model is proposed and improved to solve the boundaries values problem. The algorithm 

is implemented in the finite element code SYMEF which has been developed at the University of 

Bechar (Algeria). A comparative study is made between the bipotential model and the previously 

developed RCCM model.  The numerical results show that, this approach is robust and efficient in 

terms of numerical stability, precision convergence and CPU time compared to the RCCM model.  
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I. Introduction 

In almost all mechanical and structural engineering 

systems , there exists the situation in which one 

deformable  body comes in contact with another. Due to 

their complexity, the contact phenomenon between solids 

is rarely taken into account in structural analysis. These 

complexity arises due to the inherent nonlinearity of the 

problem and the multivalued nature of the contact and 

friction relations, which poses serious mathematical and 

computational difficulties. Indeed, the introduction of 

friction between the contacting bodies is another 

important source of nonlinearity [1]-[4]. The nonlinear 

and irreversible nature of the contact problem requires a 

reliable and stable numerical algorithm for achieving 

iteration convergence and solution accuracy.  With the 

advent of more powerful computers the onus has been 

placed on the numerical method for the solution of 

contact problems which involves systems of inequalities 

or nonlinear equation. In recent years, tremendous 

progress has been made in the solution of frictional 

contact problems with the finite element method.  A large 

number for  numerical techniques used to enforce contact 

constraints have been presented in the literature. These 

algorithms can be grouped as follows: the penalty 

function method [1]-[4], the flexibility method [5],[6], 

the mathematical programming method [7]-[9], the 

Lagrangian multiplier method [10],[11] and the 

augmented Lagrangian method [12]-[16]. In the last 

decade of the twentieth century, De Saxcé and Feng have 

proposed a new bipotential method derived from a new 

theory called the implicit standard materials (ISM). In 

this novel model a new formulation of augmented 

Lagrangian was presented [17],[18]. In the contact 

bipotential model, the unilateral contact and the friction 

are coupled and the formulation leads to a unique 

inequality and a single displacement variational principle 

[17],[18]. Using an Uzawa algorithm [17]-[19], the 

obtained saddle point problem is solved by  means of a  

prediction-correction process. Furthermore, the 

prediction-correction solution algorithm combined with 

projection leads to a sequence of minimization problems 

under constraints which are reduced to regular 

minimization problems when a Lagrange multiplyer is 

introduced [19]. The frictional contact problem is then 

treated in a reduced system. Generally, the numerical 

treatment of contact problems involves the definition of 

interface laws, and the development of algorithms. In 

order to simulate the behaviour of complex interfaces, a 

cohesive model (RCC model) coupling adhesion, friction 

and unilateral contact was proposed in [20] and extended 

in [21] (the RCCM model). This model is based on the 

adhesion intensity variable, introduced by Fremond 

[22],[23], which is a surface damage variable and takes 

its values between 0 and 1 (0 is no adhesion and 1 is total 

adhesion). This model gives a smooth transition from 

total adhesion to the usual Coulomb friction law with 

unilateral contact. Because of the non smooth character 

of the interface law set as multivalued applications (strict 

Signorini conditions and strict Coulomb law after 
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collapse of the adhesion), the analysis regards non 

smooth mechanics. The aim of the present paper is to 

apply the bipotential method for unilateral contact with 

the coupling of, friction, and adhesion. Adhesion and 

friction are strongly coupled through a specific 

compliance with damage that acts only in traction or 

shear and that disappears when the contact displacements 

increase. This insures a continuous transition between 

total adhesive and pure frictional states [24],[25]. The 

developed algorithm is implemented into the finite 

element code SYMEF where the contact simulation, 

based on the bipotentiel method [17],[18] has been 

improved by Berga and Terfaya  at the University of 

Bechar [26]-[28]. Some numerical examples are 

performed in this study to show the validity of the model. 

 

II. Unilateral contact and Coulomb 

friction laws 

Before presenting the frictional contact laws, some 

basic definitions and notations are set up. Let A and B be 

two deformable  bodies coming  in contact at a point P 

(Fig. 1). P’ is the target point defined by the normal 

projection of P on B. Under the small displacement 

assumption, we define c the contact zone between A 

and B,  n the normal unit outer vector of B at P' and   

T(t1, t2) the orthogonal plane to n in 
3
. The vector n 

and the tangential plane T define the local coordinate 

system. Furthermore, we denote R the contact reaction 

acting at P’ from B onto A and 1u , 2u  are respectively, 

the instantaneous velocities of the particles of A and B 

passing at point P and P’. The relative velocity is 

1 2u = u - u , where the superposed dot denotes the time 

derivative. In the local coordinate system, the relative 

velocity and the contact reaction are decomposed into 

normal and tangential components as follow: 

                         nu tu u n                                    (1) 

  tR R nnR                                      (2) 

where nu  is the normal relative velocity, tu , the sliding 

velocity, Rn the contact force and Rt the friction force. 

 
 

The unilateral contact law impose three conditions: a 

geometric condition of non-penetration, a static condition 

of no-adhesion and a mechanical complementarity 

condition. These conditions are referred to Signorini 

conditions and are written in terms of the signed contact 

distance xn and the normal contact force Rn as follow       

[1]-[26]: 

 0 0 0n n n nx ;  R ; and R x             (3) 

Where xn denotes the magnitude of the gap between the 

contact node and the target surface;  

 xn = h0 + un                                                    (4) 

Denoting by h0 the initial gap between the solids A and 

B. The unilateral contact condition (3) turns into: 

 0 0 0n n n nu ;  R ; and R u             (5)                                  

For bodies in contact  ( 0nu  ), the unilateral contact law 

(Signorini’s conditions) can be expressed equivalently in 

terms of velocities: 

 0 0 0n n n nu ;  R ; and R .u            (6) 

The formulation of  Signiorini’s condition in terms of 

velocities allow us to write the complete frictional 

contact law when bodies are in contact . Regarding the 

dry friction law, it is generally characterized by a 

kinematic slip rule. Let the closed convex set K  be the 

isotropic Coulomb’s cone, which defines the set of 

admissible forces satisfying: 

        0tR    f(R) R nK such that .R        (7)  

Where Rn, Rt are respectively the normal and tangential 

contact force and  is the friction coefficient of the 

Coulomb law. By combining the Signorini's condition to 

the sliding rule, we can define the complete frictional 

contact law.   This complex dissipative law is described 

by three contact statues: no contact, contact with sticking 

and contact with sliding. The problem can be stated as: 

if Rn = 0  then  0nu          separating (no contact) 

if R  int K  then   u = 0       sticking; 

if Rn  0  and R  K  (f (R) = 0) then :                (8) 

0nu  and    0 such that  t
t

t

R
u

R
       sliding 

where ‘int K ’ and ‘K’ denote the interior and the 

boundary of K.  In the above formulation, the first and 

second part , shows that the frictional contact constitutive 

model has a multivalued character. 

 

III. The RCCM model 

The RCC model (Raous- Cangémi- Cocou) has been 

first given in [24], [25], and then extensively presented in 

[20]. It has been extended to the present form (RCCM 

model) including progressive friction with the term (1−β) 

in [21], [29]. The RCCM model has been successfully 

used for composite materials (matrix-fibre interfaces, 

ductile cracks) [21], steel- concrete interfaces (pull out of 

reinforced concrete) [30], interfaces in masonry 

construction [31], and pile- soil interface [32]. The 

Fig. 1 : Kinematics of contact 
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RCCM  model consider both unilateral contact, Coulomb 

friction, and adhesion. It is based on interface damage.  

    In the framework of continuum thermodynamics, the 

contact zone is considered as a material surface and the 

local constitutive laws are derived by choosing two 

specific surface potentials: the free energy and the 

dissipation potential [20], [25]. The adhesion is 

characterized in this model by the internal variable β, 

introduced by Frémond [22], [23], which denotes the 

intensity of adhesion. It is a surface damage variable that 

takes its value between zero (no adhesion) and one 

(perfect adhesion). The introduction of a damageable 

stiffness of the interface ensures a smooth transition 

between the two contact conditions (initial adhesion and 

final frictional sliding). The behaviour of the interface is 

described by the following relations, where equation (9) 

gives the unilateral contact with adhesion, (10) gives the 

Coulomb friction with adhesion and (11) gives the 

evolution of the adhesion intensity β. Initially, when the 

adhesion is complete, the interface is elastic as long as 

the energy threshold w is not reached. After that, damage 

of the interface occurs gradually and consequently, on 

the one hand, the adhesion intensity β and the apparent 

stiffness β
2
Cn and β

2
Ct decrease, and on the other hand, 

friction begins to operate. When the adhesion is 

completely broken (β = 0), we get the classical Signorini 

problem with Coulomb friction. The model is then 

written as follows: 

- unilateral contact (Signorini conditions) with adhesion:     

0).(R    ;0    ;0 22  nnnnnnnn uuCuuCR        (9) 

- Coulomb friction with adhesion: 

 

2

21

r
t t

r
t t

R u   

R R

r
t n n

n n n

C ; R R

( ) R C u



  

  


   

          (10a) 

Where the superscript (.)
r
 means reversible part, with:  

 

2

2

1 0

1

0

r
t t t

r
t t

r
t t

t r
t t

R -R u

R -R

R -R
                  u

R -R

n n n

n n n

if ( - ) R - C u

if ( - ) R - C u

, -

  

  

 



   






    



        (10b)           

- Evolution of the adhesion intensity: 
2 2

2 2

0 1

1

t

t

u      
   

u       

n n t

n n t

( w (C u C ) ) if [ , [

( w (C u C ) ) if

  

  





     


         (11) 

Where (x)
-
 denotes the negative part of x such that :       

(x)
-
 =max(0;-x);x.Hence,the constitutive parameters 

of the model are:  

- Cn and Ct , the initial stiffness of the interface, 

- w is the decohesion energy (as long as that threshold is 

not reached, adhesion stays to be complete and the 

behavior of the interface is elastic with the initial 

stiffness Cn and Ct), 

-  is the friction coefficient, 

-  is the viscosity associated to the evolution of the 

adhesion. 

IV. The bipotential model 

In order to generalize the concept of pseudo-potential, 

introduced by J.-J. Moreau for multivalued constitutive 

laws [17], to non associated laws, G. De Saxcé [17], [18] 

introduced the concept of bipotential and the Implicit 

Standard Materials (ISM). Bipotentials are non-smooth 

mechanics tools, which allows modelling various non 

associative multivalued constitutive laws of dissipative 

materials (friction contact, soils, cyclic plasticity of 

metals, damage). The bipotential theory, based on an 

extension of Fenchels inequality, leads to a succesful 

new writing of the constitutive laws of some dissipative 

materials and permits to recover a flow rule subnormality 

for non-standard behaviors, specially soils and unilateral 

contact with dry friction [17],[18], [33]-[35].  

IV.1. Concept of bipotential 

    Let us consider a material system S described by a 

space V of generalized velocities u , carrying a structure 

of vector space over the field of real numbers  and a 

dual vector space F of force R is associated to V by a 

bilinear form ( u ,R)  u . R.  

This bilinear form define the power of dissipation. The 

RCCM model presented above is a non-standard 

dissipative laws.  Because of its implicit character, this 

law is non-associated, and the notion of a superpotential 

with normality rule, used in classical plasticity, cannot be 

used anymore. According to De Saxcé and Z-Q. Feng 

[17], [18], the normal dissipation rule can be generalized 

by constructing a unique function depending on the 

velocities u  and on the forces R, called bipotential and 

here denoted b : 

      V F u R u Rb : , : , b ,        (12) 

b is biconvex, namely convex with respect to u , when R 

is fixed, and convex with respect to R, when u is fixed. 

Furthermore, the bipotential satisfies the fundamental 

inequality: 

    u R V F u R u.R, ,b ,                        (13) 

This generalization of the Fenchel inequality is the 

cornerstone of the formulation. The couples  u,R  are 

said extremal when equality is reached: 

 u R u.Rb( , )                                                  (14) 

One can show, that the extremal couple is related by the 

dissipative law. Then, any extremal pair satisfies: 

 u R u R R. u u             u V

  u R u R u R R          R F

a ) b( , ) b( , ) ( )

b ) b( , ) b( , ) .( )

    


     
     (15) 

This is equivalent to the differential inclusions 

characterizing an implicit subnormality law: 

 Ru u Rb( , )   and   uR u Rb( , )            (16) 
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The relations (16) define a multivalued constitutive law 

and its inverse.  

IV.2. Bipotential coupling contact, friction and 

adhesion 

This formulation is based on the works of Raous et al 

[20] and Raous and Monerie [21] on the soft coupling 

between adhesion and frictional contact. The following 

thermodynamic variables are introduced: the relative 

displacements  ( t unu , ) and the adhesion intensity β are 

chosen as the state variables, and the contact force R and 

a decohesion force Gβ, as the associated thermodynamic 

forces such that: 

 
2 2

β tG w un n t(C u C )                               (17) 

Based on the work of M. Jean, V. Acaray et Y. Monerie 

[36]- [39], we have introduced the following change of 

variables to take into account the adhesion in  contact 

problems : 

 adhR R R                                                   (18) 

Radh which is quite generally an additional resistance 

force to normal or tangential separation whose intensity 

decreases with increased debonding. The interfacial 

forces Radh induced by the adhesion, are introduced under 

the form of a compliance law depending on the current 

state of adhesion β and characterized by the initial 

stiffness Cn and Ctthsuch that:  
2 2

adht t   R u

c c

adhn n n c t cR C u d and C d

 

        (19) 

The Coulomb’s cone K  is defined as follow: 

  0t tR Rn nK ( R , ), / R                  (20) 

where: n n adhnR R R  , t t adhtR R R  , 1.( )   

and RK ( ) is the sliding surface. 

The classical Coulomb’s friction condition is recovered 

by setting  = 0 (   ) and we get the usual definition 

of Coulomb’s cone. The Coulomb’s friction law with 

adhesion, as written in relations (9), (10a) and (10b), 

exhibits an aspect similar to the non-associated flow rule 

in plasticity. Indeed, during sliding, contact is 

maintained. The normal relative velocity nu is null and 

not related to the normal component of the reaction nR  

through normality. That means that the relative velocity 

u is not normal to the Coulomb’s cone. If we regard the 

contact force R  and the velocity u  as conjugate 

quantities of each other, the normality will not occur 

since it would require that the velocity would have a 

normal separating component. Furthermore, the relative 

velocities u (when 0nu  ) are admissible at the apex of 

the Coulomb's cone, which indicate  that the normality 

rule will not occur and the concept of pseudo-potential 

cannot be used. We conclude that Coulomb’s frictional 

contact law with adhesion is non-associated. A change of 

variable for the sliding velocity is introduced and the 

following bipotential (21) is constructed. It is composed 

of two parts, one controlling the interface law and the 

other one controlling the adhesion evolution: 

  
2

2

1
2 2

β

β

t

-u, ,R G ) R -

G
u

K n

-

n C

b( , I ( ) I ( u )

( ).R I ( )





  








  

    

    (21) 

where u  is the relative velocity, β the intensity of 

adhesion taking value between 0 and 1, R  the contact 

force and βG  the thermodynamic force associated to the 

state variable β. The parameter  is the adhesion 

viscosity and  is the friction coefficient. Is denotes the 

indicator function of the specified sets S. In (21), the 

indicator functions I 
 impose the unilateral conditions 

and 
C

I   imposes the condition 0   which  means that 

in the present model, the evolution of the intensity of 

adhesion is an irreversible and dissipative process 

depending on β and the adhesion can only decrease. 

 It has been shown that this bipotential verifies the 

suitable properties of biconvexity and satisfies (13), (14) 

and (15). Then the contact laws with adhesion can be, 

respectively, written in the following compact forms of 

implicit subnormality rules or differential inclusion rules 

uR
u u R  R u Rb(- , );    b(- , )                            (22) 

where u Rxb(- , )  denotes the sub-differential of b with 

respect to the variable x. The contact law and the 

equation for the evolution of  β, which are explicitly 

given by expression (9), (10a), (10b) and (11), are 

deduced from the state and complementary laws 

expressed in term of differential inclusions:  

  2
βu R G

n nn u n n n u nR b , , , R C u I ( u )    
         (23)      

 

 2 21

t

t

t u β

t t u t

R u R G

       R u ut n n n

b , , ,

C R C u



   





  

      

  (24)     

 β β β

β

G u R G  G

                                     G

C

C

b , , ,  I ( )

I ( )

 



  

 





    

  
   (25) 

The inverse law derives also from the bipotential 

βu R Gb( , , , ) : 

 
t t

t β tR R
u u R G   u RKb , , , I ( )


            (26)

  1

1

β t

t

u R G R u

                                     u R  

n n

n

n n KR R

n KR

u b , , , u I ( ) ( )

u ( ) I ( )





  

 

        

     

  (27) 

 
 

β

β

G β

G
u R G     

-

b , , ,  


                  ( 28) 

We note here that the expression (23) is equivalent to the 

unilateral contact condition [40],[41], then we obtain : 

 

 

2

2

0 0

0

n n n n

n n n n

u ;  R C u ; 

   and R C u .( u )





   

  
                                 (29) 
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Expression (29) is the unilateral contact law with 

adherence. When  = 0, the Signorini conditions is 

recovered. With similar reasoning, (24) leads to an 

equivalent relation as follow: 

 

 

 

 

2 2

2 2

2 2

2

2

1

1 0

1

0

t t

t t t

t t

t t

t

t t

R u

R u u

R u

R u
                                 u

R u

t n n n

t n n n

t n n n

t

t

C R C u

C R C u

C R C u

C
such as

C

   

   

   


 



    



     


    

 
    
 


     (30) 

It is the friction law with adhesion, and when  = 0 we 

have the usual Coulomb friction law. Using (28), 

expression of  , and by introducing the expression (17) 

for G, a study on variable   which holds in [0, 1[ makes 

it possible to express the adhesion evolution in the 

following form: 

   

 

2 2

2 2

0 1

1

t

t

u

u

n n t

n n t

w C u C if ,

w C u C if

  

 





        

      
  

            (31) 

Where: x, (x)
-
 = max(0; -x); the negative part of x. 

The relations (29) to (31) show clearly that the RCCM 

model, coupling contact, friction and adherence 

expressed by (9), (10a), (10b) and (11) can be obtained 

from a unique function that is the bipotential 

βu R Gb( , , , ) .  

V. Local algorithm 

In the method described above, the unilateral contact 

and friction are coupled to the adhesion through a contact 

bipotential. Unlike the RCCM model using two 

inequalities and two separate algorithms for the unilateral 

contact and friction, this model leads to a  single 

inequality and one variational principle. The constitutive 

law coupling contact, friction and adhesion is  

represented by inequalities and the contact potential is  

non-differentiable and the non-associativity of the 

constitutive law is responsible for numerical troubles. 

The bipotentiel 
βu R Gb( , , , )

 
represented by the 

expression (21), where the adhesion is combined with the 

friction and the unilateral conditions, has a differentiable 

part and another part with no-differentiable potentials as 

the case of the contact and friction with adhesion. The 

variation of the intensity of adhesion governed by a 

differentiable expression will not induce any difficulties. 

Indeed the values of β can be obtained from the 

differential system (31) by a numerical integration 

(Method of Euler, -Method...etc.) for displacements 

increments provided at the beginning step of time. In 

order to avoid non-diferentiable potentials that occur in 

contact problems with adhesion , it is convenient to use 

the Augmented Lagrangian Method [14],[15].   The 

application of the augmented Lagrangian method to the 

contact laws leads to implicit equations of projection 

onto the Coulomb friction cone. The method  leads to the 

following implicit equations: 

  R τPr oj ,K                                          (32) 

where  is the modified augmented contact reaction 

defined by: 

  t tτ R u u nnu . .     
 

               (33) 

The equality (32) means that R is the projection of  
onto the closed convex Coulomb cone K

. The parameter 

 is a real positive numbers that can be chosen in order to 

ensure numerical convergence, such as the maximum 

value of the diagonal terms of the local contact stiffness 

matrix or chosen according to the eigenvalue of the 

contact flexibility matrix. In our analysis, the factor  is 

calculated using the diagonal terms of the flexibility 

matrix W: 

 
 

1
nn ttmin W ,W

                                    (34) 

The flexibility matrix W, is defined in the local 

coordinate system by W = H
T
 K

-1
 H. Where K denotes 

the stiffness matrix and H the rotation matrix between the 

local frame (t1, t2, n) and global one (X; Y; Z).  The local 

problem is treated in a reduced system by means of 

reliable and efficient predictor-corrector algorithm.  A 

saddle point problem is obtained and an iterative Uzawa 

algorithm can be used to solve the implicit equation (32) 

[19]. This algorithm has been successfully applied by 

Feng [42] and Feng et al. [43]. A prediction-correction 

process combined with projection leads to a sequence of 

minimization problems under constraints which are 

reduced to regular minimization problems when a 

Lagrange multiplyer is introduced. The Uzawa algorithm 

leads to an iterative process involving one predictor-

corrector step: 

- Predictor:  1
t tτ R u u n

i i i i i
nρ u μ .     

  
     (35) 

     - Corrector:  1 1
R τ

i iproj ,K
                           (36) 

According to (32) and corrector steps, the process is 

iterative and at the (i + 1)
th

 iteration, the local stage can 

be summarized by: 

- Predictor:  1
t tτ R u u n

i i i i i
nρ u μ .     

  
         (37) 

- Corrector:  
1 1 1 0t R

j j j
nif then        (separating) (38a)

1 1 1 1
t

j j j j
nelse if τ then R τ      (sticking) (38b)      

else: 
1 1 1

1

2 1
.

1

j j j
t nj 1 j t

j
t

τ τ
R τ n

τ






  
 



  
    
    
  

(sliding) (38c) 

The iterative solution procedure involving contact  

modelling with adhesion is written as below:  
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t2 = 5.143s 

t3 = 10s 

1. Read the data: geometry, mesh, material 

properties, boundary conditions, 

2. Compute the stiffness matrix K and the external 

force vector Fext, 

2.1 Modify K  and Fext for essential boundary         

      conditions 

3. For each time step It 

3.1  Detect contact conditions (local frame, gap  

vector. . .)  

3.2   Compute the flexibility matrix W, 

3.3 Solve K . u = Fext 

3.4  For each adhesion step Ia 

3.4.1 Compute reaction forces    by local 

     algorithm 

                          For each contact node nc 

                    - Predictor :   

                    1
tτ R u u n

i i i i i
n tρ u μ .     

  
 

                    -  Corrector   1 1
R τ

i iproj ,K
   

                 3.4.2 Compute reaction R:(Rn, Rt) from (18)     

                 3.4.3 Time integration of equation of β  

                           evolution 

3.5 Solve K . u = Fext + R 

3.6 Update displacements, 

3.7 Compute stresses and strains 

       4. Update step count, if simulation is note achieved,   

           go to 3 

 

VI. Numerical results 

The algorithms presented above have been 

implemented and tested in the finite element code 

SYMEF developed by Berga and Terfaya  at FIMAS 

laboratory, at the University of Bechar [26]-[28]. Many 

application examples involving frictional contact with 

adhesion, in static or quasi-static cases, have been carried 

out using the present method. In order to validate the 

developed model, we propose to study two different 

benchmarks for simulating delamination [44]-[47]  which  

have been developed in the framework of a joint project 

with the LCPC laboratory (Laboratoire Central des Ponts 

et Chaussées )[45] focusing on adhesion and gluing in 

civil engineering. The presented model is compared with 

the RCCM model developed by Raous et al. and 

implemented in the GYPTIS90 code (LMA Marseille) 

[48]. To show the performance of the present approach, 

we give the CPU time and number of iterations provided 

by the two codes. The adhesion intensity β, the tangential 

displacement ut and the normal displacement un are 

presented along the interface. It is noted that these 

analysis were performed on a PC (Hp Pavilion G6 i5). 

VI.1. Delamination of a thin layer of aluminium 

submitted to vertical loading 

The first example concerns a 2D plane strain 

delamination of a thin layer of Aluminium with              

L =50 mm ; h = 2.5 mm, initially adhered to a rigid 

support [45]-[47]. The geometric configuration, the 

boundary conditions and finite element mesh used are 

given on Figure 2. A vertical prescribed displacement (v) 

is applied incrementally at point A with a maximum 

value of v = 0.3mm (in 10 sec), divided into 210 

increments.  The elastic behaviour is assumed. Only the 

behaviour of the interface is considered with dissipative 

law ( α ≠ 0). The same contact stiffness was chosen for 

the normal and the tangential interface behavior :          

Cn = Ct = C. The characteristics of this example are 

given as below:   

Young’s modulus: E =6.9E+04 MPa; 

 Poisson’s ratio:      ν = 0.333.  

The decohesion energy: w = 1.E-06 mJ/mm² ;   

The initial stiffnesses of the interface:                            

Cn = Ct = 2.E+05 MPa/mm 

The interface viscosity: α = 1 Ns/mm ;  

The friction coefficient: µ = 0.2  

The initial conditions are supposed to be complete 

adhesion (β = 1 ) and zero displacement (un =0,  ut = 0). 

 

 

   

  

 

 

 

 

 

 

 

 

For comparison purpose, we have used the same mesh. 

The finite element discretization includes 130 three-node 

isoparametric plane strain elements and 100 nodes. The 

interface consists of 33 contact nodes. The successive 

deformed meshes are displayed in Figure 3 for three time 

step t1, t2 and t3. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4, presents the results given by the models : RCCM 

and the bipotential, for t1 = 3.571s and t2 = 5.143s. The 

Fig 3. Deformed meshes 

t1 = 3.571s 

Fig 2. Geometry and finite element mesh 
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Fig. 5 : Evolution of the normal adhesive reaction Radh and 

the adhesion intensity β 

contact condition is presented for the given steps of the 

loading. The values of the adhesion intensity β, the 

tangential displacement ut and the normal displacement 

un are plotted along the interface. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results are almost the same as shown in Fig. 4 and a 

good agreement can be observed between the bipotential 

model results and the RCCM ones. Fig. 5 shows the 

evolution of the normal adhesive reaction Radh and the 

adhesion intensity β versus time at points B of the 

interfaces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Under the imposed displacement, an adhesive resistance  

( 2

c

adhn n n cR C u d



  ) is mobilized (elasticity with 

damage). The intensity of adhesion starts to decrease 

0   (0<β<1) when the displacement is sufficiently 

large such that the elastic energy becomes larger than the 

limit of adhesion energy w. Evolution of the adhesion is 

then governed by (31). When adhesion is totally broken 

(β = 0),  the classical Signorini problem is obtained (6). 

The performance of the present algorithm in terms of 

CPU time, the number of iterations related to the 

calculation of β and contact reactions compared to 

RCCM’s model, is reported in Table 1. 

It shows that, globally, the RCCM algorithm  needs more 

iterations than  the bipotential algorithm, particularly for 

contact iterations. These  results show  the robustness 

and accuracy of the proposed method. 
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Fig. 4 : The adhesion intensity β, the tangential 

displacement ut and the normal displacement un  along the 

interface for  loading step: t1, t2 
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Fig.6 : Shear delamination of a block of aluminium 
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h 
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TABLE 1. 

COMPARISON OF CPU TIME 

Model Parameters 

Steps 
GLOBAL CPU 

(s) 1 10 40 60 100 150 200 

R
C

C
M

 

β Iterations 1 3 14 7 3 2 4 

2':41s.663c 
Contact 

Iterations 
132 133 132 132 132 132 197 

CPU (s) 0.294 0.189 0.182 0.187 0.210 0.191 0.299 

B
ip

o
ten

tial 

β Iterations 1 2 6 6 2 2 2 

1' 6s 80c 
Contact 

Iterations 
7 7 8 8 8 8 8 

CPU (s) 0.15 0.11 0.11 0.11 0.11 0.11 0.12 

VI.2.  Shear delamination of a block of 

aluminium 

To reinforce the role of  friction, one studied the case 

of an Aluminum block compressed on a rigid plane. 

Initially the system is in total adhesion [44],[45]. The 

block is submitted to a displacement imposed on its left 

lateral edge. The loading is of u = 20mm in 10s. On the 

upper face of the block a vertical displacement of            

v = -0.5 mm  is applied. Geometry , boundary conditions, 

and finite element mesh are given on Fig 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The block sizes are L= 50 mm  as  length , h = 25 mm as 

height. The Young modulus of  the  Aluminum block 

was  E =  6.9E+4 MPa.  Poisson’s  ratio was  ν  =  0.333. 

The characteristics used in the numerical test  are as 

follows:  w = 1.E-3 mJ/mm² ; Cn = Ct = 1.64 MPa/mm;                    

 = 1 Ns/mm ; µ = 0.2.  

Initial conditions : β = 1, un = 0,and  ut = 0. The structure 

is discretized using  linear triangular elements. The 

interface consists of  33 nodes and  one  used  210  time 

increments. The successive deformed meshes are 

displayed in figure 7 for times  t1 = 2.143s,  t2 = 3143, 

and  t3 = 3.571s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the figures below we have  ploted  along  the  

interface, the evolution of debonding, tangential sliding 

and the adhesion  intensity β obtained  by RCCM and  

bipotential models, for the given times t1 , t2 , and t3. 

t2 

t3 

Fig. 7 : Deformed meshes 
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Fig 8 :  The tangential displacement ut , the normal 

displacement un , and the adhesion intensity β 

along the interface for  loading times: t1, t2 and t3 
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In Figure 9, the contact conditions are presented. For a 

point of interface we have ploted the adhesive reaction 

Radh, and  the contact reactions R.  Let us now analyze 

the interface by considering the shear behavior             

(see Fig. 9). We suppose initially that we have a 

complete adhesion (β = 1) and zero displacement       

(un= ut = 0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Under compression, the sliding limit is  nR   because 

un = 0. As long as the norm of the tangential force is 

smaller than the sliding limit, sliding does not occur     

(ut  = 0) as initial condition and tu = 0  in expression 

(30). Under the lateral displacement u, an elastic 

tangential displacement occurs, and the sliding limit is 

reached. An adhesive resistance  ( 2

c

adh cR C u d



   ) is 

active and the tangential behavior is elastic with damage. 

When the displacement is sufficiently large, the elastic 

energy becomes larger than the limit of adhesion energy 

w and the adhesive limit is reached. After that, damage of 

the interface occurs and consequently, on the one hand, 

the intensity of adhesion β starts to decrease which 

involve a reduction in the adhesive reactions until their 

complete vanishing, and on the other hand, friction 

begins to operate. When the adhesion is completely 

broken  (β = 0), the usual Coulomb friction conditions 

are obtained. Table 2 summarizes the number of 

iterations and the computational times (total CPU time) 

for the two models. These results show once again the 

efficiency of the proposed method. 

  

 
 

Fig. 9 : Contact forces 
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TABLE 2. 

COMPARISON OF CONVERGENCE AND CPU TIME 

Model Parameters 

Steps 
GLOBAL CPU 

(s) 1 10 40 60 100 150 200 

R
C

C
M

 

β Iterations 1 2 3 5 1 1 1 

8m:17s.367c Contact Iterations 132 132 132 132 175 175 175 

CPU (s) 0.750 0.703 0.905 0.694 0.906 0.893 1. 21 

B
ip

o
ten

tial 

β Iterations 1 2 3 9 1 1 1 

2m 16s 50c Contact Iterations 2 4 5 5 58 58 58 

CPU (s) 0.20 0.23 0.18 0.18 0.19 0.19 0.19 

 

VII. Conclusion 

The RCCM model developed by Raous, Cangémi, 

Cocou and Monerie is a cohesive interface model 

taking into account strict unilateral contact to avoid 

the interpenetration of the two bodies in contact, 

initial adhesion which will progressively decrease 

when the loading increases, and Coulomb’s friction 

which is progressively introduced when adhesion 

decreases. The model is based on thermodynamic 

considerations and surface interactions concepts. 

Because of its implicit character, the Coulomb 

friction law with adhesion in the RCCM model is 

non-associated, and the notion of superpotential with 

normality rule cannot be used anymore. To 

overcome this undesirable lack of normality, G. De 

Saxcé and Feng [17],[18] introduced the class of 

implicit standard materials (ISM) based on the 

concept of bipotential. A major result of the ISM 

theory was the possibility of representing many non-

standard dissipative laws by a suitable pseudo-

potential depending on the dual variables, internal 

variable rates and associated variables. The concept 

of bipotential is based on an extension of the Fenchel 

inequality, and is a generalization of the notion of 

pseudo-potential which enables us to write the 

evolution laws as implicit normality rules. The 

contact law is then written as a differential inclusion 

and the choice of a convenient bipotential allows us 

to uncover a normality rule. In this paper, by using a 

variational formulation of the frictional contact law 

based on the ISM concept, a bipotential formulation 

for the RCCM model, coupling adhesion and friction 

has been theoretically investigated and numerically 

implemented. It has shown that on the interface, the 

frictional contact law with adhesion described by a 

non-associated sliding rule and its inverse are 

obtained by applying the normality rule to a single 

scalar-valued function called a bipotential, which 

leads to a single displacement variational principle 

and a single inequality. The unilateral contact with 

adhesion and the friction with adhesion are coupled.  

 

 

 

 

By doing so, the local stage involves only a single 

predictor-corrector step reducing significantly the 

computing time, where the developed algorithm, 

solves the contact problem iteratively in a reduced 

linear system and computes the displacements in the 

whole structure, using contact reactions as external 

loading. The algorithms developed have been 

implemented and tested in the finite element code 

SYMEF developed by Berga and Terfaya  at FIMAS 

laboratory, at the University of Bechar. The ability 

of the framework was illustrated by simulations and 

the model is tested with benchmark for simulating 

delamination. Two examples considering normal and 

shear behavior of interface for a 2D case have been 

studied in detail. A comparative study has been 

made between the newly proposed model and the 

previously developed RCCM Model. The numerical 

test shows that both algorithms give same results, 

however the RCCM algorithm needs more iterations 

than the bipotential algorithm. The above results 

demonstrated that our model could provide better 

performance in terms of numerical stability and 

precision when compared to the RCCM Model for 

the local analysis of frictional contact problems.  The 

Signorini conditions and Coulomb friction laws are 

quite well satisfied. The algorithms presented in this 

work can be extended in the future by taking into 

account other complex problems such as material 

non-linearities and it can be readily extended to 

dynamic contact problems. 
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